Skip to main content
Log in

Phospholipid scramblase 3: a latent mediator connecting mitochondria and heavy metal apoptosis

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Lead and mercury are the ubiquitous heavy metals triggering toxicity and initiating apoptosis in cells. Though the toxic effects of heavy metals on various organs are known, there is a paucity of information on the mechanisms that instigate the current study. A plausible role of phospholipid scramblase 3 (PLSCR3) in Pb2+ and Hg2+ induced apoptosis was investigated with human embryonic kidney (HEK 293) cells. After 12 h of exposure, ~30–40% of the cells were in the early stage of apoptosis with increased reactive oxygen species (ROS), decreased mitochondrial membrane potential, and increased intracellular calcium levels. Also, ~20% of the cardiolipin localized within the inner mitochondrial membrane was translocated to the outer mitochondrial membrane along with the mobilization of truncated Bid (t-Bid) to the mitochondria and cytochrome c from the mitochondria. The endogenous expression levels of PLSCR3, caspase 8, and caspase 3 were upregulated in Pb2+ and Hg2+ induced apoptosis. The activation and upregulation of PLSCR3 mediate CL translocation playing a potential role in initiating the heavy metal-induced apoptosis. Therefore, PLSCR3 could be the linker between mitochondria and heavy metal apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data underlying this article will be shared on reasonable request to the corresponding author.

References

  1. Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68(1), 167–182. https://doi.org/10.1093/bmb/ldg032.

    Article  PubMed  Google Scholar 

  2. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72. https://doi.org/10.2478/intox-2014-0009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kim, J.-J., Kim, Y.-S., & Kumar, V. (2019). Heavy metal toxicity: an update of chelating therapeutic strategies. Journal of Trace Elements in Medicine and Biology, 54, 226–231. https://doi.org/10.1016/j.jtemb.2019.05.003.

    Article  CAS  PubMed  Google Scholar 

  4. Castellino, N., & Aloj, S. (1969). Intracellular distribution of lead in the liver and kidney of the rat. Occupational and Environmental Medicine, 26(2), 139–143. https://doi.org/10.1136/oem.26.2.139.

    Article  CAS  Google Scholar 

  5. Pulido, M. D., & Parrish, A. R. (2003). Metal-induced apoptosis: mechanisms. Mutation Research, 533(1–2), 227–241.

    Article  CAS  PubMed  Google Scholar 

  6. Wu, X., Cobbina, S. J., Mao, G., Xu, H., Zhang, Z., & Yang, L. (2016). A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environmental Science and Pollution Research, 23(9), 8244–8259. https://doi.org/10.1007/s11356-016-6333-x.

    Article  CAS  PubMed  Google Scholar 

  7. Pearce, J. M. S. (2007). Burton’s line in lead poisoning. European Neurology, 57(2), 118–119. https://doi.org/10.1159/000098100.

    Article  CAS  PubMed  Google Scholar 

  8. Flora, G., Gupta, D., & Tiwari, A. (2012). Toxicity of lead: a review with recent updates. Interdisciplinary Toxicology, 5(2), 47–58. https://doi.org/10.2478/v10102-012-0009-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Garza, A., Vega, R., & Soto, E. (2006). Cellular mechanisms of lead neurotoxicity. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 12(3), RA57–RA65.

    PubMed  Google Scholar 

  10. Schirrmacher, K., Wiemann, M., Bingmann, D., & Büsselberg, D. (1998). Effects of lead, mercury, and methyl mercury on gap junctions and [Ca2+]i in bone cells. Calcified Tissue International, 63(2), 134–139. https://doi.org/10.1007/s002239900503.

    Article  CAS  PubMed  Google Scholar 

  11. Shenker, B. J., Guo, T. L., & Shapiro, I. M. (2000). Mercury-induced apoptosis in human lymphoid cells: evidence that the apoptotic pathway is mercurial species dependent. Environmental Research, 84(2), 89–99. https://doi.org/10.1006/enrs.2000.4078.

    Article  CAS  PubMed  Google Scholar 

  12. Farina, M., Rocha, J. B. T., & Aschner, M. (2011). Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies. Life Sciences, 89(15–16), 555–563. https://doi.org/10.1016/j.lfs.2011.05.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cobbina, S. J., Chen, Y., Zhou, Z., Wu, X., Feng, W., Wang, W., & Yang, L. (2015). Low concentration toxic metal mixture interactions: effects on essential and non-essential metals in brain, liver, and kidneys of mice on sub-chronic exposure. Chemosphere, 132, 79–86. https://doi.org/10.1016/j.chemosphere.2015.03.013.

    Article  CAS  PubMed  Google Scholar 

  14. Cobbina, S. J., Chen, Y., Zhou, Z., Wu, X., Zhao, T., Zhang, Z., & Yang, L. (2015). Toxicity assessment due to sub-chronic exposure to individual and mixtures of four toxic heavy metals. Journal of Hazardous Materials, 294, 109–120. https://doi.org/10.1016/j.jhazmat.2015.03.057.

    Article  CAS  PubMed  Google Scholar 

  15. Renu, K., Chakraborty, R., Myakala, H., Koti, R., Famurewa, A. C., Madhyastha, H., & Valsala Gopalakrishnan, A. (2021). Molecular mechanism of heavy metals (lead, chromium, arsenic, mercury, nickel and cadmium)—induced hepatotoxicity—a review. Chemosphere, 271, 129735. https://doi.org/10.1016/j.chemosphere.2021.129735.

    Article  CAS  PubMed  Google Scholar 

  16. Ferri, K. F., & Kroemer, G. (2001). Organelle-specific initiation of cell death pathways. Nature Cell Biology, 3(11), E255–E263. https://doi.org/10.1038/ncb1101-e255.

    Article  CAS  PubMed  Google Scholar 

  17. Estaquier, J., Vallette, F., Vayssiere, J.-L., & Mignotte, B. (2012). The mitochondrial pathways of apoptosis. In R. Scatena, P. Bottoni, & B. Giardina (Eds.), Advances in mitochondrial medicine (942, 157–183). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-2869-1_7

  18. Nieminen, A. L., Gores, G. J., Dawson, T. L., Herman, B., & Lemasters, J. J. (1990). Toxic injury from mercuric chloride in rat hepatocytes. The Journal of Biological Chemistry, 265(4), 2399–2408.

    Article  CAS  PubMed  Google Scholar 

  19. Belyaeva, E. A., Glazunov, V. V., & Korotkov, S. M. (2004). Cd2+ -promoted mitochondrial permeability transition: a comparison with other heavy metals. Acta Biochimica Polonica, 51(2), 545–551. doi: 035001545.

    Article  CAS  PubMed  Google Scholar 

  20. Belyaeva, E. A., Sokolova, T. V., Emelyanova, L. V., & Zakharova, I. O. (2012). Mitochondrial electron transport chain in heavy metal-induced neurotoxicity: effects of cadmium, mercury, and copper. The Scientific World Journal, 2012, 1–14. https://doi.org/10.1100/2012/136063.

    Article  CAS  Google Scholar 

  21. Belyaeva, E. A., Dymkowska, D., Więckowski, M. R., & Wojtczak, L. (2008). Mitochondria as an important target in heavy metal toxicity in rat hepatoma AS-30D cells. Toxicology and Applied Pharmacology, 231(1), 34–42. https://doi.org/10.1016/j.taap.2008.03.017.

    Article  CAS  PubMed  Google Scholar 

  22. Li, M. (2003). Cadmium directly induced the opening of membrane permeability pore of mitochondria which possibly involved in cadmium-triggered apoptosis. Toxicology, 194(1–2), 19–33. https://doi.org/10.1016/S0300-483X(03)00327-5.

    Article  CAS  PubMed  Google Scholar 

  23. Meyer, J. N., Leung, M. C. K., Rooney, J. P., Sendoel, A., Hengartner, M. O., Kisby, G. E., & Bess, A. S. (2013). Mitochondria as a target of environmental toxicants. Toxicological Sciences, 134(1), 1–17. https://doi.org/10.1093/toxsci/kft102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen, F., Vallyathan, V., Castranova, V., & Shi, X. (2001). Cell apoptosis induced by carcinogenic metals. Molecular and Cellular Biochemistry, 222(1–2), 183–188.

    Article  CAS  PubMed  Google Scholar 

  25. Petit, P. X., Susin, S. A., Zamzami, N., Mignotte, B., & Kroemer, G. (1996). Mitochondria and programmed cell death: back to the future. FEBS letters, 396(1), 7–13.

    Article  CAS  PubMed  Google Scholar 

  26. Farina, M., Avila, D. S., da Rocha, J. B. T., & Aschner, M. (2013). Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neurochemistry International, 62(5), 575–594. https://doi.org/10.1016/j.neuint.2012.12.006.

    Article  CAS  PubMed  Google Scholar 

  27. He, L., Perkins, G. A., Poblenz, A. T., Harris, J. B., Hung, M., Ellisman, M. H., & Fox, D. A. (2003). Bcl-xL overexpression blocks bax-mediated mitochondrial contact site formation and apoptosis in rod photoreceptors of lead-exposed mice. Proceedings of the National Academy of Sciences, 100(3), 1022–1027. https://doi.org/10.1073/pnas.0333594100.

    Article  CAS  Google Scholar 

  28. He, L., Poblenz, A. T., Medrano, C. J., & Fox, D. A. (2000). Lead and calcium produce rod photoreceptor cell apoptosis by opening the mitochondrial permeability transition pore. Journal of Biological Chemistry, 275(16), 12175–12184. https://doi.org/10.1074/jbc.275.16.12175.

    Article  CAS  PubMed  Google Scholar 

  29. Kim, S. H., & Sharma, R. P. (2004). Mercury-induced apoptosis and necrosis in murine macrophages: role of calcium-induced reactive oxygen species and p38 mitogen-activated protein kinase signaling. Toxicology and Applied Pharmacology, 196(1), 47–57. https://doi.org/10.1016/j.taap.2003.11.020.

    Article  CAS  PubMed  Google Scholar 

  30. Liu, J., Dai, Q., Chen, J., Durrant, D., Freeman, A., Liu, T., & Lee, R. M. (2003). Phospholipid scramblase 3 controls mitochondrial structure, function, and apoptotic response. Molecular cancer research: MCR, 1(12), 892–902.

    CAS  PubMed  Google Scholar 

  31. Dudek, J. (2017). Role of cardiolipin in mitochondrial signaling pathways. Frontiers in Cell and Developmental Biology, 5, 90. https://doi.org/10.3389/fcell.2017.00090.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Garcia Fernandez, M., Troiano, L., Moretti, L., Nasi, M., Pinti, M., Salvioli, S., & Cossarizza, A. (2002). Early changes in intramitochondrial cardiolipin distribution during apoptosis. Cell Growth & Differentiation: The Molecular Biology Journal of the American Association for Cancer Research, 13(9), 449–455.

    Google Scholar 

  33. Ndebele, K., Gona, P., Jin, T.-G., Benhaga, N., Chalah, A., Degli-Esposti, M., & Khosravi-Far, R. (2008). Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induced mitochondrial pathway to apoptosis and caspase activation is potentiated by phospholipid scramblase-3. Apoptosis, 13(7), 845–856. https://doi.org/10.1007/s10495-008-0219-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, J., Epand, R. F., Durrant, D., Grossman, D., Chi, N., Epand, R. M., & Lee, R. M. (2008). Role of phospholipid scramblase 3 in the regulation of tumor necrosis factor-α-induced apoptosis. Biochemistry, 47(15), 4518–4529. https://doi.org/10.1021/bi701962c.

    Article  CAS  PubMed  Google Scholar 

  35. Liu, J., Chen, J., Dai, Q., & Lee, R. M. (2003). Phospholipid scramblase 3 is the mitochondrial target of protein kinase C delta-induced apoptosis. Cancer Research, 63(6), 1153–1156.

    CAS  PubMed  Google Scholar 

  36. Palanirajan, S. K., & Gummadi, S. N. (2020). Heavy-metals-mediated phospholipids scrambling by human phospholipid scramblase 3: a probable role in mitochondrial apoptosis. Chemical Research in Toxicology, 33(2), 553–564. https://doi.org/10.1021/acs.chemrestox.9b00406.

    Article  CAS  PubMed  Google Scholar 

  37. Garcia Fernandez, M., Troiano, L., Moretti, L., Pedrazzi, J., Salvioli, S., Castilla-Cortazar, I., & Cossarizza, A. (2000). Changes in intramitochondrial cardiolipin distribution in apoptosis-resistant HCW-2 cells, derived from the human promyelocytic leukemia HL-60. FEBS Letters, 478(3), 290–294. https://doi.org/10.1016/S0014-5793(00)01861-5.

    Article  CAS  PubMed  Google Scholar 

  38. Dimauro, I., Pearson, T., Caporossi, D., & Jackson, M. J. (2012). A simple protocol for the subcellular fractionation of skeletal muscle cells and tissue. BMC Research Notes, 5(1), 513 https://doi.org/10.1186/1756-0500-5-513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stohs, S. (1995). Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology and Medicine, 18(2), 321–336. https://doi.org/10.1016/0891-5849(94)00159-H.

    Article  CAS  PubMed  Google Scholar 

  40. Gstraunthaler, G., Pfaller, W., & Kotanko, P. (1983). Glutathione depletion and in vitro lipid peroxidation in mercury or maleate induced acute renal failure. Biochemical Pharmacology, 32(19), 2969–2972. https://doi.org/10.1016/0006-2952(83)90404-5.

    Article  CAS  PubMed  Google Scholar 

  41. Fukino, H., Hirai, M., Hsueh, Y. M., & Yamane, Y. (1984). Effect of zinc pretreatment on mercuric chloride-induced lipid peroxidation in the rat kidney. Toxicology and Applied Pharmacology, 73(3), 395–401. https://doi.org/10.1016/0041-008X(84)90091-7.

    Article  CAS  PubMed  Google Scholar 

  42. Matović, V., Buha, A., Ðukić-Ćosić, D., & Bulat, Z. (2015). Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys. Food and Chemical Toxicology, 78, 130–140. https://doi.org/10.1016/j.fct.2015.02.011.

    Article  CAS  PubMed  Google Scholar 

  43. Ahyayauch, H., García-Arribas, A. B., Sot, J., González-Ramírez, E. J., Busto, J. V., Monasterio, B. G., & Goñi, F. M. (2018). Pb(II) induces scramblase activation and ceramide-domain generation in red blood cells. Scientific Reports, 8(1), 7456. https://doi.org/10.1038/s41598-018-25905-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tan, X., Tang, C., Castoldi, A. F., Manzo, L., & Costa, L. G. (1993). Effects of inorganic and organic mercury on intracellular calcium levels in rat t lymphocytes. Journal of Toxicology and Environmental Health, 38(2), 159–170. https://doi.org/10.1080/15287399309531709.

    Article  CAS  PubMed  Google Scholar 

  45. Florea, A.-M., & Büsselberg, D. (2005). Toxic effects of metals: modulation of intracellular calcium homeostasis. Materialwissenschaft und Werkstofftechnik, 36(12), 757–760. https://doi.org/10.1002/mawe.200500960.

    Article  CAS  Google Scholar 

  46. Fox, D. A., He, L., Poblenz, A. T., Medrano, C. J., Blocker, Y. S., & Srivastava, D. (1998). Lead-induced alterations in retinal cGMP phosphodiesterase trigger calcium overload, mitochondrial dysfunction and rod photoreceptor apoptosis. Toxicology Letters, 102–103, 359–361. https://doi.org/10.1016/S0378-4274(98)00232-X.

    Article  PubMed  Google Scholar 

  47. Wilson, B. A., Ramanathan, A., & Lopez, C. F. (2019). Cardiolipin-dependent properties of model mitochondrial membranes from molecular simulations. Biophysical Journal, 117(3), 429–444. https://doi.org/10.1016/j.bpj.2019.06.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Paradies, G., Paradies, V., Ruggiero, F. M., & Petrosillo, G. (2019). Role of cardiolipin in mitochondrial function and dynamics in health and disease: molecular and pharmacological aspects. Cells, 8(7), 728. https://doi.org/10.3390/cells8070728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Van, Q., Liu, J., Lu, B., Feingold, K. R., Shi, Y., Lee, R. M., & Hatch, G. M. (2007). Phospholipid scramblase-3 regulates cardiolipin de novo biosynthesis and its resynthesis in growing HeLa cells. Biochemical Journal, 401(1), 103–109. https://doi.org/10.1042/BJ20060373.

    Article  CAS  PubMed  Google Scholar 

  50. Rouillard, A. D., Gundersen, G. W., Fernandez, N. F., Wang, Z., Monteiro, C. D., McDermott, M. G, & Ma’ayan, A. (2016). The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database, 2016, baw100. https://doi.org/10.1093/database/baw100.

  51. Uhlen, M., Fagerberg, L., Hallstrom, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., & Ponten, F. (2015). Tissue-based map of the human proteome. Science, 347(6220), 1260419–1260419. https://doi.org/10.1126/science.1260419.

    Article  CAS  PubMed  Google Scholar 

  52. Wiedmer, T., Zhou, Q., Kwoh, D. Y., & Sims, P. J. (2000). Identification of three new members of the phospholipid scramblase gene family. Biochimica et Biophysica Acta, 1467(1), 244–253.

    Article  CAS  PubMed  Google Scholar 

  53. Nabergoj, D., Vrbek, S., Zidar, N., Tomašić, T., Kikelj, D., Mašič, L. P., & Muller, C. D. (2016). Synthetic analogues of marine alkaloid clathrodin differently induce phosphatidylserine exposure in monocytic cancer cells then in cancer stem cell lines. MedChemComm, 7(8), 1546–1554. https://doi.org/10.1039/C6MD00163G.

    Article  CAS  Google Scholar 

  54. Ghosh, S., Basu Ball, W., Madaris, T. R., Srikantan, S., Madesh, M., Mootha, V. K., & Gohil, V. M. (2020). An essential role for cardiolipin in the stability and function of the mitochondrial calcium uniporter. Proceedings of the National Academy of Sciences, 117(28), 16383–16390. https://doi.org/10.1073/pnas.2000640117.

    Article  CAS  Google Scholar 

  55. Cheng, Y.-J., Yang, B.-C., Hsieh, W.-C., Huang, B.-M., & Liu, M.-Y. (2002). Enhancement of TNF-α expression does not trigger apoptosis upon exposure of glial cells to lead and lipopolysaccharide. Toxicology, 178(3), 183–191. https://doi.org/10.1016/S0300-483X(02)00225-1.

    Article  CAS  PubMed  Google Scholar 

  56. He, Y., Liu, J., Durrant, D., Yang, H.-S., Sweatman, T., Lothstein, L., & Lee, R. M. (2005). N -Benzyladriamycin-14-valerate (AD198) induces apoptosis through protein kinase C-δ–induced phosphorylation of phospholipid scramblase 3. Cancer Research, 65(21), 10016–10023. https://doi.org/10.1158/0008-5472.CAN-05-1688.

    Article  CAS  PubMed  Google Scholar 

  57. He, Y., Liu, J., Grossman, D., Durrant, D., Sweatman, T., Lothstein, L., & Lee, R. M. (2007). Phosphorylation of mitochondrial phospholipid scramblase 3 by protein kinase C-δ induces its activation and facilitates mitochondrial targeting of tBid. Journal of Cellular Biochemistry, 101(5), 1210–1221. https://doi.org/10.1002/jcb.21243.

    Article  CAS  PubMed  Google Scholar 

  58. Sandra, F., Degli Esposti, M., Ndebele, K., Gona, P., Knight, D., Rosenquist, M., & Khosravi-Far, R. (2005). Tumor necrosis factor–related apoptosis-inducing ligand alters mitochondrial membrane lipids. Cancer Research, 65(18), 8286–8297. https://doi.org/10.1158/0008-5472.CAN-04-1913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the Indian Institute of Technology Madras for facilities. SKP wishes to thank the Ministry of Human Resource Development (MHRD), Government of India, and Indian Institute of Technology Madras for fellowship. The authors wish to thank Mr. Praveen Kumar for his support in FACS data acquisition. The authors thank Prof. Suresh Kumar Rayala and Prof. Mukesh Doble IITM, for their generous donation of the cell lines and Bid antibody.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

SKP: Conceptualization, Methodology, Investigation, Validation, Formal analysis, Visualization, Writing—original draft, review & editing. SNG: Conceptualization, Supervision, Resources, Writing—review & editing.

Corresponding author

Correspondence to Sathyanarayana N. Gummadi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palanirajan, S.K., Gummadi, S.N. Phospholipid scramblase 3: a latent mediator connecting mitochondria and heavy metal apoptosis. Cell Biochem Biophys 81, 443–458 (2023). https://doi.org/10.1007/s12013-023-01145-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-023-01145-0

Keywords

Navigation