Skip to main content
Log in

Role of Gap Junctions in Embryonic and Somatic Stem Cells

  • Published:
Stem Cell Reviews Aims and scope Submit manuscript

Abstract

Stem cells provide an invaluable tool to develop cell replacement therapies for a range of serious disorders caused by cell damage or degeneration. Much research in the field is focused on the identification of signals that either maintain stem cell pluripotency or direct their differentiation. Understanding how stem cells communicate within their microenvironment is essential to achieve their therapeutic potentials. Gap junctional intercellular communication (GJIC) has been described in embryonic stem cells (ES cells) and various somatic stem cells. GJIC has been implicated in regulating different biological events in many stem cells, including cell proliferation, differentiation and apoptosis. This review summarizes the current understanding of gap junctions in both embryonic and somatic stem cells, as well as their potential role in growth control and cellular differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

α-GA:

α-glycyrrhetinic acid

BMP:

Bone morphogenetic protein

ES cells:

Embryonic stem cells

HSC:

Hematopoietic stem cells

MSC:

Mesenchymal stem cells

GJIC:

Gap junctional intercellular communication

hESC:

Human embryonic stem cells

mESC:

Mouse embryonic stem cells

PDGF:

Platelet-derived growth factor

S1P:

Sphingosine-1-phosphate

References

  1. Alexander, D. B., & Goldberg, G. S. (2003). Transfer of biologically important molecules between cells through gap junction channels. Current Medicinal Chemistry, 10(19), 2045–2058.

    PubMed  CAS  Google Scholar 

  2. Assou, S., Lecarrour, T., et al. (2007). A meta-analysis of human embryonic stem cells transcriptome integrated into a web-based expression atlas. Stem Cells, 25, 961–973.

    PubMed  CAS  Google Scholar 

  3. Avanzo, J. L., Mesnil, M., et al. (2004). Increased susceptibility to urethane-induced lung tumors in mice with decreased expression of connexin43. Carcinogenesis, 25(10), 1973–1982.

    PubMed  CAS  Google Scholar 

  4. Bani-Yaghoub, M., Bechberger, J. F., et al. (1997). Reduction of connexin43 expression and dye-coupling during neuronal differentiation of human NTera2/clone D1 cells. Journal of Neuroscience Research, 49(1), 19–31.

    PubMed  CAS  Google Scholar 

  5. Becker, D. L., Evans, W. H., et al. (1995). Functional analysis of amino acid sequences in connexin43 involved in intercellular communication through gap junctions. Journal of Cell Science, 108(Pt 4), 1455–1467.

    PubMed  CAS  Google Scholar 

  6. Belliveau, D. J., Bechberger, J. F., et al. (1997). Differential expression of gap junctions in neurons and astrocytes derived from P19 embryonal carcinoma cells. Developmental Genetics, 21(3), 187–200.

    PubMed  CAS  Google Scholar 

  7. Beqqali, A., Kloots, J., et al. (2006). Genome-wide transcriptional profiling of human embryonic stem cells differentiating to cardiomyocytes. Stem Cells, 24(8), 1956–1967.

    PubMed  CAS  Google Scholar 

  8. Bernacki, S. H., Wall, M. E., et al. (2008). Isolation of human mesenchymal stem cells from bone and adipose tissue. Methods in Cell Biology, 86, 257–278.

    PubMed  CAS  Google Scholar 

  9. Bevilacqua, A., Loch-Caruso, R., et al. (1989). Abnormal development and dye coupling produced by antisense RNA to gap junction protein in mouse preimplantation embryos. Proceedings of National Academy of Sciences of United States of America, 86(14), 5444–5448.

    CAS  Google Scholar 

  10. Bhattacharya, B., Cai, J., et al. (2005). Comparison of the gene expression profile of undifferentiated human embryonic stem cell lines and differentiating embryoid bodies. BMC Developmental Biology, 5, 22.

    PubMed  Google Scholar 

  11. Bhattacharya, B., Miura, T., et al. (2004). Gene expression in human embryonic stem cell lines: unique molecular signature. Blood, 103(8), 2956–2964.

    PubMed  CAS  Google Scholar 

  12. Bloor, D. J., Wilson, Y., et al. (2004). Expression of connexins in human preimplantation embryos in vitro. Reproductive Biology and Endocrinology, 2, 25.

    PubMed  Google Scholar 

  13. Boyer, L. A., Lee, T. I., et al. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122(6), 947–956.

    PubMed  CAS  Google Scholar 

  14. Cai, J., Cheng, A., et al. (2004). Membrane properties of rat embryonic multipotent neural stem cells. Journal of Neurochemistry, 88(1), 212–226.

    PubMed  CAS  Google Scholar 

  15. Carpenter, M. K., Rosler, E. S., et al. (2004). Properties of four human embryonic stem cell lines maintained in a feeder-free culture system. Developmental Dynamics, 229(2), 243–258.

    PubMed  CAS  Google Scholar 

  16. Chang, C. C., Trosko, J. E., et al. (1987). Contact insensitivity of a subpopulation of normal human fetal kidney epithelial cells and of human carcinoma cell lines. Cancer Research, 47(6), 1634–1645.

    PubMed  CAS  Google Scholar 

  17. Cheng, A., Tang, H., et al. (2004). Gap junctional communication is required to maintain mouse cortical neural progenitor cells in a proliferative state. Developments in Biologicals, 272(1), 203–216.

    CAS  Google Scholar 

  18. Chung, Y., Klimanskaya, I., et al. (2008). Human embryonic stem cell lines generated without embryo destruction. Cell Stem Cell, 2(2), 113–117.

    PubMed  CAS  Google Scholar 

  19. Dahl, E., Winterhager, E., et al. (1996). Expression of the gap junction proteins connexin31 and connexin43 correlates with communication compartments in extraembryonic tissues and in the gastrulating mouse embryo, respectively. Journal of Cell Science, 109(Pt 1), 191–197.

    PubMed  CAS  Google Scholar 

  20. Dale, B., Gualtieri, R., et al. (1991). Intercellular communication in the early human embryo. Molecular Reproduction and Development, 29(1), 22–28.

    PubMed  CAS  Google Scholar 

  21. Davies, T. C., Barr, K. J., et al. (1996). Multiple members of the connexin gene family participate in preimplantation development of the mouse. Developmental Genetics, 18(3), 234–243.

    PubMed  CAS  Google Scholar 

  22. De Maio, A., Vega, V., et al. (2002). Gap junctions, homeostasis, and injury. Journal of Cellular Physiology, 191(3), 269–282.

    PubMed  Google Scholar 

  23. Dowling-Warriner, C. V., & Trosko, J. E. (2000). Induction of gap junctional intercellular communication, connexin43 expression, and subsequent differentiation in human fetal neuronal cells by stimulation of the cyclic AMP pathway. Neuroscience, 95(3), 859–868.

    PubMed  CAS  Google Scholar 

  24. Duval, N., Gomes, D., et al. (2002). Cell coupling and Cx43 expression in embryonic mouse neural progenitor cells. Journal of Cell Science, 115(Pt 16), 3241–3251.

    PubMed  CAS  Google Scholar 

  25. Ebihara, L. (2003). New roles for connexons. News in Physiological Sciences, 18, 100–103.

    Google Scholar 

  26. Egashira, K., Nishii, K., et al. (2004). Conduction abnormality in gap junction protein connexin45-deficient embryonic stem cell-derived cardiac myocytes. The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology, 280(2), 973–979.

    PubMed  Google Scholar 

  27. Elfgang, C., Eckert, R., et al. (1995). Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. Journal of Cell Biology, 129(3), 805–817.

    PubMed  CAS  Google Scholar 

  28. Engel, A., & Muller, D. J. (2000). Observing single biomolecules at work with the atomic force microscope. Nature Structural Biology, 7(9), 715–718.

    PubMed  CAS  Google Scholar 

  29. Enver, T., Soneji, S., et al. (2005). Cellular differentiation hierarchies in normal and culture-adapted human embryonic stem cells. Human Molecular Genetics, 14(21), 3129–3140.

    PubMed  CAS  Google Scholar 

  30. Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819), 154–156.

    PubMed  CAS  Google Scholar 

  31. Evans, W. H., De Vuyst, E., et al. (2006). The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochemical Journal, 397(1), 1–14.

    PubMed  CAS  Google Scholar 

  32. Gage, F. H. (2000). Mammalian neural stem cells. Science, 287(5457), 1433–1438.

    PubMed  CAS  Google Scholar 

  33. Giepmans, B. N. (2004). Gap junctions and connexin-interacting proteins. Cardiovascular Research, 62(2), 233–245.

    PubMed  CAS  Google Scholar 

  34. Goodall, H., & Maro, B. (1986). Major loss of junctional coupling during mitosis in early mouse embryos. Journal of Cell Biology, 102(2), 568–575.

    PubMed  CAS  Google Scholar 

  35. Goodenough, D. A., Goliger, J. A., et al. (1996). Connexins, connexons, and intercellular communication. Annual Reviews of Biochemical, 65, 475–502.

    CAS  Google Scholar 

  36. Goodenough, D. A., & Paul, D. L. (2003). Beyond the gap: functions of unpaired connexon channels. Nature Reviews. Molecular Cell Biology, 4(4), 285–294.

    PubMed  CAS  Google Scholar 

  37. Hardy, K., Warner, A., et al. (1996). Expression of intercellular junctions during preimplantation development of the human embryo. Molecular Human Reproduction, 2(8), 621–632.

    PubMed  CAS  Google Scholar 

  38. Hirabayashi, Y., Yoon, B. I., et al. (2007a). Membrane channel connexin 32 maintains Lin(-)/c-kit(+) hematopoietic progenitor cell compartment: analysis of the cell cycle. Journal of Membrane Biology, 217(1–3), 105–113.

    PubMed  CAS  Google Scholar 

  39. Hirabayashi, Y., Yoon, B. I., et al. (2007b). Protective role of connexin 32 in steady-state hematopoiesis, regeneration state, and leukemogenesis. Experimental Biology and Medicine (Maywood), 232(5), 700–712.

    CAS  Google Scholar 

  40. Holland, M. S., Tai, M. H., et al. (2003). Isolation and differentiation of bovine mammary gland progenitor cell populations. American Journal of Veterinary Research, 64(4), 396–403.

    PubMed  Google Scholar 

  41. Houghton, F. D. (2005). Role of gap junctions during early embryo development. Reproduction, 129(2), 129–135.

    PubMed  CAS  Google Scholar 

  42. Houghton, F. D., Barr, K. J., et al. (2002). Functional significance of gap junctional coupling in preimplantation development. Biology of Reproduction, 66(5), 1403–1412.

    PubMed  CAS  Google Scholar 

  43. Huang, Y. J., Maruyama, Y., et al. (2007). The role of pannexin 1 hemichannels in ATP release and cell–cell communication in mouse taste buds. Proceedings of National Academy of Sciences of the United State of America, 104(15), 6436–6441.

    CAS  Google Scholar 

  44. Huettner, J. E., Lu, A., et al. (2006). Gap junctions and connexon hemichannels in human embryonic stem cells. Stem Cells, 24(7), 1654–1667.

    PubMed  Google Scholar 

  45. Kalimi, G. H., & Lo, C. W. (1988). Communication compartments in the gastrulating mouse embryo. Journal of Cell Biology, 107(1), 241–255.

    PubMed  CAS  Google Scholar 

  46. Kalimi, G. H., & Lo, C. W. (1989). Gap junctional communication in the extraembryonic tissues of the gastrulating mouse embryo. Journal of Cell Biology, 109(6 Pt 1), 3015–3026.

    PubMed  CAS  Google Scholar 

  47. Kao, C. Y., Nomata, K., et al. (1995). Two types of normal human breast epithelial cells derived from reduction mammoplasty: phenotypic characterization and response to SV40 transfection. Carcinogenesis, 16(3), 531–538.

    PubMed  CAS  Google Scholar 

  48. Kiel, M. J., He, S., et al. (2007). Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature, 449(7159), 238–242.

    PubMed  CAS  Google Scholar 

  49. King, T. J., Fukushima, L. H., et al. (2000). Correlation between growth control, neoplastic potential and endogenous connexin43 expression in HeLa cell lines: implications for tumor progression. Carcinogenesis, 21(2), 311–315.

    PubMed  CAS  Google Scholar 

  50. Knoblich, J. A. (2008). Mechanisms of asymmetric stem cell division. Cell, 132(4), 583–597.

    PubMed  CAS  Google Scholar 

  51. Krutovskikh, V. A., Yamasaki, H., et al. (1998). Inhibition of intrinsic gap-junction intercellular communication and enhancement of tumorigenicity of the rat bladder carcinoma cell line BC31 by a dominant-negative connexin 43 mutant. Molecular Carcinogenesis, 23(4), 254–261.

    PubMed  CAS  Google Scholar 

  52. Krysko, D. V., Leybaert, L., et al. (2005). Gap junctions and the propagation of cell survival and cell death signals. Apoptosis, 10(3), 459–469.

    PubMed  CAS  Google Scholar 

  53. Kumar, N. M., & Gilula, N. B. (1996). The gap junction communication channel. Cell, 84(3), 381–388.

    PubMed  CAS  Google Scholar 

  54. Kwak, B. R., & Jongsma, H. J. (1996). Regulation of cardiac gap junction channel permeability and conductance by several phosphorylating conditions. Molecular and Cellular Biochemistry, 157(1–2), 93–99.

    PubMed  CAS  Google Scholar 

  55. Lai, C. P., Bechberger, J. F., et al. (2007). Tumor-suppressive effects of pannexin 1 in C6 glioma cells. Cancer Research, 67(4), 1545–1554.

    PubMed  CAS  Google Scholar 

  56. Laird, D. W. (2005). Connexin phosphorylation as a regulatory event linked to gap junction internalization and degradation. Biochimica et Biophysica Acta, 1711(2), 172–182.

    PubMed  CAS  Google Scholar 

  57. Lampe, P. D., & Lau, A. F. (2004). The effects of connexin phosphorylation on gap junctional communication. International Journal of Biochemistry & Cell Biology, 36(7), 1171–1186.

    CAS  Google Scholar 

  58. Lee, S., Gilula, N. B., et al. (1987). Gap junctional communication and compaction during preimplantation stages of mouse development. Cell, 51(5), 851–860.

    PubMed  CAS  Google Scholar 

  59. Lin, T. M., Chang, H. W., et al. (2007). Isolation and identification of mesenchymal stem cells from human lipoma tissue. Biochemical and Biophysical Research Communications, 361(4), 883–889.

    PubMed  CAS  Google Scholar 

  60. Litvin, O., Tiunova, A., et al. (2006). What is hidden in the pannexin treasure trove: the sneak peek and the guesswork. Journal of Cellular and Molecular Medicine, 10(3), 613–634.

    PubMed  CAS  Google Scholar 

  61. Liu, Y., Shin, S., et al. (2006). Genome wide profiling of human embryonic stem cells (hESCs), their derivatives and embryonal carcinoma cells to develop base profiles of U.S. Federal government approved hESC lines. BMC Developmental Biology, 6, 20.

    PubMed  CAS  Google Scholar 

  62. Lo, C. W. (1996). The role of gap junction membrane channels in development. Journal of Bioenergetics and Biomembranes, 28(4), 379–385.

    PubMed  CAS  Google Scholar 

  63. Lo, C. W., & Gilula, N. B. (1979a). Gap junctional communication in the post-implantation mouse embryo. Cell, 18(2), 411–422.

    PubMed  CAS  Google Scholar 

  64. Lo, C. W., & Gilula, N. B. (1979b). Gap junctional communication in the preimplantation mouse embryo. Cell, 18(2), 399–409.

    PubMed  CAS  Google Scholar 

  65. Loewenstein, W. R. (1979). Junctional intercellular communication and the control of growth. Biochimica et Biophysica Acta, 560(1), 1–65.

    PubMed  CAS  Google Scholar 

  66. Loewenstein, W. R., & Kanno, Y. (1966). Intercellular communication and the control of tissue growth: lack of communication between cancer cells. Nature, 209(5029), 1248–1249.

    PubMed  CAS  Google Scholar 

  67. Loewenstein, W. R., & Kanno, Y. (1967). Intercellular communication and tissue growth. I. Cancerous growth. Journal of Cell Biology, 33(2), 225–234.

    PubMed  CAS  Google Scholar 

  68. Loewenstein, W. R., & Rose, B. (1992). The cell–cell channel in the control of growth. Seminars in Cell & Biology, 3(1), 59–79.

    Article  CAS  Google Scholar 

  69. Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of National Academy of Sciences of the United State of America, 78(12), 7634–7638.

    CAS  Google Scholar 

  70. Martin, P. E., & Evans, W. H. (2004). Incorporation of connexins into plasma membranes and gap junctions. Cardiovascular Research, 62(2), 378–387.

    PubMed  CAS  Google Scholar 

  71. Matic, M., Evans, W. H., et al. (2002). Epidermal stem cells do not communicate through gap junctions. Journal of Investigative Dermatology, 118(1), 110–116.

    PubMed  CAS  Google Scholar 

  72. Matic, M., Petrov, I. N., et al. (1997). Stem cells of the corneal epithelium lack connexins and metabolite transfer capacity. Differentiation, 61(4), 251–260.

    PubMed  CAS  Google Scholar 

  73. McCulloch, E. A., & Till, J. E. (2005). Perspectives on the properties of stem cells. Natural Medicines, 11(10), 1026–1028.

    CAS  Google Scholar 

  74. Melton, D. a., & Cowan, C. (2004). ‘Stemness’: Definitions, criteria and standards. In R. Lanza, J. Gearhart, B. Hogan, D. Melton, R. Pedersen, J. Thomson, & M. West (Eds.), Handbook of stem cells, Vol. 1. Amsterdam: Elsevier.

    Google Scholar 

  75. Mesnil, M., Crespin, S., et al. (2005). Defective gap junctional intercellular communication in the carcinogenic process. Biochimica et Biophysica Acta, 1719(1–2), 125–145.

    PubMed  CAS  Google Scholar 

  76. Mesnil, M., & Yamasaki, H. (2000). Bystander effect in herpes simplex virus-thymidine kinase/ganciclovir cancer gene therapy: role of gap-junctional intercellular communication. Cancer Research, 60(15), 3989–3999.

    PubMed  CAS  Google Scholar 

  77. Mimeault, M., & Batra, S. K. (2006). Concise review: recent advances on the significance of stem cells in tissue regeneration and cancer therapies. Stem Cells, 24(11), 2319–2345.

    PubMed  CAS  Google Scholar 

  78. Montecino-Rodriguez, E., Leathers, H., et al. (2000). Expression of connexin 43 (Cx43) is critical for normal hematopoiesis. Blood, 96(3), 917–924.

    PubMed  CAS  Google Scholar 

  79. Moreno, A. P. (2005). Connexin phosphorylation as a regulatory event linked to channel gating. Biochimica et Biophysica Acta, 1711(2), 164–171.

    PubMed  CAS  Google Scholar 

  80. Neijssen, J., Herberts, C., et al. (2005). Cross-presentation by intercellular peptide transfer through gap junctions. Nature, 434(7029), 83–88.

    PubMed  CAS  Google Scholar 

  81. Nishi, M., Kumar, N. M., et al. (1991). Developmental regulation of gap junction gene expression during mouse embryonic development. Developments in Biologicals, 146(1), 117–130.

    CAS  Google Scholar 

  82. Orford, K. W., & Scadden, D. T. (2008). Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nature Reviews. Genetics, 9(2), 115–128.

    PubMed  CAS  Google Scholar 

  83. Oviedo, N. J., & Levin, M. (2007). smedinx-11 is a planarian stem cell gap junction gene required for regeneration and homeostasis. Development, 134(17), 3121–3131.

    PubMed  CAS  Google Scholar 

  84. Oyamada, M., Oyamada, Y., et al. (2005). Regulation of connexin expression. Biochimica et Biophysica Acta, 1719(1–2), 6–23.

    PubMed  CAS  Google Scholar 

  85. Oyamada, Y., Komatsu, K., et al. (1996). Differential regulation of gap junction protein (connexin) genes during cardiomyocytic differentiation of mouse embryonic stem cells in vitro. Experimental Cell Research, 229(2), 318–326.

    PubMed  CAS  Google Scholar 

  86. Panchin, Y., Kelmanson, I., et al. (2000). A ubiquitous family of putative gap junction molecules. Current Biology, 10(13), R473–R474.

    PubMed  CAS  Google Scholar 

  87. Panchin, Y. V. (2005). Evolution of gap junction proteins—the pannexin alternative. Journal of Experimental Biology, 208(Pt 8), 1415–1419.

    PubMed  CAS  Google Scholar 

  88. Parekkadan, B., Berdichevsky, Y., et al. (2008). Cell–cell interaction modulates neuroectodermal specification of embryonic stem cells. Neuroscience Letters, 438(2), 190–195.

    PubMed  CAS  Google Scholar 

  89. Pebay, A., Wong, R. C., et al. (2005). Essential roles of sphingosine-1-phosphate and platelet-derived growth factor in the maintenance of human embryonic stem cells. Stem Cells, 23(10), 1541–1548.

    PubMed  CAS  Google Scholar 

  90. Penn, R. D. (1966). Ionic communication between liver cells. Journal of Cell Biology, 29(1), 171–174.

    PubMed  CAS  Google Scholar 

  91. Pera, M. F., Reubinoff, B., et al. (2000). Human embryonic stem cells. Journal of Cell Science, 113(Pt 1), 5–10.

    PubMed  CAS  Google Scholar 

  92. Phinney, D. G., & Prockop, D. J. (2007). Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells, 25(11), 2896–2902.

    PubMed  Google Scholar 

  93. Pittenger, M. F., Mackay, A. M., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.

    PubMed  CAS  Google Scholar 

  94. Ploemacher, R. E., Mayen, A. E., et al. (2000). Hematopoiesis: gap junction intercellular communication is likely to be involved in regulation of stroma-dependent proliferation of hemopoietic stem cells. Hematology, 5(2), 133–147.

    PubMed  CAS  Google Scholar 

  95. Qin, H., Shao, Q., et al. (2002). Retroviral delivery of connexin genes to human breast tumor cells inhibits in vivo tumor growth by a mechanism that is independent of significant gap junctional intercellular communication. Journal of Biological Chemistry, 277(32), 29132–29138.

    PubMed  CAS  Google Scholar 

  96. Reubinoff, B. E., Pera, M. F., et al. (2000). Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nature Biotechnology, 18(4), 399–404.

    PubMed  CAS  Google Scholar 

  97. Revel, J. P., & Karnovsky, M. J. (1967). Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. Journal of Cell Biology, 33(3), C7–C12.

    PubMed  CAS  Google Scholar 

  98. Richards, M., Tan, S. P., et al. (2004). The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells, 22(1), 51–64.

    PubMed  CAS  Google Scholar 

  99. Rosendaal, M., Green, C. R., et al. (1994). Up-regulation of the connexin43+ gap junction network in haemopoietic tissue before the growth of stem cells. Journal of Cell Science, 107(Pt 1), 29–37.

    PubMed  CAS  Google Scholar 

  100. Rosendaal, M., Mayen, A., et al. (1997). Does transmembrane communication through gap junctions enable stem cells to overcome stromal inhibition? Leukemia, 11(8), 1281–1289.

    PubMed  CAS  Google Scholar 

  101. Ruch, R. J., & Trosko, J. E. (2001). Gap-junction communication in chemical carcinogenesis. Drug Metabolism Reviews, 33(1), 117–124.

    PubMed  CAS  Google Scholar 

  102. Russo, R. E., Reali, C., et al. (2008). Connexin 43 delimits functional domains of neurogenic precursors in the spinal cord. Journal of Neuroscience, 28(13), 3298–3309.

    PubMed  CAS  Google Scholar 

  103. Saez, J. C., Berthoud, V. M., et al. (2003). Plasma membrane channels formed by connexins: Their regulation and functions. Physiological Reviews, 83(4), 1359–1400.

    PubMed  CAS  Google Scholar 

  104. Sosinsky, G. E., & Nicholson, B. J. (2005). Structural organization of gap junction channels. Biochimica et Biophysica Acta, 1711(2), 99–125.

    PubMed  CAS  Google Scholar 

  105. Sperger, J. M., Chen, X., et al. (2003). Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proceedings of National Academy of Sciences of the United State of America, 100(23), 13350–13355.

    CAS  Google Scholar 

  106. Stein, L. S., Boonstra, J., et al. (1992). Reduced cell–cell communication between mitotic and nonmitotic coupled cells. Experimental Cell Research, 198(1), 1–7.

    PubMed  CAS  Google Scholar 

  107. Stojkovic, M., Lako, M., et al. (2004). Derivation of human embryonic stem cells from day-8 blastocysts recovered after three-step in vitro culture. Stem Cells, 22(5), 790–797.

    PubMed  Google Scholar 

  108. Strelchenko, N., Verlinsky, O., et al. (2004). Morula-derived human embryonic stem cells. Reproductive Biomedicine Online, 9(6), 623–629.

    Article  PubMed  Google Scholar 

  109. Tai, M. H., Olson, L. K., et al. (2003). Characterization of gap junctional intercellular communication in immortalized human pancreatic ductal epithelial cells with stem cell characteristics. Pancreas, 26(1), e18–e26.

    PubMed  Google Scholar 

  110. Temme, A., Buchmann, A., et al. (1997). High incidence of spontaneous and chemically induced liver tumors in mice deficient for connexin32. Current Biology, 7(9), 713–716.

    PubMed  CAS  Google Scholar 

  111. Thomson, J. A., Itskovitz-Eldor, J., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.

    PubMed  CAS  Google Scholar 

  112. Todorova, M. G., Soria, B., et al. (2008). Gap junctional intercellular communication is required to maintain embryonic stem cells in a non-differentiated and proliferative state. Journal of Cellular Physiology, 214(2), 354–362.

    PubMed  CAS  Google Scholar 

  113. Traver, D. a. & Akashi, K. (2004). Common myeloid progenitors. In Handbook of Stem Cells (M. a. T. 2005), Elsevier 1.

  114. Trosko, J. E. (2003). Human stem cells as targets for the aging and diseases of aging processes. Medical Hypotheses, 60(3), 439–447.

    PubMed  Google Scholar 

  115. Valiunas, V., Bukauskas, F. F., et al. (1997). Conductances and selective permeability of connexin43 gap junction channels examined in neonatal rat heart cells. Circulation Research, 80(5), 708–719.

    PubMed  CAS  Google Scholar 

  116. Valiunas, V., Doronin, S., et al. (2004). Human mesenchymal stem cells make cardiac connexins and form functional gap junctions. Journal of Physiology, 555(Pt 3), 617–626.

    PubMed  CAS  Google Scholar 

  117. Valiunas, V., Polosina, Y. Y., et al. (2005). Connexin-specific cell-to-cell transfer of short interfering RNA by gap junctions. Journal of Physiology, 568(Pt 2), 459–468.

    PubMed  CAS  Google Scholar 

  118. Vance, M. M., & Wiley, L. M. (1999). Gap junction intercellular communication mediates the competitive cell proliferation disadvantage of irradiated mouse preimplantation embryos in aggregation chimeras. Radiation Research, 152(5), 544–551.

    PubMed  CAS  Google Scholar 

  119. Verfaillie, C. M., Pera, M. F., et al. (2002). Stem cells: hype and reality. Hematology (American Society of Hematology. Education Program), 369–391.

  120. Villars, F., Guillotin, B., et al. (2002). Effect of HUVEC on human osteoprogenitor cell differentiation needs heterotypic gap junction communication. American Journal of Physiology. Cell Physiology, 282(4), C775–C785.

    PubMed  CAS  Google Scholar 

  121. Vine, A. L., & Bertram, J. S. (2002). Cancer chemoprevention by connexins. Cancer Metastasis Reviews, 21(3–4), 199–216.

    PubMed  CAS  Google Scholar 

  122. Wei, C. J., Xu, X., et al. (2004). Connexins and cell signaling in development and disease. Annual Review of Cell and Developmental Biology, 20, 811–838.

    PubMed  CAS  Google Scholar 

  123. Weiss, M. L., & Troyer, D. L. (2006). Stem cells in the umbilical cord. Stem Cell Reviews, 2(2), 155–162.

    Article  PubMed  CAS  Google Scholar 

  124. Wen, C. M., Cheng, Y. H., et al. (2008). Isolation and characterization of a neural progenitor cell line from tilapia brain. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 149(2), 167–180.

    Google Scholar 

  125. Willecke, K., Eiberger, J., et al. (2002). Structural and functional diversity of connexin genes in the mouse and human genome. Biological Chemistry, 383(5), 725–737.

    PubMed  CAS  Google Scholar 

  126. Wolvetang, E. J., Pera, M. F., et al. (2007). Gap junction mediated transport of shRNA between human embryonic stem cells. Biochemical and Biophysical Research Communications, 363(3), 610–615.

    PubMed  CAS  Google Scholar 

  127. Wong, R. C., Dottori, M., et al. (2006). Gap junctions modulate apoptosis and colony growth of human embryonic stem cells maintained in a serum-free system. Biochemical and Biophysical Research Communications, 344(1), 181–188.

    PubMed  CAS  Google Scholar 

  128. Wong, R. C., Pebay, A., et al. (2004). Presence of functional gap junctions in human embryonic stem cells. Stem Cells, 22(6), 883–889.

    PubMed  CAS  Google Scholar 

  129. Worsdorfer, P., Maxeiner, S., et al. (2008). Connexin expression and functional analysis of gap junctional communication in mouse embryonic stem cells. Stem Cells, 26(2), 431–439.

    PubMed  Google Scholar 

  130. Yamasaki, H., Krutovskikh, V., et al. (1999). Role of connexin (gap junction) genes in cell growth control and carcinogenesis. Comptes Rendus de l’AcadeÂmie des Sciences III, 322(2–3), 151–159.

    CAS  Google Scholar 

  131. Yang, S. R., Cho, S. D., et al. (2005). Role of gap junctional intercellular communication (GJIC) through p38 and ERK1/2 pathway in the differentiation of rat neuronal stem cells. Journal of Veterinary Medical Science, 67(3), 291–294.

    PubMed  CAS  Google Scholar 

  132. Zhang, B., Pan, X., et al. (2006). MicroRNA: a new player in stem cells. Journal of Cellular Physiology, 209(2), 266–269.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the California Institute of Regenerative Medicine, the University of Melbourne and the National Health and Medical Research Council of Australia (NHMRC 454723).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond C. B. Wong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, R.C.B., Pera, M.F. & Pébay, A. Role of Gap Junctions in Embryonic and Somatic Stem Cells. Stem Cell Rev 4, 283–292 (2008). https://doi.org/10.1007/s12015-008-9038-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-008-9038-9

Keywords

Navigation