Skip to main content
Log in

Macropinocytosis is the Major Mechanism for Endocytosis of Calcium Oxalate Crystals into Renal Tubular Cells

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

During an initial phase of kidney stone formation, the internalization of calcium oxalate (CaOx) crystals by renal tubular cells has been thought to occur via endocytosis. However, the precise mechanism of CaOx crystal endocytosis remained unclear. In the present study, MDCK renal tubular cells were pretreated with inhibitors specific to individual endocytic pathways, including nystatin (lipid raft/caveolae-mediated), cytochalasin D (actin-dependent or macropinocytosis), and chlorpromazine (CPZ; clathrin-mediated) before exposure to plain (non-labeled), or fluorescence-labeled CaOx monohydrate (COM) crystals. Quantitative analysis by flow cytometry revealed that pretreatment with nystatin and CPZ slightly decreased the crystal internalization, whereas the cytochalasin D pretreatment caused a marked decrease in crystal uptake. Immunofluorescence study and laser-scanning confocal microscopic examination confirmed that the cytochalasin D-pretreated cells had dramatic decrease of the internalized crystals, whereas the total number of crystals interacted with the cells was unchanged (crystals could adhere but were not internalized). These data have demonstrated for the first time that renal tubular cells endocytose COM crystals mainly via macropinocytosis. These novel findings will be useful for further tracking the endocytosed crystals inside the cells during the course of kidney stone formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Moe, O. W. (2006). Kidney stones: Pathophysiology and medical management. Lancet, 367, 333–344.

    Article  PubMed  CAS  Google Scholar 

  2. Khan, S. R., & Hackett, R. L. (1991). Retention of calcium oxalate crystals in renal tubules. Scanning Microscopy, 5, 707–711.

    PubMed  CAS  Google Scholar 

  3. De Bruijn, W. C., Boeve, E. R., van Run, P. R., van Miert, P. P., de Water, R., Romijn, J. C., et al. (1995). Etiology of calcium oxalate nephrolithiasis in rats. I. Can this be a model for human stone formation? Scanning Microscopy, 9, 103–114.

    PubMed  Google Scholar 

  4. de Water, R., Noordermeer, C., van der Kwast, T. H., Nizze, H., Boeve, E. R., Kok, D. J., et al. (1999). Calcium oxalate nephrolithiasis: Effect of renal crystal deposition on the cellular composition of the renal interstitium. American Journal of Kidney Diseases, 33, 761–771.

    Article  PubMed  Google Scholar 

  5. Tsujihata, M. (2008). Mechanism of calcium oxalate renal stone formation and renal tubular cell injury. International Journal of Urology, 15, 115–120.

    Article  PubMed  CAS  Google Scholar 

  6. Lieske, J. C., Swift, H., Martin, T., Patterson, B., & Toback, F. G. (1994). Renal epithelial cells rapidly bind and internalize calcium oxalate monohydrate crystals. Proceedings of the National Academy of Sciences USA, 91, 6987–6991.

    Article  CAS  Google Scholar 

  7. Schepers, M. S., Duim, R. A., Asselman, M., Romijn, J. C., Schroder, F. H., & Verkoelen, C. F. (2003). Internalization of calcium oxalate crystals by renal tubular cells: A nephron segment-specific process? Kidney International, 64, 493–500.

    Article  PubMed  CAS  Google Scholar 

  8. Evan, A. P., Lingeman, J. E., Coe, F. L., Parks, J. H., Bledsoe, S. B., Shao, Y., et al. (2003). Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. The Journal of Clinical Investigation, 111, 607–616.

    PubMed  CAS  Google Scholar 

  9. Kumar, V., Farell, G., Yu, S., Harrington, S., Fitzpatrick, L., Rzewuska, E., et al. (2006). Cell biology of pathologic renal calcification: Contribution of crystal transcytosis, cell-mediated calcification, and nanoparticles. Journal of Investigative Medicine, 54, 412–424.

    Article  PubMed  CAS  Google Scholar 

  10. Evan, A. P., Coe, F. L., Lingeman, J. E., Shao, Y., Sommer, A. J., Bledsoe, S. B., et al. (2007). Mechanism of formation of human calcium oxalate renal stones on Randall’s plaque. The Anatomical Record (Hoboken), 290, 1315–1323.

    Article  CAS  Google Scholar 

  11. Doherty, G. J., & McMahon, H. T. (2009). Mechanisms of endocytosis. Annual Review of Biochemistry, 78, 857–902.

    Article  PubMed  CAS  Google Scholar 

  12. Ivanov, A. I. (2008). Pharmacological inhibition of endocytic pathways: Is it specific enough to be useful? Methods in Molecular Biology, 440, 15–33.

    Article  PubMed  CAS  Google Scholar 

  13. Seto, E. S., Bellen, H. J., & Lloyd, T. E. (2002). When cell biology meets development: Endocytic regulation of signaling pathways. Genes & Development, 16, 1314–1336.

    Article  CAS  Google Scholar 

  14. Parton, R. G., & Richards, A. A. (2003). Lipid rafts and caveolae as portals for endocytosis: New insights and common mechanisms. Traffic, 4, 724–738.

    Article  PubMed  CAS  Google Scholar 

  15. Vassilieva, E. V., Gerner-Smidt, K., Ivanov, A. I., & Nusrat, A. (2008). Lipid rafts mediate internalization of beta1-integrin in migrating intestinal epithelial cells. American Journal of Physiology Gastrointestinal and Liver Physiology, 295, G965–G976.

    Article  PubMed  CAS  Google Scholar 

  16. Kerr, M. C., & Teasdale, R. D. (2009). Defining macropinocytosis. Traffic, 10, 364–371.

    Article  PubMed  CAS  Google Scholar 

  17. Sorkin, A. (2004). Cargo recognition during clathrin-mediated endocytosis: A team effort. Current Opinion in Cell Biology, 16, 392–399.

    Article  PubMed  CAS  Google Scholar 

  18. Ros-Baro, A., Lopez-Iglesias, C., Peiro, S., Bellido, D., Palacin, M., Zorzano, A., et al. (2001). Lipid rafts are required for GLUT4 internalization in adipose cells. Proceedings of the National Academy of Sciences USA, 98, 12050–12055.

    Article  CAS  Google Scholar 

  19. Peterson, J. R., & Mitchison, T. J. (2002). Small molecules, big impact: A history of chemical inhibitors and the cytoskeleton. Chemistry & Biology, 9, 1275–1285.

    Article  CAS  Google Scholar 

  20. Inal, J., Miot, S., & Schifferli, J. A. (2005). The complement inhibitor, CRIT, undergoes clathrin-dependent endocytosis. Experimental Cell Research, 310, 54–65.

    Article  PubMed  CAS  Google Scholar 

  21. Chaiyarit, S., Mungdee, S., & Thongboonkerd, V. (2010). Non-radioactive labelling of calcium oxalate crystals for investigations of crystal-cell interaction and internalization. Analytical Methods, 2, 1536–1541.

    Article  CAS  Google Scholar 

  22. Thongboonkerd, V., Semangoen, T., Sinchaikul, S., & Chen, S. T. (2008). Proteomic analysis of calcium oxalate monohydrate crystal-induced cytotoxicity in distal renal tubular cells. Journal of Proteome Research, 7, 4689–4700.

    Article  PubMed  CAS  Google Scholar 

  23. Semangoen, T., Sinchaikul, S., Chen, S. T., & Thongboonkerd, V. (2008). Proteomic analysis of altered proteins in distal renal tubular cells in response to calcium oxalate monohydrate crystal adhesion: Implications for kidney stone disease. Proteomics Clinical Applications, 2, 1099–1109.

    Article  PubMed  CAS  Google Scholar 

  24. Verkoelen, C. F., van der Boom, B. G., Houtsmuller, A. B., Schroder, F. H., & Romijn, J. C. (1998). Increased calcium oxalate monohydrate crystal binding to injured renal tubular epithelial cells in culture. American Journal of Physiology, 274, F958–F965.

    PubMed  CAS  Google Scholar 

  25. Kohjimoto, Y., Ebisuno, S., Tamura, M., & Ohkawa, T. (1996). Interactions between calcium oxalate monohydrate crystals and Madin–Darby canine kidney cells: Endocytosis and cell proliferation. Urological Research, 24, 193–199.

    Article  PubMed  CAS  Google Scholar 

  26. Verkoelen, C. F., & Verhulst, A. (2007). Proposed mechanisms in renal tubular crystal retention. Kidney International, 72, 13–18.

    Article  PubMed  CAS  Google Scholar 

  27. Kok, D. J., & Khan, S. R. (1994). Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney International, 46, 847–854.

    Article  PubMed  CAS  Google Scholar 

  28. Lieske, J. C., & Toback, F. G. (1993). Regulation of renal epithelial cell endocytosis of calcium oxalate monohydrate crystals. American Journal of Physiology, 264, F800–F807.

    PubMed  CAS  Google Scholar 

  29. Ebisuno, S., Kohjimoto, Y., Tamura, M., Inagaki, T., & Ohkawa, T. (1997). Histological observations of the adhesion and endocytosis of calcium oxalate crystals in MDCK cells and in rat and human kidney. Urologia Internationalis, 58, 227–231.

    Article  PubMed  CAS  Google Scholar 

  30. Khan, S. R. (1995). Calcium oxalate crystal interaction with renal tubular epithelium, mechanism of crystal adhesion and its impact on stone development. Urological Research, 23, 71–79.

    Article  PubMed  CAS  Google Scholar 

  31. Lieske, J. C., Norris, R., Swift, H., & Toback, F. G. (1997). Adhesion, internalization and metabolism of calcium oxalate monohydrate crystals by renal epithelial cells. Kidney International, 52, 1291–1301.

    Article  PubMed  CAS  Google Scholar 

  32. Hovda, K. E., Guo, C., Austin, R., & McMartin, K. E. (2010). Renal toxicity of ethylene glycol results from internalization of calcium oxalate crystals by proximal tubule cells. Toxicology Letters, 192, 365–372.

    Article  PubMed  CAS  Google Scholar 

  33. Borges, F. T., Michelacci, Y. M., Aguiar, J. A., Dalboni, M. A., Garofalo, A. S., & Schor, N. (2005). Characterization of glycosaminoglycans in tubular epithelial cells: Calcium oxalate and oxalate ions effects. Kidney International, 68, 1630–1642.

    Article  PubMed  CAS  Google Scholar 

  34. Dukes, J. D., Whitley, P., & Chalmers, A. D. (2011). The MDCK variety pack: Choosing the right strain. BMC Cell Biology, 12, 43.

    Article  PubMed  CAS  Google Scholar 

  35. Campos, A. H., & Schor, N. (2000). Mechanisms involved in calcium oxalate endocytosis by Madin–Darby canine kidney cells. Brazilian Journal of Medical and Biological Research, 33, 111–118.

    Article  PubMed  CAS  Google Scholar 

  36. Kohjimoto, Y., Ebisuno, S., Tamura, M., & Ohkawa, T. (1996). Adhesion and endocytosis of calcium oxalate crystals on renal tubular cells. Scanning Microscopy, 10, 459–468.

    PubMed  CAS  Google Scholar 

  37. Racoosin, E. L., & Swanson, J. A. (1993). Macropinosome maturation and fusion with tubular lysosomes in macrophages. Journal of Cell Biology, 121, 1011–1020.

    Article  PubMed  CAS  Google Scholar 

  38. Kerr, M. C., Lindsay, M. R., Luetterforst, R., Hamilton, N., Simpson, F., Parton, R. G., et al. (2006). Visualisation of macropinosome maturation by the recruitment of sorting nexins. Journal of Cell Science, 119, 3967–3980.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Office of the Higher Education Commission and Mahidol University under the National Research Universities Initiative, The Thailand Research Funds (RTA5380005, TRG5480005, and TRG5480008), and Faculty of Medicine Siriraj Hospital. KS is supported by the Royal Golden Jubilee PhD Program, whereas VT is also supported by the “Chalermphrakiat” Grant, Faculty of Medicine Siriraj Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Visith Thongboonkerd.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Supplementary material 2 (PPTX 108 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanlaya, R., Sintiprungrat, K., Chaiyarit, S. et al. Macropinocytosis is the Major Mechanism for Endocytosis of Calcium Oxalate Crystals into Renal Tubular Cells. Cell Biochem Biophys 67, 1171–1179 (2013). https://doi.org/10.1007/s12013-013-9630-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9630-8

Keywords

Navigation