Skip to main content
Log in

Anti-proliferative Effect of Physcion on Human Gastric Cell Line via Inducing ROS-Dependent Apoptosis

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

In this study, the anti-proliferative effect of physcion, an anthraquinone derivative isolated and characterized from both terrestrial and marine sources, against human gastric cancer SGC-7901 cells was investigated and the underlying mechanisms were explored. Physcion reduced SGC-7901 cell viability in a dose- and time-dependent manner, as demonstrated by MTT assay. It triggered the mitochondrial/caspase apoptotic pathway indicated by loss of mitochondrial membrane potential and cytochrome c release. Moreover, physcion induced a sustained activation of the phosphorylation of AMPK, and compound C (an inhibitor of AMPK) significantly reversed physcion-induced apoptosis in SGC-7901 cells. In addition, physcion provoked the generation of reactive oxygen species (ROS) in SGC-7901 cells, while the antioxidant N-acetyl cysteine almost completely blocked physcion-induced AMPK activation and apoptosis. Taken together, these findings suggest that physcion induces apoptosis through a ROS/AMPK-dependent mitochondrial pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jemal, A., et al. (2011). Global cancer statistics. CA: A Cancer Journal for Clinicians, 61(2), 69–90.

    Google Scholar 

  2. Agarwal, S. K., et al. (2000). Antifungal activity of anthraquinone derivatives from Rheum emodi. Journal of Ethnopharmacology, 72(1–2), 43–46.

    Article  CAS  PubMed  Google Scholar 

  3. Anke, H., et al. (1980). Metabolic products of microorganisms. 185. The anthraquinones of the Aspergillus glaucus group. I. Occurrence, isolation, identification and antimicrobial activity. Archives of Microbiology, 126(3), 223–230.

    Article  CAS  PubMed  Google Scholar 

  4. Smetanina, O. F., et al. (2007). Indole alkaloids produced by a marine fungus isolate of Penicillium janthinellum Biourge. Journal of Natural Products, 70(6), 906–909.

    Article  CAS  PubMed  Google Scholar 

  5. Zhao, Y. L., et al. (2009). Investigations of free anthraquinones from rhubarb against alpha-naphthylisothiocyanate-induced cholestatic liver injury in rats. Basic & Clinical Pharmacology & Toxicology, 104(6), 463–469.

    Article  CAS  Google Scholar 

  6. Ghosh, S., et al. (2010). Anti-inflammatory and anticancer compounds isolated from Ventilago madraspatana Gaertn., Rubia cordifolia Linn. and Lantana camara Linn. Journal of Pharmacy and Pharmacology, 62(9), 1158–1166.

    Article  CAS  PubMed  Google Scholar 

  7. Tamokou Jde, D., Tala, M. F., Wabo, H. K., Kuiate, J. R., & Tane, P. (2009). Antimicrobial activities of methanol extract and compounds from stem bark of Vismia rubescens. Journal of Ethnopharmacology, 124(3), 571–575.

    Article  PubMed  Google Scholar 

  8. Almeida, A. P., Dethoup, T., Singburaudom, N., Lima, R., Vasconcelos, M. H., & Pinto, M. (2010). The in vitro anticancer activity of the crude extract of the sponge-associated fungus Eurotium cristatum and its secondary metabolites. Journal of natural Pharmaceuticals, 1(1), 25–29.

    Article  Google Scholar 

  9. Chen, G., et al. (2012). Synergistic antitumor activity of oridonin and arsenic trioxide on hepatocellular carcinoma cells. International Journal of Oncology, 40(1), 139–147.

    PubMed  Google Scholar 

  10. Herrerias, T., et al. (2010). Effects of natural flavones on membrane properties and citotoxicity of HeLa cells. Revista Brasileira de Farmacognosia, 20(3), 403–408.

    Article  CAS  Google Scholar 

  11. Ou, H. C., et al. (2010). Ellagic acid protects endothelial cells from oxidized low-density lipoprotein-induced apoptosis by modulating the PI3K/Akt/eNOS pathway. Toxicology and Applied Pharmacology, 248(2), 134–143.

    Article  CAS  PubMed  Google Scholar 

  12. Chen, X., et al. (2011). No protective effect of curcumin on hydrogen peroxide-induced cytotoxicity in HepG2 cells. Pharmacological Reports, 63(3), 724–732.

    Article  CAS  PubMed  Google Scholar 

  13. Wijesekara, I., et al. (2014). Physcion from marine-derived fungus Microsporum sp. induces apoptosis in human cervical carcinoma HeLa cells. Microbiological Research, 169(4), 255–261.

    Article  CAS  PubMed  Google Scholar 

  14. Xie, Q. C., & Yang, Y. P. (2014). Anti-proliferative of physcion 8-O-beta-glucopyranoside isolated from Rumex japonicus Houtt. on A549 cell lines via inducing apoptosis and cell cycle arrest. BMC Complementary and Alternative Medicine, 14, 377.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Li, S., et al. (2010). Icariin, a natural flavonol glycoside, induces apoptosis in human hepatoma SMMC-7721 cells via a ROS/JNK-dependent mitochondrial pathway. Cancer Letters, 298(2), 222–230.

    Article  CAS  PubMed  Google Scholar 

  16. Yuan, L., et al. (2012). Isoorientin induces apoptosis through mitochondrial dysfunction and inhibition of PI3K/Akt signaling pathway in HepG2 cancer cells. Toxicology and Applied Pharmacology, 265(1), 83–92.

    Article  CAS  PubMed  Google Scholar 

  17. Raza, H., John, A., & Benedict, S. (2011). Acetylsalicylic acid-induced oxidative stress, cell cycle arrest, apoptosis and mitochondrial dysfunction in human hepatoma HepG2 cells. European Journal of Pharmacology, 668(1–2), 15–24.

    Article  CAS  PubMed  Google Scholar 

  18. Lee, J. O., et al. (2014). Rhus verniciflua extract modulates survival of MCF-7 breast cancer cells through the modulation of AMPK-pathway. Biological &/and Pharmaceutical Bulletin, 37(5), 794–801.

    Article  CAS  Google Scholar 

  19. Hardie, D. G., & Alessi, D. R. (2013). LKB1 and AMPK and the cancer-metabolism link-ten years after. BMC Biology, 11, 36.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Imamura, K., et al. (2001). Cell cycle regulation via p53 phosphorylation by a 5′-AMP activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside, in a human hepatocellular carcinoma cell line. Biochemical and Biophysical Research Communications, 287(2), 562–567.

    Article  CAS  PubMed  Google Scholar 

  21. Jones, R. G., et al. (2005). AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Molecular Cell, 18(3), 283–293.

    Article  CAS  PubMed  Google Scholar 

  22. Gwinn, D. M., et al. (2008). AMPK phosphorylation of raptor mediates a metabolic checkpoint. Molecular Cell, 30(2), 214–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Inoki, K., Zhu, T., & Guan, K. L. (2003). TSC2 mediates cellular energy response to control cell growth and survival. Cell, 115(5), 577–590.

    Article  CAS  PubMed  Google Scholar 

  24. Hardie, D. G. (2004). The AMP-activated protein kinase pathway—new players upstream and downstream. Journal of Cell Science, 117(Pt 23), 5479–5487.

    Article  CAS  PubMed  Google Scholar 

  25. Hardie, D. G., & Sakamoto, K. (2006). AMPK: A key sensor of fuel and energy status in skeletal muscle. Physiology (Bethesda), 21, 48–60.

    Article  CAS  Google Scholar 

  26. Garcia-Gil, M., et al. (2003). 5′-aminoimidazole-4-carboxamide riboside induces apoptosis in human neuroblastoma cells. Neuroscience, 117(4), 811–820.

    Article  CAS  PubMed  Google Scholar 

  27. Kefas, B. A., et al. (2004). Metformin-induced stimulation of AMP-activated protein kinase in beta-cells impairs their glucose responsiveness and can lead to apoptosis. Biochemical Pharmacology, 68(3), 409–416.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Application Foundation Project of Science & Technology Agency of Sichuan Province (14JC0804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yejiang Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Ren, L., Wang, Z. et al. Anti-proliferative Effect of Physcion on Human Gastric Cell Line via Inducing ROS-Dependent Apoptosis. Cell Biochem Biophys 73, 537–543 (2015). https://doi.org/10.1007/s12013-015-0674-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-015-0674-9

Keywords

Navigation