Skip to main content

Advertisement

Log in

Esophageal Stem Cells—A Review of Their Identification and Characterization

  • Published:
Stem Cell Reviews Aims and scope Submit manuscript

Abstract

The incidence of adenocarcinoma of the esophagus has increased faster than any other internal malignancy over the last 40 years. Despite this, surprisingly little is known about the basic biology of this tissue, particularly with regards to the organization of cell proliferation within the epithelium. This is a matter of crucial importance for our understanding of the pathogenesis of esophageal cancer. Nevertheless, significant advances have recently been made in the identification and functional characterization of both murine and human esophageal stem cells and their progeny in recent years. This places investigators in an exciting position to gain further insights into the processes of tissue renewal and repair on the one hand and the development of dysplasia and malignancy on the other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Potten, C. S. (1974). The epidermal proliferative unit: the possible role of the central basal cell. Cell and Tissue Kinetics, 7(1), 77–88.

    PubMed  CAS  Google Scholar 

  2. Potten, C. S., & Loeffler, M. (1987). A comprehensive model of the crypts of the small intestine of the mouse provides insight into the mechanisms of cell migration and the proliferation hierarchy. Journal of Theoretical Biology, 127(4), 381–391.

    Article  PubMed  CAS  Google Scholar 

  3. Morris, R. J., Fischer, S. M., & Slaga, T. J. (1986). Evidence that a slowly cycling subpopulation of adult murine epidermal cells retains carcinogen. Cancer Research, 46(6), 3061–3066.

    PubMed  CAS  Google Scholar 

  4. Wognum, A. W., Eaves, A. C., & Thomas, T. E. (2003). Identification and isolation of hematopoietic stem cells. Archives of Medical Research, 34(6), 461–475.

    Article  PubMed  CAS  Google Scholar 

  5. Alonso, L., & Fuchs, E. (2003). Stem cells of the skin epithelium. Proceedings of the National Academy of Sciences of the United States of America, 100(Suppl 1), 11830–11835.

    Article  PubMed  CAS  Google Scholar 

  6. Blot, W. J., Devesa, S. S., Kneller, R. W., & Fraumeni Jr., J. F. (1991). Rising incidence of adenocarcinoma of the esophagus and gastric cardia. Journal of the American Medical Association, 265(10), 1287–1289.

    Article  PubMed  CAS  Google Scholar 

  7. Devesa, S. S., Blot, W. J., & Fraumeni Jr., J. F. (1998). Changing patterns in the incidence of esophageal and gastric carcinoma in the United States. Cancer, 83(10), 2049–2053.

    Article  PubMed  CAS  Google Scholar 

  8. Thomas, R. J., Lade, S., Giles, G. G., & Thursfield, V. (1996). Incidence trends in oesophageal and proximal gastric carcinoma in Victoria. Australian and New Zealand Journal of Surgery, 66(5), 271–275.

    Article  PubMed  CAS  Google Scholar 

  9. Rustgi, A. K. (2006). Models of esophageal carcinogenesis. Seminars in Oncology, 33(6 Suppl 11), S57–S58.

    Article  PubMed  Google Scholar 

  10. Leblond, C. P., Clermont, Y., & Nadler, N. J. (1967). The pattern of stem cell renewal in three epithelia: (Esophagus, intestine and testis). Proceedings. Canadian Cancer Conference, 7, 3–30.

    Google Scholar 

  11. Marques-Pereira, J. P., & Leblond, C. P. (1965). Mitosis and differentiation in the stratified squamous epithelium of the rat esophagus. American Journal of Anatomy, 117, 73–87.

    Article  PubMed  CAS  Google Scholar 

  12. Leblond, C. P., Greulich, R. C., & Pereira, J. P. M. (1964). Relationship of cell formation and cell migration in the renewal of stratified squamous epithelia. Advances of Biology of Skin, 5, 36–67.

    Google Scholar 

  13. Leblond, C. P., & Walker, B. E. (1956). Renewal of cell populations. Physiological Reviews, 36(2), 255–276.

    PubMed  CAS  Google Scholar 

  14. Thomas, G. A., Williams, D., & Williams, E. D. (1988). The demonstration of tissue clonality by X-linked enzyme histochemistry. Journal of Pathology, 155(2), 101–108.

    Article  PubMed  CAS  Google Scholar 

  15. Kaur, P. (2006). Interfollicular epidermal stem cells: Identification, challenges, potential. Journal of Investigative Dermatology, 126(7), 1450–1458.

    Article  PubMed  CAS  Google Scholar 

  16. Epperly, M. W., Guo, H., Shen, H., Niu, Y., Zhang, X., Jefferson, M., et al. (2004). Bone marrow origin of cells with capacity for homing and differentiation to esophageal squamous epithelium. Radiation Research, 162(3), 233–240.

    Article  PubMed  CAS  Google Scholar 

  17. Epperly, M. W., Shen, H., Jefferson, M., & Greenberger, J. S. (2004). In vitro differentiation capacity of esophageal progenitor cells with capacity for homing and repopulation of the ionizing irradiation-damaged esophagus. In Vivo, 18(6), 675–685.

    PubMed  Google Scholar 

  18. Goodell, M. A., Brose, K., Paradis, G., Conner, A. S., & Mulligan, R. C. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. Journal of Experimental Medicine, 183(4), 1797–1806.

    Article  PubMed  CAS  Google Scholar 

  19. Redvers, R. P., Li, A., & Kaur, P. (2006). Side population in adult murine epidermis exhibits phenotypic and functional characteristics of keratinocyte stem cells. Proceedings of the National Academy of Sciences of the United States of America, 103(35), 13168–13173.

    Article  PubMed  CAS  Google Scholar 

  20. Li, A., Pouliot, N., Redvers, R., & Kaur, P. (2004). Extensive tissue-regenerative capacity of neonatal human keratinocyte stem cells and their progeny. Journal of Clinical Investigation, 113(3), 390–400.

    PubMed  CAS  Google Scholar 

  21. Jones, P. H., Harper, S., & Watt, F. M. (1995). Stem cell patterning and fate in human epidermis. Cell, 80(1), 83–93.

    Article  PubMed  CAS  Google Scholar 

  22. Jones, P. H., & Watt, F. M. (1993). Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell, 73(4), 713–724.

    Article  PubMed  CAS  Google Scholar 

  23. Trempus, C. S., Morris, R. J., Bortner, C. D., Cotsarelis, G., Faircloth, R. S., Reece, J. M., et al. (2003). Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. Journal of Investigative Dermatology, 120(4), 501–511.

    Article  PubMed  CAS  Google Scholar 

  24. Li, A., Simmons, P. J., & Kaur, P. (1998). Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype. Proceedings of the National Academy of Sciences of the United States of America, 95(7), 3902–3907.

    Article  PubMed  CAS  Google Scholar 

  25. Webb, A., Li, A., & Kaur, P. (2004). Location and phenotype of human adult keratinocyte stem cells of the skin. Differentiation, 72(8), 387–395.

    Article  PubMed  Google Scholar 

  26. Tani, H., Morris, R. J., & Kaur, P. (2000). Enrichment for murine keratinocyte stem cells based on cell surface phenotype. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 10960–10965.

    Article  PubMed  CAS  Google Scholar 

  27. Carter, W. G., Kaur, P., Gil, S. G., Gahr, P. J., & Wayner, E. A. (1990). Distinct functions for integrins alpha 3 beta 1 in focal adhesions and alpha 6 beta 4/bullous pemphigoid antigen in a new stable anchoring contact (SAC) of keratinocytes: Relation to hemidesmosomes. Journal of Cell Biology, 111(6 Pt 2), 3141–3154.

    Article  PubMed  CAS  Google Scholar 

  28. Sonnenberg, A., Calafat, J., Janssen, H., Daams, H., van der Raaij-Helmer, L. M., Falcioni, R., et al. (1991). Integrin alpha 6/beta 4 complex is located in hemidesmosomes, suggesting a major role in epidermal cell-basement membrane adhesion. Journal of Cell Biology, 113(4), 907–917.

    Article  PubMed  CAS  Google Scholar 

  29. Dowling, J., Yu, Q. C., & Fuchs, E. (1996). Beta4 integrin is required for hemidesmosome formation, cell adhesion and cell survival. Journal of Cell Biology, 134(2), 559–572.

    Article  PubMed  CAS  Google Scholar 

  30. Georges-Labouesse, E., Messaddeq, N., Yehia, G., Cadalbert, L., Dierich, A., & Le Meur, M. (1996). Absence of integrin alpha 6 leads to epidermolysis bullosa and neonatal death in mice. Nature Genetics, 13(3), 370–373.

    Article  PubMed  CAS  Google Scholar 

  31. van der Neut, R., Krimpenfort, P., Calafat, J., Niessen, C. M., & Sonnenberg, A. (1996). Epithelial detachment due to absence of hemidesmosomes in integrin beta 4 null mice. Nature Genetics, 13(3), 366–369.

    Article  PubMed  Google Scholar 

  32. Taetle, R. (1990). The role of transferrin receptors in hemopoietic cell growth. Experimental Hematology, 18(4), 360–365.

    PubMed  CAS  Google Scholar 

  33. Crook, K., & Hunt, S. V. (1996). Enrichment of early fetal-liver hemopoietic stem cells of the rat using monoclonal antibodies against the transferrin receptor, Thy-1, and MRC-OX82. Developments in Immunology, 4(4), 235–246.

    Article  CAS  Google Scholar 

  34. Cotsarelis, G., Sun, T. T., & Lavker, R. M. (1990). Label-retaining cells reside in the bulge area of pilosebaceous unit: Implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell, 61(7), 1329–1337.

    Article  PubMed  CAS  Google Scholar 

  35. Morris, R. J., & Potten, C. S. (1999). Highly persistent label-retaining cells in the hair follicles of mice and their fate following induction of anagen. Journal of Investigative Dermatology, 112(4), 470–475.

    Article  PubMed  CAS  Google Scholar 

  36. Croagh, D., Phillips, W. A., Redvers, R., Thomas, R. J., & Kaur, P. (2007). Identification of candidate murine esophageal stem cells using a combination of cell kinetic studies and cell surface markers. Stem Cells, 25(2), 313–318.

    Article  PubMed  CAS  Google Scholar 

  37. Scheving, L. A., & Gardner, W. (1998). Circadian regulation of CREB transcription factor in mouse esophagus. American Journal of Physiology, 274(4 Pt 1), C1011–C1016.

    PubMed  CAS  Google Scholar 

  38. Croagh, D. G., Tikoo, A., Cheng, S., Nandurkar, S., Thomas, R. J. S., Kaur, P., & Phillips, W. A. (2008) Reconstitution of stratified murine and human esophageal epithelia in an in vivo transplant culture system. Scandinavian Journal of Gastroenterology, doi:10.1080/00365520802102489.

  39. Sarosi, G., Brown, G., Jaiswal, K., Feagins, L. A., Lee, E., Crook, T. W., et al. (2008). Bone marrow progenitor cells contribute to esophageal regeneration and metaplasia in a rat model of Barrett’s esophagus. Diseases of the Esophagus, 21(1), 43–50.

    PubMed  CAS  Google Scholar 

  40. Seery, J. P., & Watt, F. M. (2000). Asymmetric stem-cell divisions define the architecture of human oesophageal epithelium. Current Biology, 10(22), 1447–1450.

    Article  PubMed  CAS  Google Scholar 

  41. van Nieuwenhove, Y., Destordeur, H., & Willems, G. (2001). Spatial distribution and cell kinetics of the glands in the human esophageal mucosa. European Journal of Morphology, 39(3), 163–168.

    Article  PubMed  Google Scholar 

  42. Yang, G. C., Lipkin, M., Yang, K., Wang, G. Q., Li, J. Y., Yang, C. S., et al. (1987). Proliferation of esophageal epithelial cells among residents of Linxian, People’s Republic of China. Journal of the National Cancer Institute, 79(6), 1241–1246.

    PubMed  CAS  Google Scholar 

  43. Bell, B., Almy, T. P., & Lipkin, M. (1967). Cell proliferation kinetics in the gastrointestinal tract of man. 3. Cell renewal in esophagus, stomach, and jejunum of a patient with treated pernicious anemia. Journal of the National Cancer Institute, 38(5), 615–628.

    PubMed  CAS  Google Scholar 

  44. Okumura, T., Shimada, Y., Imamura, M., & Yasumoto, S. (2003). Neurotrophin receptor p75(NTR) characterizes human esophageal keratinocyte stem cells in vitro. Oncogene, 22(26), 4017–4026.

    Article  PubMed  CAS  Google Scholar 

  45. Tomlinson, I. P., & Bodmer, W. F. (1995). Failure of programmed cell death and differentiation as causes of tumors: Some simple mathematical models. Proceedings of the National Academy of Sciences of the United States of America, 92(24), 11130–11134.

    Article  PubMed  CAS  Google Scholar 

  46. Takagi, N., Sugimoto, M., Yamaguchi, S., Ito, M., Tan, S. S., & Okabe, M. (2002). Nonrandom X chromosome inactivation in mouse embryos carrying Searle’s T(X;16)16H translocation visualized using X-linked LACZ and GFP transgenes. Cytogenetic and Genome Research, 99, 52–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a postgraduate research scholarship (D.C.) from the National Health and Medical Research Council of Australia (NHMRC), a Surgeon-Scientist Fellowship (D.C.) from the Royal Australasian College of Surgeons, and NHMRC Project Grant #400100 to W.A.P, P.K. & R.J.S.T. The authors would like to thank Diana Lepore, Murdoch Research Institute, Melbourne, for providing the mice carrying the GFP and HMG-LacZ transgenes in cis on the X chromosome [46].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pritinder Kaur.

Additional information

Wayne Phillips and Pritinder Kaur made equal contributions to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Croagh, D., Thomas, R.J.S., Phillips, W.A. et al. Esophageal Stem Cells—A Review of Their Identification and Characterization. Stem Cell Rev 4, 261–268 (2008). https://doi.org/10.1007/s12015-008-9031-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-008-9031-3

Keywords

Navigation