Skip to main content
Log in

miR-410 Inhibition Induces RPE Differentiation of Amniotic Epithelial Stem Cells via Overexpression of OTX2 and RPE65

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The retinal pigment epithelium (RPE) is a highly specialized cell type located between the choroid and neural retina of the eye. RPE degeneration causes irreversible visual impairment, extending to blindness. Cell therapy has recently emerged as a potential therapeutic approach for retinal degeneration. MicroRNA-based differentiation of stem cells is a new strategy for producing tissue-specific cell types. In this study, we developed a novel microRNA-based strategy for RPE induction from human amniotic epithelial stem cells (AESCs). We identified microRNAs involved in RPE development in AESCs. Of 29 putative human RPE-relevant microRNAs, microRNA-410 (miR-410) was predicted to target multiple RPE development-relevant genes. Inhibition of miR-410 induces overexpression of immature and mature RPE-specific factors, including OTX2, RPE65, Bestrophin and EMMPRIN. These RPE-like cells were morphologically altered toward a cobblestone-like shape and were able to phagocytize microbeads. We showed that miR-410 directly regulates predicted target genes OTX2 and RPE65. Our microRNA-based strategy demonstrated RPE differentiation in AESCs by treatment of an antisense microRNA-410 (anti-miR-410), without the use of additional factors or exogenous transduction. These findings suggest that miR-410 inhibition can be a useful tool for directed cell differentiation and an attractive method for cell therapy in human retinal degenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Resnikoff, S., Pascolini, D., Etya’ale, D., et al. (2004). Global data on visual impairment in the year 2002. Bulletin of the World Health Organization, 82, 844–51.

    PubMed Central  PubMed  Google Scholar 

  2. Strauss, O. (2005). The retinal pigment epithelium in visual function. Physiological Reviews, 85, 845–81.

    Article  CAS  PubMed  Google Scholar 

  3. Pascolini, D., & Mariotti, S. P. (2012). Global estimates of visual impairment: 2010. The British Journal of Ophthalmology, 96, 614–8.

    Article  PubMed  Google Scholar 

  4. Lavinsky, D., Chalberg, T. W., Mandel, Y., et al. (2013). Modulation of transgene expression in retinal gene therapy by selective laser treatment. Investigative Ophthalmology and Visual Science, 54, 1873–80.

    Article  CAS  PubMed  Google Scholar 

  5. Aoki, H., Hara, A., Nakagawa, S., et al. (2006). Embryonic stem cells that differentiate into RPE cell precursors in vitro develop into RPE cell monolayers in vivo. Experimental Eye Research, 82, 265–74.

    Article  CAS  PubMed  Google Scholar 

  6. Sonoda, S., Spee, C., Barron, E., Ryan, S. J., Kannan, R., & Hinton, D. R. (2009). A protocol for the culture and differentiation of highly polarized human retinal pigment epithelial cells. Nature Protocols, 4, 662–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Osakada, F., Ikeda, H., Sasai, Y., & Takahashi, M. (2009). Stepwise differentiation of pluripotent stem cells into retinal cells. Nature Protocols, 4, 811–24.

    Article  CAS  PubMed  Google Scholar 

  8. Buchholz, D. E., Hikita, S. T., Rowland, T. J., et al. (2009). Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells, 27, 2427–34.

    Article  CAS  PubMed  Google Scholar 

  9. Wolber, W., Ahmad, R., Choi, S. W., et al. (2013). Phenotype and Stability of Neural Differentiation of Androgenetic Murine ES Cell-Derived Neural Progenitor Cells. Cell Medicine, 5, 29–42.

    Article  Google Scholar 

  10. Banas, R. A., Trumpower, C., Bentlejewski, C., Marshall, V., Sing, G., & Zeevi, A. (2008). Immunogenicity and immunomodulatory effects of amnion-derived multipotent progenitor cells. Human Immunology, 69, 321–8.

    Article  CAS  PubMed  Google Scholar 

  11. Muttini, A., Valbonetti, L., Abate, M., et al. (2013). Ovine amniotic epithelial cells: in vitro characterization and transplantation into equine superficial digital flexor tendon spontaneous defects. Research in Veterinary Science, 94, 158–69.

    Article  CAS  PubMed  Google Scholar 

  12. Barboni, B., Russo, V., Curini, V., et al. (2012). Achilles tendon regeneration can be improved by amniotic epithelial cell allotransplantation. Cell Transplantation, 21, 2377–95.

    Article  CAS  PubMed  Google Scholar 

  13. Cargnoni, A., Gibelli, L., Tosini, A., et al. (2009). Transplantation of allogeneic and xenogeneic placenta-derived cells reduces bleomycin-induced lung fibrosis. Cell Transplantation, 18, 405–22.

    Article  PubMed  Google Scholar 

  14. Sakuragawa, N., Yoshikawa, H., & Sasaki, M. (1992). Amniotic tissue transplantation: clinical and biochemical evaluations for some lysosomal storage diseases. Brain and Development, 14, 7–11.

    Article  CAS  PubMed  Google Scholar 

  15. Scaggiante, B., Pineschi, A., Sustersich, M., Andolina, M., Agosti, E., & Romeo, D. (1987). Successful therapy of Niemann-Pick disease by implantation of human amniotic membrane. Transplantation, 44, 59–61.

    Article  CAS  PubMed  Google Scholar 

  16. Bailo, M., Soncini, M., Vertua, E., et al. (2004). Engraftment potential of human amnion and chorion cells derived from term placenta. Transplantation, 78, 1439–48.

    Article  PubMed  Google Scholar 

  17. Miki, T., Lehmann, T., Cai, H., Stolz, D. B., & Strom, S. C. (2005). Stem cell characteristics of amniotic epithelial cells. Stem Cells, 23, 1549–59.

    Article  CAS  PubMed  Google Scholar 

  18. De Coppi, P., Bartsch, G., Jr., Siddiqui, M. M., et al. (2007). Isolation of amniotic stem cell lines with potential for therapy. Nature Biotechnology, 25, 100–6.

    Article  PubMed  Google Scholar 

  19. Niknejad, H., Peirovi, H., Ahmadiani, A., Ghanavi, J., & Jorjani, M. (2010). Differentiation factors that influence neuronal markers expression in vitro from human amniotic epithelial cells. European Cells and Materials, 19, 22–9.

    CAS  PubMed  Google Scholar 

  20. Huang, C., Zhang, J., Ao, M., et al. (2012). Combination of retinal pigment epithelium cell-conditioned medium and photoreceptor outer segments stimulate mesenchymal stem cell differentiation toward a functional retinal pigment epithelium cell phenotype. Journal of Cellular Biochemistry, 113, 590–8.

    Article  CAS  PubMed  Google Scholar 

  21. Vossmerbaeumer, U., Ohnesorge, S., Kuehl, S., et al. (2009). Retinal pigment epithelial phenotype induced in human adipose tissue-derived mesenchymal stromal cells. Cytotherapy, 11, 177–88.

    Article  CAS  PubMed  Google Scholar 

  22. Li, Y., Atmaca-Sonmez, P., Schanie, C. L., Ildstad, S. T., Kaplan, H. J., & Enzmann, V. (2007). Endogenous bone marrow derived cells express retinal pigment epithelium cell markers and migrate to focal areas of RPE damage. Investigative Ophthalmology and Visual Science, 48, 4321–7.

    Article  PubMed  Google Scholar 

  23. Pillai, R. S., Bhattacharyya, S. N., & Filipowicz, W. (2007). Repression of protein synthesis by miRNAs: how many mechanisms? Trends in Cell Biology, 17, 118–26.

    Article  CAS  PubMed  Google Scholar 

  24. Valencia-Sanchez, M. A., Liu, J., Hannon, G. J., & Parker, R. (2006). Control of translation and mRNA degradation by miRNAs and siRNAs. Genes & Development, 20, 515–24.

    Article  CAS  Google Scholar 

  25. Yoo, A. S., Sun, A. X., Li, L., et al. (2011). MicroRNA-mediated conversion of human fibroblasts to neurons. Nature, 476, 228–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Hu, G., Huang, K., Yu, J., et al. (2012). Identification of miRNA signatures during the differentiation of hESCs into retinal pigment epithelial cells. PloS One, 7, e37224.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Sakami, S., Hisatomi, O., Sakakibara, S., Liu, J., Reh, T. A., & Tokunaga, F. (2005). Downregulation of Otx2 in the dedifferentiated RPE cells of regenerating newt retina. Brain Research. Developmental Brain Research, 155, 49–59.

    Article  CAS  PubMed  Google Scholar 

  28. Martinez-Morales, J. R., Dolez, V., Rodrigo, I., et al. (2003). OTX2 activates the molecular network underlying retina pigment epithelium differentiation. The Journal of Biological Chemistry, 278, 21721–31.

    Article  CAS  PubMed  Google Scholar 

  29. Martinez-Morales, J. R., Signore, M., Acampora, D., Simeone, A., & Bovolenta, P. (2001). Otx genes are required for tissue specification in the developing eye. Development, 128, 2019–30.

    CAS  PubMed  Google Scholar 

  30. Moiseyev, G., Chen, Y., Takahashi, Y., Wu, B. X., & Ma, J. X. (2005). RPE65 is the isomerohydrolase in the retinoid visual cycle. Proceedings of the National Academy of Sciences of the United States of America, 102, 12413–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Jin, M., Li, S., Moghrabi, W. N., Sun, H., & Travis, G. H. (2005). Rpe65 is the retinoid isomerase in bovine retinal pigment epithelium. Cell, 122, 449–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Redmond, T. M., Yu, S., Lee, E., et al. (1998). Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nature Genetics, 20, 344–51.

    Article  CAS  PubMed  Google Scholar 

  33. Jin, M., Yuan, Q., Li, S., & Travis, G. H. (2007). Role of LRAT on the retinoid isomerase activity and membrane association of Rpe65. The Journal of Biological Chemistry, 282, 20915–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Roh DH, Seo MS, Choi HS, et al. Transplantation of human umbilical cord blood or amniotic epithelial stem cells alleviates mechanical allodynia after spinal cord injury in rats. Cell transplantation 2013.

  35. Park, S. B., Yu, K. R., Jung, J. W., et al. (2009). bFGF enhances the IGFs-mediated pluripotent and differentiation potentials in multipotent stem cells. Growth Factors, 27, 425–37.

    Article  CAS  PubMed  Google Scholar 

  36. Dunn, K. C., Aotaki-Keen, A. E., Putkey, F. R., & Hjelmeland, L. M. (1996). ARPE-19, a human retinal pigment epithelial cell line with differentiated properties. Experimental Eye Research, 62, 155–69.

    Article  CAS  PubMed  Google Scholar 

  37. Liao, J. L., Yu, J., Huang, K., et al. (2010). Molecular signature of primary retinal pigment epithelium and stem-cell-derived RPE cells. Human Molecular Genetics, 19, 4229–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Mellough, C. B., Sernagor, E., Moreno-Gimeno, I., Steel, D. H., & Lako, M. (2012). Efficient stage-specific differentiation of human pluripotent stem cells toward retinal photoreceptor cells. Stem Cells, 30, 673–86.

    Article  CAS  PubMed  Google Scholar 

  39. Meyer, J. S., Howden, S. E., Wallace, K. A., et al. (2011). Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells, 29, 1206–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Meyer, J. S., Shearer, R. L., Capowski, E. E., et al. (2009). Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 106, 16698–703.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Idelson, M., Alper, R., Obolensky, A., et al. (2009). Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell, 5, 396–408.

    Article  CAS  PubMed  Google Scholar 

  42. Cui, L., Shi, Y., Zhou, X., et al. (2013). A set of microRNAs mediate direct conversion of human umbilical cord lining-derived mesenchymal stem cells into hepatocytes. Cell death and disease, 4, e918.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Cai, B., Li, J., Wang, J., et al. (2012). microRNA-124 regulates cardiomyocyte differentiation of bone marrow-derived mesenchymal stem cells via targeting STAT3 signaling. Stem Cells, 30, 1746–55.

    Article  CAS  PubMed  Google Scholar 

  44. Miyoshi, N., Ishii, H., Nagano, H., et al. (2011). Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell, 8, 633–8.

    Article  CAS  PubMed  Google Scholar 

  45. Li, W. B., Zhang, Y. S., Lu, Z. Y., et al. (2012). Development of retinal pigment epithelium from human parthenogenetic embryonic stem cells and microRNA signature. Investigative Ophthalmology and Visual Science, 53, 5334–43.

    Article  CAS  PubMed  Google Scholar 

  46. Conte, I., Carrella, S., Avellino, R., et al. (2010). miR-204 is required for lens and retinal development via Meis2 targeting. Proceedings of the National Academy of Sciences of the United States of America, 107, 15491.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Walker, J. C., & Harland, R. M. (2009). microRNA-24a is required to repress apoptosis in the developing neural retina. Genes and Development, 23, 1046–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Qiu, R., Liu, K., Liu, Y., et al. (2009). The role of miR-124a in early development of the Xenopus eye. Mechanisms of Development, 126, 804–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Nguyen, M., & Arnheiter, H. (2000). Signaling and transcriptional regulation in early mammalian eye development: a link between FGF and MITF. Development, 127, 3581–91.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the MOTIE (The Ministry of Trade, Industry and Energy), Korea, under the Global collaborative R&D program (No. M0000049) supervised by the KIAT (Korea Institute for Advancement of Technology), and partially supported by the Research Institute for Veterinary Science, Seoul National University (SNU, Republic of Korea).

Conflict of Interest

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Sun Kang.

Additional information

Soon Won Choi and Jae-Jun Kim These authors contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 1

(XLSX 83 kb)

Table 2

(XLSX 75 kb)

Table 3

(XLSX 8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, S.W., Kim, JJ., Seo, MS. et al. miR-410 Inhibition Induces RPE Differentiation of Amniotic Epithelial Stem Cells via Overexpression of OTX2 and RPE65. Stem Cell Rev and Rep 11, 376–386 (2015). https://doi.org/10.1007/s12015-014-9568-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-014-9568-2

Keywords

Navigation