Skip to main content
Log in

18[F]FDG-PET/CT is a Useful Molecular Marker in Evaluating Tumour Aggressiveness: A Revised Understanding of an In-Vivo FDG-PET Imaging that Alludes the Alteration of Cancer Biology

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Molecular imaging employing 18[F]FDG-PET/CT enables in-vivo visualization, characterisation and measurement of biological process in tumour at the molecular and cellular level. In oncology, this approach can be directly applied as translational biomarkers of disease progression. In this article, the improved roles of FDG as an in-vivo glycolytic marker which reflect biological changes across in-vitro cellular environment are discussed. New understanding in how altered metabolism via glycolytic downstream drivers of malignant transformation as reviewed below offers unique promise as to monitor tumour aggressiveness and hence optimize the therapeutic management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bayani, J., Selvarajah, S., Maire, G., Vukovicc, B., Al-Romaihd, K., Zielenska, M., et al. (2007). Genomic mechanisms and measurement of structural and numerical instability in cancer cells. Seminars in Cancer Biology, 17(1), 5–18.

    Article  PubMed  CAS  Google Scholar 

  2. Kim, C. K., Gupta, N. C., Chandramouli, B., & Alavi, A. (1994). Standardized uptake values of FDG: Body surface area correction is preferable to body weight correction. Journal of Nuclear Medicine, 35, 164–167.

    PubMed  CAS  Google Scholar 

  3. Matthew, D. T., Philip, W. S., William, K. B., Mark, R. W., Nicholas, T., Brian, R. S., et al. (2009). Fluorodeoxyglucose positron emission tomography and tumor marker expression in non-small cell lung cancer. Journal of Thoracic and Cardiovascular Surgery, 137, 43–48.

    Article  Google Scholar 

  4. Majid, K., Hani, A. N., John, B., Yiping, S., Dominick, L., & Jayakumari, G. (2008). Relation between nodule size and 18F-FDG-PET SUV for malignant and benign pulmonary nodules. Journal of Hematology & Oncology, 1, 13.

    Article  Google Scholar 

  5. Lee, T. S., Ahn, S. H., Moon, B. S., Chun, K. S., Kang, J. H., Cheon, G. J., et al. (2009). Comparison of 18[F]-FDG, 18[F]-FET and 18[F]-FLT for differentiation between tumor and inflammation in rats. Nuclear Medicine and Biology, 36(6), 681–686.

    Article  PubMed  CAS  Google Scholar 

  6. Fantin, V. R., St-Pierre, J., & Leder, P. (2006). Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell, 9(6), 425–434.

    Article  PubMed  CAS  Google Scholar 

  7. Han, B., Lin, S., Yu, L. J., Wang, R. Z., & Wang, Y. Y. (2009). Correlation of 18F-FDG PET activity with expressions of survivin, Ki67, and CD34 in non-small-cell lung cancer. Nuclear Medicine Communications, 30(11), 831–837.

    Article  PubMed  CAS  Google Scholar 

  8. Lowe, V. J., Hoffman, J. M., De Long, D. M., Patz, E. F., Jr, & Coleman, E. R. (1994). Semiquantitative and visual analysis of FDG-PET images in pulmonary abnormalities. Journal of Nuclear Medicine, 35, 1771–1776.

    PubMed  CAS  Google Scholar 

  9. Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 324(5930), 1029–1033.

    Article  PubMed  CAS  Google Scholar 

  10. Kroemer, G., & Pouyssegur, J. (2008). Tumor cell metabolism: Cancer’s Achilles’ heel. Cancer Cell, 13, 472–482.

    Article  PubMed  CAS  Google Scholar 

  11. Christopher, C. R., Timothy, A., Steven, L., Stephen, F. S., Scott, T., Amit, B., et al. (2007). 18F-FDG PET scanning correlates with tissue markers of poor prognosis and predicts mortality for patients after liver resection for colorectal metastases. Journal of Nuclear Medicine, 48(5), 771–775.

    Article  Google Scholar 

  12. Shiono, S., et al. (2011). Positron emission tomography/computed tomography and lymphovascular invasion predict recurrence in stage I lung cancers. Journal of Thoracic Oncology, 6, 43–47.

    Article  PubMed  Google Scholar 

  13. Reimer, S. E., Adler, L. P., & Bloom, A. D. (1998). Prospective evaluation of PET FDG in FNA indeterminate thyroid nodules (abstract). Journal of Nuclear Medicine, 39, 123.

    Google Scholar 

  14. Yon, M. S., Kyung, S. L., Byung-Tae, K., Joon, Y. C., Young, M. S., & Chin, A. Y. (2006). 18F-FDG PET/CT of thymic epithelial tumors: Usefulness for distinguishing and staging tumor subgroups. Journal of Nuclear Medicine, 47, 1628–1629.

    Google Scholar 

  15. Younes, M., Ertan, A., Lechago, L. V., Somoano, J., & Lechago, J. (1997). Human erythrocyte glucose transporter (Glut1) is immunohistochemically detected as a late event during malignant progression in Barrett’s metaplasia. Cancer Epidemiology, Biomarkers & Prevention, 6, 303–305.

    CAS  Google Scholar 

  16. Balagova, S., et al. (2008). Prospective comparison of FDG and PET PET/CT in patients with head and neck squamous cell carcinoma. Molecular Imaging and Biology, 10, 364–373.

    Article  Google Scholar 

  17. Brizel, D. M., et al. (2001). Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. International Journal of Radiation Oncology, Biology, Physics, 51, 349–353.

    Article  PubMed  CAS  Google Scholar 

  18. Koukourakis, M. I., Giatromanolaki, A., Harris, A. L., & Sivridis, E. (2006). Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: A metabolic survival role for tumor-associated stroma. Cancer Research, 66, 632–637.

    Article  PubMed  CAS  Google Scholar 

  19. Folpe, A. L., Lyles, R. H., Sprouse, J. T., Conrad, E. U., 3rd, & Eary, J. F. (2000). (F-18) fluorodeoxyglucose positron emission tomography as a predictor of pathologic grade and other prognostic variables in bone and soft tissue sarcoma. Clinical Cancer Research, 6, 1279–1287.

    PubMed  CAS  Google Scholar 

  20. Binderup, T., Knigge, U., Loft, A., Federspiel, B., & Kjaer, A. (2010). 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clinical Cancer Research, 16, 978–985.

    Article  PubMed  CAS  Google Scholar 

  21. Postovit, L. M., Adams, M. A., Lash, G. E., Heaton, J. P., & Graham, C. H. (2004). Nitric oxide-mediated regulation of hypoxia induced B16F10 melanoma metastasis. International Journal of Cancer, 108, 47–53.

    Article  CAS  Google Scholar 

  22. van Baardwijk, A., Dooms, C., van Suylen, R. J., Verbeken, E., Hochstenbag, M., Dehing-Oberije, C., et al. (2007). The maximum uptake of (18)F-deoxyglucose on positron emission tomography scan correlates with survival, hypoxia inducible factor-1alpha and GLUT-1 in non-small cell lung cancer. European Journal of Cancer, 43, 1392–1398.

    Article  PubMed  Google Scholar 

  23. Brenner, W., Eary, J. F., Hwang, W., Vernon, C., & Conrad, E. U. (2006). Risk assessment in liposarcoma patients based on FDG PET imaging. European Journal of Nuclear Medicine and Molecular Imaging, 33(11), 1290–1295.

    Article  PubMed  Google Scholar 

  24. Dierckx, R. A., & Van de Wiele, C. (2008). FDG uptake, a surrogate of tumour hypoxia? European Journal of Nuclear Medicine and Molecular Imaging, 35, 1544–1549.

    Article  PubMed  CAS  Google Scholar 

  25. Croom, K. F., & Perry, C. M. (2003). Imatinib mesylate: In the treatment of gastrointestinal stromal tumours. Drugs, 63(5), 513–522.

    Article  PubMed  CAS  Google Scholar 

  26. Jihye, Y., Carlo, R., Ian, C., Ray, P., Philipp, A., Harith, R., et al. (2009). Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science, 325(947), 1555–1559.

    Article  Google Scholar 

  27. Suehiro, Y., Wong, C. W., Chirieac, L. R., et al. (2008). Epigenetic–genetic interactions in the APC/WNT, RAS/RAF, and P53 pathways in colorectal carcinoma. Clinical Cancer Research, 14, 2560–2569.

    Article  PubMed  CAS  Google Scholar 

  28. Muhammad, C., Christine, A., Luis, D., & Richard, W. (2010). Correlation of K-ras mutation with FDG uptake in colorectal cancer. Journal of Nuclear Medicine, 51(2), 1210.

    Google Scholar 

  29. Semenza, G. L. (2002). HIF-1 and tumor progression: Pathophysiology and therapeutics. Trends in Molecular Medicine, 8(4), 62–67.

    Article  Google Scholar 

  30. Kim, S. J., Hwang, S. H., Kim, I. J., Lee, M. K., Lee, C. H., Lee, S. Y., et al. (2010). The association of 18F-deoxyglucose (FDG) uptake of PET with polymorphisms in the glucose transporter gene (SLC2A1) and hypoxia-related genes (HIF1A, VEGFA, APEX1) in non-small cell lung cancer. SLC2A1 polymorphisms and FDG-PET in NSCLC patients. Journal of Experimental & Clinical Cancer Research, 12(29), 69.

    Google Scholar 

  31. Guo, J., Higashi, K., Ueda, Y., Ishigaki, Y., Sakuma, T., Oguchi, M., et al. (2011). VEGF-A and its isoform VEGF mRNA expression measured by quantitative real-time RT-PCR: Correlation with F-18 FDG uptake and aggressiveness of lung adenocarcinoma: Preliminary study. Annals of Nuclear Medicine, 25(1), 29–36.

    Article  PubMed  CAS  Google Scholar 

  32. Bong-Il, S., Chae, M. H., Hong, J. L., Sungmin, K., Shin, Y. L., Hae, W. K., et al. (2011). Prognostic value of primary tumor uptake on F-18 FDG PET/CT in patients with invasive ductal breast cancer. Nuclear Medicine and Molecular Imaging, 45, 117–118.

    Article  Google Scholar 

  33. Hicks, R. J., Kalff, V., MacManus, M. P., et al. (2001). The utility of (18)F-FDG PET for suspected recurrent non-small cell lung cancer after potentially curative therapy: Impact on management and prognostic stratification. Journal of Nuclear Medicine, 42, 1605–1613.

    PubMed  CAS  Google Scholar 

  34. Schelling, M., Avril, N., Nahrig, J., et al. (2000). Positron emission tomography using [(18)F]fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. Journal Clinical Oncology, 18, 1689–1695.

    CAS  Google Scholar 

  35. Heron, D. E., Andrade, R. S., Beriwal, S., & Smith, R. P. (2008). PET-CT in radiation oncology: The impact on diagnosis, treatment planning, and assessment of treatment response. American Journal of Clinical Oncology, 31, 352–362.

    Article  PubMed  Google Scholar 

  36. Downward, J., & Targeting, R. A. S. (2003). Signalling pathways in cancer therapy. Nature Reviews, 3, 11–22.

    PubMed  CAS  Google Scholar 

  37. Downey, R. J., Akhurst, T., Gonen, M., et al. (2004). Preoperative F-18 fluorodeoxyglucose positron emission tomography maximal standardized uptake value predicts survival after lung cancer resection. Journal of Clinical Oncology, 22, 3255–3260.

    Article  PubMed  Google Scholar 

  38. Joensuu, H., Roberts, P. J., Sarlomo-Rikala, M., et al. (2001). Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. New England Journal of Medicine, 344, 1052–1056.

    Article  PubMed  CAS  Google Scholar 

  39. Cashen, A. F., Dehdashti, F., & Luo, J., et al. (2011). 18F-FDG PET/CT for early response assessment in diffuse large B-cell lymphoma: Poor predictive value of international harmonization project interpretation. Journal of Nuclear Medicine, 52, 386–392.

    Google Scholar 

  40. Fathinul F., Nordin A. J., Zanariah H., Kroiss A., Uprimny C., Donnemiller E., Kendler D., Virgolini I. J. (2011). Localisation and prediction of recurrent phaechromocytoma/paraganglioma (PCC/PGL) using diagnostic 18[F]FDG-PET/CT. Cancer Imaging, 3(11), Spec No A:S114–S115.

    Google Scholar 

Download references

Acknowledgments

Funding and support for research output is acknowledged from the Pusat Pengimejan Diagnostik Nuklear, Universiti Putra Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Fathinul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fathinul, F., Nordin, A.J. & Lau, W.F.E. 18[F]FDG-PET/CT is a Useful Molecular Marker in Evaluating Tumour Aggressiveness: A Revised Understanding of an In-Vivo FDG-PET Imaging that Alludes the Alteration of Cancer Biology. Cell Biochem Biophys 66, 37–43 (2013). https://doi.org/10.1007/s12013-012-9395-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-012-9395-5

Keywords

Navigation