Skip to main content

Advertisement

Log in

The Emerging Picture of the Mouse Mammary Stem Cell

  • Published:
Stem Cell Reviews Aims and scope Submit manuscript

Abstract

The isolation and characterisation of mammary stem cells is an important step towards elucidating the hierarchy of epithelial cell development in the mammary gland and identifying cells that are targets of breast carcinogenesis. Mammary stem cells have recently been prospectively isolated through the identification of specific cell surface markers and in vivo transplantation into cleared fat pads. These cells were demonstrated to reconstitute an entire mammary gland comprising all mature epithelial cell types and to be capable of self-renewal on serial transplantation, thus possessing the defining features of stem cells. Notably, mouse mammary stem cells were found to share the hallmark properties of the basal subtype of breast cancer. This review will summarize the strategy used in the identification of mouse mammary stem cells and their characterisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. DeOme, K. B., Faulkin, L. J., Jr., Bern, H. A., & Blair, P. B. (1959). Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Research, 19, 515–520.

    PubMed  CAS  Google Scholar 

  2. Smith, G. H., & Medina, D. (1988). A morphologically distinct candidate for an epithelial stem cell in mouse mammary gland. Journal of Cell Science, 90(Pt 1), 173–183.

    PubMed  Google Scholar 

  3. Daniel, C. W., De Ome, K. B., Young, J. T., Blair, P. B., & Faulkin, L. J., Jr. (1968). The in vivo life span of normal and preneoplastic mouse mammary glands: A serial transplantation study. Proceedings of the National Academy of Sciences of the United States of America, 61, 53–60.

    Article  PubMed  CAS  Google Scholar 

  4. Daniel, C. W., & Young, L. J. (1971). Influence of cell division on an aging process. Life span of mouse mammary epithelium during serial propagation in vivo. Experimental Cell Research, 65, 27–32.

    Article  PubMed  CAS  Google Scholar 

  5. Kordon, E. C., & Smith, G. H. (1998). An entire functional mammary gland may comprise the progeny from a single cell. Development, 125, 1921–1930.

    PubMed  CAS  Google Scholar 

  6. Chepko, G., & Smith, G. H. (1997). Three division-competent, structurally-distinct cell populations contribute to murine mammary epithelial renewal. Tissue & Cell, 29, 239–253.

    Article  CAS  Google Scholar 

  7. Welm, B. E., Tepera, S. B., Venezia, T., Graubert, T. A., Rosen, J. M., & Goodell, M. A. (2002). Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Developmental Biology, 245, 42–56.

    Article  PubMed  CAS  Google Scholar 

  8. Alvi, A. J., Clayton, H., Joshi, C., Enver, T., Ashworth, A., Vivanco, M. M., et al. (2003). Functional and molecular characterisation of mammary side population cells. Breast Cancer Research, 5, R1–8.

    Article  Google Scholar 

  9. Stingl, J., Eaves, C. J., Zandieh, I., & Emerman, J. T. (2001). Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Research and Treatment, 67, 93–109.

    Article  PubMed  CAS  Google Scholar 

  10. Gudjonsson, T., Villadsen, R., Nielsen, H. L., Ronnov-Jessen, L., Bissell, M. J., & Petersen, O. W. (2002). Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties. Genes and Development, 16, 693–706.

    Article  PubMed  CAS  Google Scholar 

  11. Dontu, G., Abdallah, W. M., Foley, J. M., Jackson, K. W., Clarke, M. F., Kawamura, M. J., et al. (2003). In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes and Development, 17, 1253–1270.

    Article  PubMed  CAS  Google Scholar 

  12. Weissman, I. L. (2000). Stem cells: Units of development, units of regeneration, and units in evolution. Cell, 100, 157–168.

    Article  PubMed  CAS  Google Scholar 

  13. Dick, J. E. (2003). Stem cells: Self-renewal writ in blood. Nature, 423, 231–233.

    Article  PubMed  CAS  Google Scholar 

  14. Krause, D. S., Theise, N. D., Collector, M. I., Henegariu, O., Hwang, S., Gardner, R., et al. (2001). Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell, 105, 369–377.

    Article  PubMed  CAS  Google Scholar 

  15. Uchida, N., Dykstra, B., Lyons, K. J., Leung, F. Y., & Eaves, C. J. (2003). Different in vivo repopulating activities of purified hematopoietic stem cells before and after being stimulated to divide in vitro with the same kinetics. Experimental Hematology, 31, 1338–1347.

    Article  PubMed  CAS  Google Scholar 

  16. Matsuzaki, Y., Kinjo, K., Mulligan, R. C., & Okano, H. (2004). Unexpectedly efficient homing capacity of purified murine hematopoietic stem cells. Immunity, 20, 87–93.

    Article  PubMed  CAS  Google Scholar 

  17. Takano, H., Ema, H., Sudo, K., & Nakauchi, H. (2004). Asymmetric division and lineage commitment at the level of hematopoietic stem cells: Inference from differentiation in daughter cell and granddaughter cell pairs. Journal of Experimental Medicine, 199, 295–302.

    Article  PubMed  CAS  Google Scholar 

  18. Shackleton, M., Vaillant, F., Simpson, K. J., Stingl, J., Smyth, G. K., Asselin-Labat, M. L., et al. (2006). Generation of a functional mammary gland from a single stem cell. Nature, 439, 84–88.

    Article  PubMed  CAS  Google Scholar 

  19. Stingl, J., Eirew, P., Ricketson, I., Shackleton, M., Vaillant, F., Choi, D., et al., (2006). Purification and unique properties of mammary epithelial stem cells. Nature, 439, 993–997.

    PubMed  CAS  Google Scholar 

  20. Uchida, N., & Weissman, I. L. (1992). Searching for hematopoietic stem cells: evidence that Thy-1.1lo Lin- Sca-1+ cells are the only stem cells in C57BL/Ka-Thy-1.1 bone marrow. Journal of Experimental Medicine, 175, 175–184.

    Article  PubMed  CAS  Google Scholar 

  21. Bonnefoix, T., Bonnefoix, P., Verdiel, P., & Sotto, J. J. (1996). Fitting limiting dilution experiments with generalized linear models results in a test of the single-hit Poisson assumption. Journal of Immunological Methods, 194, 113–119.

    Article  PubMed  CAS  Google Scholar 

  22. Sleeman, K. E., Kendrick, H., Ashworth, A., Isacke, C. M., & Smalley, M. J. (2006). CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Research, 8, R7.

    Article  CAS  Google Scholar 

  23. Smith, G. H. (1996). Experimental mammary epithelial morphogenesis in an in vivo model: evidence for distinct cellular progenitors of the ductal and lobular phenotype. Breast Cancer Research and Treatment, 39, 21–31.

    Article  PubMed  CAS  Google Scholar 

  24. Brisken, C., Park, S., Vass, T., Lydon, J. P., O'Malley, B. W., & Weinberg, R. A. (1998). A paracrine role for the epithelial progesterone receptor in mammary gland development. Proceedings of the National Academy of Sciences of the United States of America, 95, 5076–5081.

    Article  PubMed  CAS  Google Scholar 

  25. Boulanger, C. A., Wagner, K., U., & Smith, G. H. (2005). Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-beta1 expression. Oncogene, 24, 552–560.

    Article  PubMed  CAS  Google Scholar 

  26. Wagner, K. U., Boulanger, C. A., Henry, M. D., Sgagias, M., Hennighausen, L., & Smith, G. H. (2002). An adjunct mammary epithelial cell population in parous females: Its role in functional adaptation and tissue renewal. Development, 129, 1377–1386.

    PubMed  CAS  Google Scholar 

  27. Ito, C. Y., Li, C. Y., Bernstein, A., Dick, J. E., & Stanford, W. L. (2003). Hematopoietic stem cell and progenitor defects in Sca-1/Ly-6A-null mice. Blood, 101, 517–523.

    Article  PubMed  CAS  Google Scholar 

  28. Zhou, S., Schuetz, J. D., Bunting, K. D., Colapietro, A. M., Sampath, J., Morris, J. J., et al. (2001). The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature Medicine, 7, 1028–1034.

    Article  CAS  Google Scholar 

  29. Goodell, M. A., Brose, K., Paradis, G., Conner, A. S., & Mulligan, R. C. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. Journal of Experimental Medicine, 183, 1797–1806.

    Article  PubMed  CAS  Google Scholar 

  30. Li, Y., Welm, B., Podsypanina, K., Huang, S., Chamorro, M., Zhang, X., et al. (2003). Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 15853–15858.

    Article  PubMed  CAS  Google Scholar 

  31. Liu, B. Y., McDermott, S. P., Khwaja, S. S., & Alexander, C. M. (2004). The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 101, 4158–4163.

    Article  PubMed  CAS  Google Scholar 

  32. Triel, C., Vestergaard, M. E., Bolund, L., Jensen, T. G., & Jensen, U. B. (2004). Side population cells in human and mouse epidermis lack stem cell characteristics. Experimental Cell Research, 295, 79–90.

    Article  PubMed  CAS  Google Scholar 

  33. Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L., & Fuchs, E. (2004). Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell, 118, 635–648.

    Article  PubMed  CAS  Google Scholar 

  34. Kubota, H., Avarbock, M. R., & Brinster, R. L. (2003). Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 6487–6492.

    Article  PubMed  CAS  Google Scholar 

  35. Smith, G. H. (2005). Label-retaining epithelial cells in mouse mammary gland divide asymmetrically and retain their template DNA strands. Development, 132, 681–687.

    Article  PubMed  CAS  Google Scholar 

  36. Clarke, R. B., Spence, K., Anderson, E., Howell, A., Okano, H., & Potten, C. S. (2005). A putative human breast stem cell population is enriched for steroid receptor-positive cells. Developmental Biology, 277, 443–456.

    Article  PubMed  CAS  Google Scholar 

  37. Cheng T., Rodrigues, N., Shen, H., Yang, Y., Dombkowski, D., Sykes, M., et al. (2000). Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science, 287, 1804–1808.

    Article  PubMed  CAS  Google Scholar 

  38. Topley, G. I., Okuyama, R., Gonzales, J. G., Conti, C., & Dotto, G. P. (1999). p21(WAF1/Cip1) functions as a suppressor of malignant skin tumor formation and a determinant of keratinocyte stem-cell potential. Proceedings of the National Academy of Sciences of the United States of America, 96, 9089–9094.

    Article  PubMed  CAS  Google Scholar 

  39. Potten, C. S., Booth, C., Tudor, G. L., Booth, D., Brady, G., Hurley, P., et al. (2003). Identification of a putative intestinal stem cell and early lineage marker; musashi-1. Differentiation, 71, 28–41.

    Article  PubMed  CAS  Google Scholar 

  40. Okano, H., Imai, T., & Okabe, M. (2002). Musashi: A translational regulator of cell fate. Journal of Cell Science, 115, 1355–1359.

    PubMed  CAS  Google Scholar 

  41. Smith, G. H., Mehrel, T., & Roop, D. R. (1990). Differential keratin gene expression in developing, differentiating, preneoplastic, and neoplastic mouse mammary epithelium. Cell Growth & Differentiation, 1, 161–170.

    CAS  Google Scholar 

  42. Cianfrocca, M., & Goldstein, L. J. (2004). Prognostic and predictive factors in early-stage breast cancer. Oncologist, 9, 606–616.

    Article  PubMed  Google Scholar 

  43. Esteva, F. J., & Hortobagyi, G. N. (2004). Prognostic molecular markers in early breast cancer. Breast Cancer Research, 6, 109–118.

    Article  PubMed  CAS  Google Scholar 

  44. Anderson, E. (2002). The role of oestrogen and progesterone receptors in human mammary development and tumorigenesis. Breast Cancer Research, 4, 197–201.

    Article  PubMed  CAS  Google Scholar 

  45. Asselin-Labat, M. L., Shackleton, M., Stingl, J., Vaillant, F., Forrest, N. C., Eaves, C. J., et al. (2006). Steroid hormone receptor status of mouse mammary stem cells. Journal of the National Cancer Institute, 98, 1011–1014.

    Article  PubMed  CAS  Google Scholar 

  46. Clarke, R. B., Howell, A., Potten, C. S., & Anderson, E. (1997). Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Research, 57, 4987–4991.

    PubMed  CAS  Google Scholar 

  47. Russo, J., Ao, X., Grill, C., & Russo, I. H. (1999). Pattern of distribution of cells positive for estrogen receptor alpha and progesterone receptor in relation to proliferating cells in the mammary gland. Breast Cancer Research and Treatment, 53, 217–227.

    Article  PubMed  CAS  Google Scholar 

  48. Booth, B. W., & Smith, G. H. (2006). Estrogen receptor-alpha and progesterone receptor are expressed in label-retaining mammary epithelial cells that divide asymmetrically and retain their template DNA strands. Breast Cancer Research, 8, R49.

    Article  CAS  Google Scholar 

  49. Dontu, G., El-Ashry, D., & Wicha, M. S. (2004). Breast cancer, stem/progenitor cells and the estrogen receptor. Trends in Endocrinology and Metabolism, 15, 193–197.

    Article  PubMed  CAS  Google Scholar 

  50. Clarke, R. B. (2005). Isolation and characterization of human mammary stem cells. Cell Proliferation, 38, 375–386.

    Article  PubMed  CAS  Google Scholar 

  51. Asselin-Labat, M. L., Sutherland, K. D., Barker, H., Thomas, R., Shackleton, M., Forrest, N. C., et al. (2007). Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nature Cell Biology, 9, 201–209.

    Article  PubMed  CAS  Google Scholar 

  52. Sleeman, K. E., Kendrick, H., Robertson, D., Isacke, C. M., Ashworth, A., & Smalley, M. J. (2007). Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. Journal of Cell Biology, 176, 19–26.

    Article  PubMed  CAS  Google Scholar 

  53. Watt, F. M., & Hogan, B. L. (2000). Out of Eden: stem cells and their niches. Science, 287, 1427–1430.

    Article  PubMed  CAS  Google Scholar 

  54. Taddei, I., Faraldo, M. M., Teuliere, J., Deugnier, M. A., Thiery, J. P., & Glukhova, M. A. (2003). Integrins in mammary gland development and differentiation of mammary epithelium. Journal of Mammary Gland Biology and Neoplasia, 8, 383–394.

    Article  PubMed  Google Scholar 

  55. Shaw, L. M. (1999). Integrin function in breast carcinoma progression. Journal of Mammary Gland Biology and Neoplasia, 4, 367–376.

    Article  PubMed  CAS  Google Scholar 

  56. White, J. M. (2003). ADAMs: Modulators of cell–cell and cell–matrix interactions. Current Opinion in Cell Biology, 15, 598–606

    Article  PubMed  CAS  Google Scholar 

  57. Klinowska, T. C., Soriano, J. V., Edwards, G. M., Oliver, J. M., Valentijn, A. J., Montesano, R., et al. (1999). Laminin and beta1 integrins are crucial for normal mammary gland development in the mouse. Developmental Biology, 215, 13–32.

    Article  PubMed  CAS  Google Scholar 

  58. Naylor, M. J., Li, N., Cheung, J., Lowe, E. T., Lambert, E., Marlow, R., et al. (2005). Ablation of b1 integrin in mammary epithelium reveals a key role for integrin in glandular morphogenesis and differentiation. Journal of Cell Biology, 171, 717–728.

    Article  PubMed  CAS  Google Scholar 

  59. Li, N., Zhang, Y., Naylor, M. J., Schatzmann, F., Maurer, F., Wintermantel, T., Schuetz, et al. (2005). Beta1 integrins regulate mammary gland proliferation and maintain the integrity of mammary alveoli. EMBO Journal, 24, 1942–1953.

    Article  PubMed  CAS  Google Scholar 

  60. Klinowska, T. C., Alexander, C. M., Georges-Labouesse, E., Van der Neut, R., Kreidberg, J. A., Jones, C. J., et al. (2001). Epithelial development and differentiation in the mammary gland is not dependent on a3 or a6 integrin subunits. Developmental Biology, 233, 449–467.

    Article  PubMed  CAS  Google Scholar 

  61. Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R. C., & Melton, D. A. (2002). “Stemness”: Transcriptional profiling of embryonic and adult stem cells. Science, 298, 597–600.

    Article  PubMed  CAS  Google Scholar 

  62. Ivanova, N. B., Dimos, J. T., Schaniel, C., Hackney, J. A., Moore, K. A., & Lemischka, I. R. (2002). A stem cell molecular signature. Science, 298, 601–604.

    Article  PubMed  CAS  Google Scholar 

  63. Wagers, A. J., Allsopp, R. C., & Weissman, I. L. (2002). Changes in integrin expression are associated with altered homing properties of Lin(−/lo)Thy1.1(lo)Sca-1(+)c-kit(+) hematopoietic stem cells following mobilization by cyclophosphamide/granulocyte colony-stimulating factor. Experimental Hematology, 30, 176–185.

    Article  PubMed  CAS  Google Scholar 

  64. Campos, L. S., Leone, D. P., Relvas, J. B., Brakebusch, C., Fassler, R., Suter, U., et al. (2004). Beta1 integrins activate a MAPK signalling pathway in neural stem cells that contributes to their maintenance. Development, 131, 3433–3444.

    Article  PubMed  CAS  Google Scholar 

  65. Tani, H., Morris, R. J., & Kaur, P. (2000). Enrichment for murine keratinocyte stem cells based on cell surface phenotype. Proceedings of the National Academy of Sciences of the United States of America, 97, 10960–10965.

    Article  PubMed  CAS  Google Scholar 

  66. Jones, P. H., & Watt, F. M. (1993). Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell, 73, 713–724.

    Article  PubMed  CAS  Google Scholar 

  67. Shinohara, T., Avarbock, M. R., & Brinster, R. L. (1999). beta1- and alpha6-integrin are surface markers on mouse spermatogonial stem cells. Proceedings of the National Academy of Sciences of the United States of America, 96, 5504–5509.

    Article  PubMed  CAS  Google Scholar 

  68. Lin, E. Y., Jones, J. G., Li, P., Zhu, L., Whitney, K. D., Muller, W. J., et al. (2003). Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. American Journal of Pathology, 163, 2113–2126.

    PubMed  Google Scholar 

  69. White, D. E., Kurpios, N. A., Zuo, D., Hassell, J. A., Blaess, S., Mueller, U., et al. (2004). Targeted disruption of b1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction. Cancer Cell, 6, 159–170.

    Article  PubMed  CAS  Google Scholar 

  70. Nielsen, T. O., Hsu, F. D., Jensen, K., Cheang, M., Karaca, G., Hu, Z., et al. (2004). Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clinical Cancer Research, 10, 5367–5374.

    Article  PubMed  CAS  Google Scholar 

  71. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 3983–3988.

    Article  PubMed  CAS  Google Scholar 

  72. Schabath, H., Runz, S., Joumaa, S., & Altevogt, P. (2006). CD24 affects CXCR4 function in pre-B lymphocytes and breast carcinoma cells. Journal of Cell Science, 119, 314–325.

    Article  PubMed  CAS  Google Scholar 

  73. Kuperwasser, C., Chavarria, T., Wu, M., Magrane, G., Gray, J. W., Carey, L., et al. (2004). Reconstruction of functionally normal and malignant human breast tissues in mice. Proceedings of the National Academy of Sciences of the United States of America, 101, 4966–4971.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by the Victorian Breast Cancer Research Consortium Inc., Australia; the National Breast Cancer Foundation, Australia; and the National Health and Medical Research Council, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane E. Visvader.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaillant, F., Asselin-Labat, ML., Shackleton, M. et al. The Emerging Picture of the Mouse Mammary Stem Cell. Stem Cell Rev 3, 114–123 (2007). https://doi.org/10.1007/s12015-007-0018-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-007-0018-2

Keywords

Navigation