Skip to main content

Advertisement

Log in

Modulation of Mesenchymal Stem Cells-Mediated Adaptive Immune Effectors’ Repertoire in the Recovery of Systemic Lupus Erythematosus

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The breakdown of self-tolerance of the immune response can lead to autoimmune conditions in which chronic inflammation induces tissue damage. Systemic lupus erythematosus (SLE) is a debilitating multisystemic autoimmune disorder with a high prevalence in women of childbearing age; however, SLE incidence, prevalence, and severity are strongly influenced by ethnicity. Although the mystery of autoimmune diseases remains unsolved, disturbance in the proportion and function of B cell subsets has a major role in SLE’s pathogenesis. Additionally, colocalizing hyperactive T helper cell subgroups within inflammatory niches are indispensable. Despite significant advances in standard treatments, nonspecific immunosuppression, the risk of serious infections, and resistance to conventional therapies in some cases have raised the urgent need for new treatment strategies. Without the need to suppress the immune system, mesenchymal stem cells (MSCs), as ‘‘smart” immune modulators, are able to control cellular and humoral auto-aggression responses by participating in precursor cell development. In lupus, due to autologous MSCs disorder, the ability of allogenic engrafted MSCs in tissue regeneration and resetting immune homeostasis with the provision of a new immunocyte repertoire has been considered simultaneously.

Graphical Abstract

In Brief

The bone marrow mesenchymal stem cells (BM-MSCs) lineage plays a critical role in maintaining the hematopoietic stem-cell microstructure and modulating immunocytes.

The impairment of BM-MSCs and their niche partially contribute to the pathogenesis of SLE-like diseases.

Allogenic MSC transplantation can reconstruct BM microstructure, possibly contributing to the recovery of immunocyte phenotype restoration of immune homeostasis.

In terms of future prospects of MSCs, artificially gained by ex vivo isolation and culture adaptation, the wide variety of potential mediators and mechanisms might be linked to the promotion of the immunomodulatory function of MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

There is no data to share because the article is a review.

Abbreviations

Anti-dsDNA :

Anti-double stranded DNA

BAFF :

B activating-cell factor

Bcl-6 :

B-cell leukemia/lymphoma 6

BM :

Bone marrow

Breg :

Regulatory B cell

CCL2 :

C-C motif chemokine ligand 2

CCL18 :

C-C motif chemokine ligand 18

CCR6:

Chemokine receptor 6

CFU-Fs :

Fibroblast colony-forming units

CCR2 :

C-C chemokine receptor type 2

CXCR5 :

Chemokine Receptor 5

CXCR4 :

Chemokine Receptor 4

DC :

Dendritic Cell

FAS/FASL :

Fas and Fas ligand

GCs :

Germinal centers

HGF :

Hepatocyte growth factor

HLA :

Human leukocyte antigen

HLA-G5 :

Human leukocyte antigen-G5

ICAM-1 :

Intercellular adhesion molecule 1

ICOS :

Inducible T cell co-stimulator

IDO :

Indolamine 2, 3-dioxigenase

IFN-γ :

Interferon-gamma

IL :

Interleukin

M2 :

Alternative macrophage

MCP-1 :

Monocyte Chemotactic Protein-1

MHC :

Major histocompatibility complex

MSC :

Mesenchymal stem/stromal cell

MV :

Membrane vesicle

NO :

Nitric oxide

NF-κB :

Nuclear factor kappa-light-chain-enhancer of activated B cells

PCs :

Plasma cells

PGE2 :

Prostaglandin E2

SLE :

Systemic lupus erythematosus

STAT3 :

Signal transducer and activator of transcription 3

Tfh :

T follicular helper

Tfr :

T follicular regulatory

TGF-β :

Transforming growth factor-beta

Th :

T helper cells

TNF-α :

Tumor necrosis alpha-factor

TRAF6/NF-κB :

TNF Receptor-associated factor 6

Tr1 :

Type 1 regulatory T cells

Treg :

T regulatory cell

TSG-6 :

Tumour necrosis factor-Stimulated gene 6

UV :

Ultraviolet

UC :

Umbilical cord

VCAM-1 :

Vascular cell adhesion molecule 1

References

  1. Kapsogeorgou, E. K., & Tzioufas, A. G. (2016). Autoantibodies in autoimmune diseases: Clinical and critical evaluation. The Israel Medical Association Journal: IMAJ, 18(9), 519–524.

    Google Scholar 

  2. Rezaieyazdi, Z., et al. (2021). Outcomes of planned pregnancy in patients with systemic lupus erythematosus and their neonates. The Egyptian Rheumatologist, 43(2), 141–145.

    Article  Google Scholar 

  3. Wang, L., Wang, F. S., & Gershwin, M. E. (2015). Human autoimmune diseases: A comprehensive update. Journal of internal medicine, 278(4), 369–395.

    Article  CAS  Google Scholar 

  4. Ray, S., et al. (2012). Autoimmune disorders: An overview of molecular and cellular basis in today’s perspective. Journal of Clinical & Cellular Immunology, 10(003), 2215–2230.

    Google Scholar 

  5. Stojan, G., & Petri, M. (2018). Epidemiology of systemic lupus erythematosus: An update. Current opinion in rheumatology, 30(2), 144.

    Article  Google Scholar 

  6. Rees, F., et al. (2017). The worldwide incidence and prevalence of systemic lupus erythematosus: A systematic review of epidemiological studies. Rheumatology, 56(11), 1945–1961.

    Article  Google Scholar 

  7. Fava, A., & Petri, M. (2019). Systemic lupus erythematosus: Diagnosis and clinical management. Journal of autoimmunity, 96, 1–13.

    Article  Google Scholar 

  8. Rezaieyazdi, Z., et al. (2018). No association between the risk of breast cancer and systemic lupus erythematosus: Evidence from a meta-analysis. Clinical rheumatology, 37(6), 1511–1519.

    Article  Google Scholar 

  9. Barturen, G., & Alarcón-Riquelme, M. E. (2017). SLE redefined on the basis of molecular pathways. Best Practice & Research Clinical Rheumatology, 31(3), 291–305.

    Article  Google Scholar 

  10. Toro-Domínguez, D., et al. (2018). Longitudinal stratification of gene expression reveals three SLE groups of disease activity progression. Arthritis & rheumatology (Hoboken, NJ), 70(12), 2025.

    Article  Google Scholar 

  11. Zhan, Y., Guo, Y., & Lu, Q. (2016). Aberrant epigenetic regulation in the pathogenesis of systemic lupus erythematosus and its implication in precision medicine. Cytogenetic and genome research, 149(3), 141–155.

    Article  Google Scholar 

  12. Katayama, S., et al. (2019). Delineating the healthy human skin UV response and early induction of interferon pathway in cutaneous lupus erythematosus. Journal of Investigative Dermatology.

  13. Magro, R., et al. (2021). Vitamin D supplementation in systemic lupus erythematosus: Relationship to disease activity, fatigue and the interferon signature gene expression. BMC rheumatology, 5(1), 1–8.

    Article  Google Scholar 

  14. Islam, M. A., et al. (2019). Vitamin D status in patients with systemic lupus erythematosus (SLE): A systematic review and meta-analysis. Autoimmunity reviews, 18(11), 102392.

    Article  CAS  Google Scholar 

  15. Li, Y., & Wu, T. (2018). Proteomic approaches for novel systemic lupus erythematosus (SLE) drug discovery. Expert Opinion on Drug Discovery, 13(8), 765–777.

    Article  CAS  Google Scholar 

  16. Choo, H.M.C., et al. (2019). Risk factors for cytomegalovirus disease in systemic lupus erythematosus (SLE): a systematic review. Advances in Rheumatology, 59.

  17. Zen, M., et al. (2010). Hormones, immune response, and pregnancy in healthy women and SLE patients. Swiss Medical Weekly, 140(1314).

  18. Hornsby, H. (1993). Psychological adjustment and systemic lupus erythematosus: a comparative study. University of Tasmania.

    Google Scholar 

  19. Taheri, M., et al. (2020). Exploring the role of non-coding RNAs in the pathophysiology of systemic lupus erythematosus. Biomolecules, 10(6), 937.

    Article  CAS  Google Scholar 

  20. Geng, L., et al. (2020). Reduced let-7f in bone marrow-derived mesenchymal stem cells triggers Treg/Th17 imbalance in patients with systemic lupus erythematosus. Frontiers in immunology, 11, 233.

    Article  CAS  Google Scholar 

  21. Geng, L., et al. (2019). MicroRNA-663 induces immune dysregulation by inhibiting TGF-β1 production in bone marrow-derived mesenchymal stem cells in patients with systemic lupus erythematosus. Cellular & molecular immunology, 16(3), 260–274.

    Article  CAS  Google Scholar 

  22. Tan, W., et al. (2019). Let-7f-5p ameliorates inflammation by targeting NLRP3 in bone marrow-derived mesenchymal stem cells in patients with systemic lupus erythematosus. Biomedicine & Pharmacotherapy, 118, 109313.

    Article  CAS  Google Scholar 

  23. Dong, C., et al. (2019). Circulating exosomes derived-miR-146a from systemic lupus erythematosus patients regulates senescence of mesenchymal stem cells. BioMed research international, 2019.

  24. Li, D., et al. (2020). MiR-153-3p induces immune dysregulation by inhibiting PELI1 expression in umbilical cord-derived mesenchymal stem cells in patients with systemic lupus erythematosus. Autoimmunity, 53(4), 201–209.

    Article  CAS  Google Scholar 

  25. Moulton, V. R., et al. (2017). Pathogenesis of human systemic lupus erythematosus: A cellular perspective. Trends in molecular medicine, 23(7), 615–635.

    Article  CAS  Google Scholar 

  26. Murphy, G., & Isenberg, D. A. (2019). New therapies for systemic lupus erythematosus—past imperfect, future tense. Nature Reviews Rheumatology, 15(7), 403–412.

    Article  Google Scholar 

  27. Tsokos, G. C. (2020). Autoimmunity and organ damage in systemic lupus erythematosus. Nature immunology, 21(6), 605–614.

    Article  CAS  Google Scholar 

  28. Kustiyah, A. R., et al. (2021). The normal ratio of Th17 and Th1 post-mesenchymal stem cells coculture with PBMCs of systemic lupus erythematosus patients. Open Access Macedonian Journal of Medical Sciences, 9(A), 169–176.

    Article  Google Scholar 

  29. Cheng, R.-J., et al. (2019). Mesenchymal stem cells: allogeneic MSC may be immunosuppressive but autologous MSC are dysfunctional in lupus patients. Frontiers in cell and developmental biology, 285.

  30. Marion, T. N., Postlethwaite, A. E. (2014). Chance, genetics, and the heterogeneity of disease and pathogenesis in systemic lupus erythematosus. In Seminars in immunopathology. Springer.

  31. Anders, H.-J., et al. (2020). Lupus nephritis. Nature reviews Disease primers, 6(1), 1–25.

    Article  Google Scholar 

  32. Tjwa, M., et al. (2003). VEGF and PlGF: Two pleiotropic growth factors with distinct roles in development and homeostasis. Cell and tissue research, 314(1), 5–14.

    Article  CAS  Google Scholar 

  33. Friedenstein, A., Chailakhjan, R., & Lalykina, K. (1970). The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Proliferation, 3(4), 393–403.

    Article  CAS  Google Scholar 

  34. Caplan, A. I. (2017). Mesenchymal stem cells: Time to change the name! Stem cells translational medicine, 6(6), 1445–1451.

    Article  Google Scholar 

  35. Meirelles, Ld. S., Chagastelles, P. C., & Nardi, N. B. (2006). Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of cell science, 119(11), 2204–2213.

    Article  CAS  Google Scholar 

  36. Kassem, M., Kristiansen, M., & Abdallah, B. M. (2004). Mesenchymal stem cells: Cell biology and potential use in therapy. Basic & clinical pharmacology & toxicology, 95(5), 209–214.

    Article  CAS  Google Scholar 

  37. Christodoulou, I., et al. (2018). Mesenchymal stem cells in preclinical cancer cytotherapy: A systematic review. Stem Cell Research & Therapy, 9(1), 1–38.

    Article  Google Scholar 

  38. Takayama, Y., Kusamori, K., & Nishikawa, M. (2021). Mesenchymal stem/stromal cells as next-generation drug delivery vehicles for cancer therapeutics. Expert opinion on drug delivery, 18(11), 1627–1642.

    Article  CAS  Google Scholar 

  39. Pittenger, M. F., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.

    Article  CAS  Google Scholar 

  40. Formigli, L., et al. (2012). Dermal matrix scaffold engineered with adult mesenchymal stem cells and platelet-rich plasma as a potential tool for tissue repair and regeneration. Journal of tissue engineering and regenerative medicine, 6(2), 125–134.

    Article  CAS  Google Scholar 

  41. De Pieri, A., Rochev, Y., & Zeugolis, D. I. (2021). Scaffold-free cell-based tissue engineering therapies: Advances, shortfalls and forecast. NPJ Regenerative Medicine, 6(1), 1–15.

    Article  Google Scholar 

  42. Salem, H. K., & Thiemermann, C. (2010). Mesenchymal stromal cells: Current understanding and clinical status. Stem cells, 28(3), 585–596.

    Article  CAS  Google Scholar 

  43. Stagg, J. (2007). Immune regulation by mesenchymal stem cells: Two sides to the coin. Tissue Antigens, 69(1), 1–9.

    Article  CAS  Google Scholar 

  44. Wahl, E. A., et al. (2015). In vitro evaluation of scaffolds for the delivery of mesenchymal stem cells to wounds. BioMed Research International, 2015.

  45. Wang, L., et al. (2013). Human umbilical cord mesenchymal stem cell therapy for patients with active rheumatoid arthritis: Safety and efficacy. Stem cells and development, 22(24), 3192–3202.

    Article  CAS  Google Scholar 

  46. Kolf, C. M., Cho, E., & Tuan, R. S. (2007). Mesenchymal stromal cells: Biology of adult mesenchymal stem cells: Regulation of niche, self-renewal and differentiation. Arthritis research & therapy, 9(1), 1–10.

    Article  Google Scholar 

  47. Yousefi, F., et al. (2019). Novel approaches using mesenchymal stem cells for curing peripheral nerve injuries. Life sciences, 221, 99–108.

    Article  CAS  Google Scholar 

  48. Yousefi, F., et al. (2019). Immunoregulatory, proliferative and anti-oxidant effects of nanocurcuminoids on adipose-derived mesenchymal stem cells. EXCLI journal, 18, 405.

    Google Scholar 

  49. Yousefi, F., et al. (2019). Various strategies to improve efficacy of stem cell transplantation in multiple sclerosis: Focus on mesenchymal stem cells and neuroprotection. Journal of Neuroimmunology, 328, 20–34.

    Article  CAS  Google Scholar 

  50. Shamili, F. H., et al. (2018). Exosomes derived from TRAIL-engineered mesenchymal stem cells with effective anti-tumor activity in a mouse melanoma model. International Journal of Pharmaceutics, 549(1–2), 218–229.

    Article  CAS  Google Scholar 

  51. Zhu, Y., & Feng, X. (2018). Genetic contribution to mesenchymal stem cell dysfunction in systemic lupus erythematosus. Stem Cell Research & Therapy, 9(1), 1–6.

    Article  Google Scholar 

  52. Lim, J. E., & Son, Y. (2017). Endogenous stem cells in homeostasis and aging. Tissue Engineering and Regenerative Medicine, 14(6), 679–698.

    Article  CAS  Google Scholar 

  53. Bloor, A. J., et al. (2020). Production, safety and efficacy of iPSC-derived mesenchymal stromal cells in acute steroid-resistant graft versus host disease: A phase I, multicenter, open-label, dose-escalation study. Nature Medicine, 26(11), 1720–1725.

    Article  CAS  Google Scholar 

  54. Kuçi, Z., et al. (2016). Mesenchymal stromal cells from pooled mononuclear cells of multiple bone marrow donors as rescue therapy in pediatric severe steroid-refractory graft-versus-host disease: A multicenter survey. Haematologica, 101(8), 985.

    Article  Google Scholar 

  55. Jahanian, M., et al. (2021). Evaluation of Acellular Dermal Matrix (ADM) as a scaffold for adipose-derived stem cell transfer in the rat model. World Journal of Plastic Surgery, 10(2), 67.

    Article  Google Scholar 

  56. Douek, D. C., et al. (2000). Assessment of thymic output in adults after haematopoietic stemcell transplantation and prediction of T-cell reconstitution. The Lancet, 355(9218), 1875–1881.

    Article  CAS  Google Scholar 

  57. Luque-Campos, N., et al. (2019). Mesenchymal Stem Cells Improve Rheumatoid Arthritis Progression by Controlling Memory T Cell Response. Frontiers in Immunology, 10.

  58. Le Blanc, K., et al. (2004). Mesenchymal stem cells inhibit the expression of CD25 (interleukin-2 receptor) and CD38 on phytohaemagglutinin-activated lymphocytes. Scandinavian Journal of Immunology, 60(3), 307–315.

    Article  Google Scholar 

  59. Guan, J., et al. (2015). Mesenchymal stem cell modulates T follicular helper cell to induce immunotolerance of Islet Allograft. Transplantation Proceedings, 47(6), 2050–2056.

    Article  CAS  Google Scholar 

  60. Kim, Y. U., et al. (2015). Regulation of autoimmune germinal center reactions in lupus-prone BXD2 mice by follicular helper T cells. PLoS ONE, 10(3), e0120294.

    Article  Google Scholar 

  61. Lu, X., et al. (2019). The effects of human umbilical cord-derived mesenchymal stem cell transplantation on endometrial receptivity are associated with Th1/Th2 balance change and uNK cell expression of uterine in autoimmune premature ovarian failure mice. Stem cell research & therapy, 10(1), 1–11.

    Article  Google Scholar 

  62. Choi, E. W., et al. (2011). Transplantation of CTLA4Ig gene-transduced adipose tissue-derived mesenchymal stem cells reduces inflammatory immune response and improves Th1/Th2 balance in experimental autoimmune thyroiditis. The journal of gene medicine, 13(1), 3–16.

    Article  CAS  Google Scholar 

  63. Collins, E., & Gilkeson, G. (2013). Hematopoetic and mesenchymal stem cell transplantation in the treatment of refractory systemic lupus erythematosus—Where are we now? Clinical immunology, 148(3), 328–334.

    Article  CAS  Google Scholar 

  64. Chang, J.-W., et al. (2011). Therapeutic effects of umbilical cord blood-derived mesenchymal stem cell transplantation in experimental lupus nephritis. Cell transplantation, 20(2), 245–258.

    Article  Google Scholar 

  65. Anolik, J. H., et al. (2007). Delayed memory B cell recovery in peripheral blood and lymphoid tissue in systemic lupus erythematosus after B cell depletion therapy. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology, 56(9), 3044–3056.

    Article  CAS  Google Scholar 

  66. Ma, X., et al. (2013). Allogenic mesenchymal stem cell transplantation ameliorates nephritis in lupus mice via inhibition of B-cell activation. Cell transplantation, 22(12), 2279–2290.

    Article  Google Scholar 

  67. Xiao, Y., et al. (2013). Efficacy and safety of mesenchymal stromal cell treatment from related donors for patients with refractory aplastic anemia. Cytotherapy, 15(7), 760–766.

    Article  CAS  Google Scholar 

  68. Lohan, P., et al. (2018). Third-party allogeneic mesenchymal stromal cells prevent rejection in a pre-sensitized high-risk model of corneal transplantation. Frontiers in immunology, 9, 2666.

    Article  Google Scholar 

  69. Yang, J., et al. (2009). Th17 and natural Treg cell population dynamics in systemic lupus erythematosus. Arthritis & Rheumatism, 60(5), 1472–1483.

    Article  Google Scholar 

  70. Li, X., et al. (2013). Mesenchymal SCT ameliorates refractory cytopenia in patients with systemic lupus erythematosus. Bone marrow transplantation, 48(4), 544–550.

    Article  CAS  Google Scholar 

  71. Yousefi, F., et al. (2021). Comparative assessment of immunomodulatory, proliferative, and antioxidant activities of crocin and crocetin on mesenchymal stem cells. Journal of Cellular Biochemistry, 122(1), 29–42.

    Article  CAS  Google Scholar 

  72. Wang, M., et al. (2016). Intraperitoneal injection (IP), Intravenous injection (IV) or anal injection (AI)? Best way for mesenchymal stem cells transplantation for colitis. Scientific reports, 6(1), 1–13.

    Google Scholar 

  73. Young, S. A., et al. (2018). Mechanically resilient injectable scaffolds for intramuscular stem cell delivery and cytokine release. Biomaterials, 159, 146–160.

    Article  CAS  Google Scholar 

  74. Braid, L. R., et al. (2018). Intramuscular administration potentiates extended dwell time of mesenchymal stromal cells compared to other routes. Cytotherapy, 20(2), 232–244.

    Article  Google Scholar 

  75. Jo, H., et al. (2021). Applications of mesenchymal stem cells in skin regeneration and rejuvenation. International Journal of Molecular Sciences, 22(5), 2410.

    Article  CAS  Google Scholar 

  76. Sun, L., et al. (2010). Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis & Rheumatism, 62(8), 2467–2475.

    Article  CAS  Google Scholar 

  77. Liang, J., et al. (2010). Allogenic mesenchymal stem cells transplantation in refractory systemic lupus erythematosus: A pilot clinical study. Annals of the rheumatic diseases, 69(8), 1423–1429.

    Article  Google Scholar 

  78. Zonari, A., et al. (2015). Polyhydroxybutyrate-co-hydroxyvalerate structures loaded with adipose stem cells promote skin healing with reduced scarring. Acta Biomaterialia, 17, 170–181.

    Article  CAS  Google Scholar 

  79. Ra, J. C., et al. (2011). Stem cell treatment for patients with autoimmune disease by systemic infusion of culture-expanded autologous adipose tissue derived mesenchymal stem cells. Journal of translational medicine, 9(1), 1–11.

    Article  Google Scholar 

  80. Choi, E. W., et al. (2016). Mesenchymal stem cell transplantation can restore lupus disease-associated miRNA expression and Th1/Th2 ratios in a murine model of SLE. Science and Reports, 6, 38237.

    Article  CAS  Google Scholar 

  81. Di Nicola, M., et al. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99(10), 3838–3843.

    Article  Google Scholar 

  82. Li, Y., et al. (2000). Evidence for migration of donor bone marrow stromal cells into recipient thymus after bone marrow transplantation plus bone grafts: A role of stromal cells in positive selection. Experimental Hematology, 28(8), 950–960.

    Article  CAS  Google Scholar 

  83. Zhou, Y., et al. (2019). The immunomodulatory functions of mesenchymal stromal/stem cells mediated via paracrine activity. Journal of Clinical Medicine, 8(7).

  84. Chen, X., Armstrong, M. A., & Li, G. (2006). Mesenchymal stem cells in immunoregulation. Immunology and Cell Biology, 84(5), 413–421.

    Article  CAS  Google Scholar 

  85. Wang, L., Zhao, Y., & Shi, S. (2012). Interplay between mesenchymal stem cells and lymphocytes: Implications for immunotherapy and tissue regeneration. Journal of Dental Research, 91(11), 1003–1010.

    Article  CAS  Google Scholar 

  86. Duffy, M. M., et al. (2011). Mesenchymal stem cell effects on T-cell effector pathways. Stem Cell Research & Therapy, 2(4), 34.

    Article  CAS  Google Scholar 

  87. Krampera, M., et al. (2003). Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood, 101(9), 3722–3729.

    Article  CAS  Google Scholar 

  88. Barda-Saad, M., et al. (1997). Adhesion of thymocytes to bone marrow stromal cells: Regulation by bFGF and IFN-γ. Stem Cells, 15(3), 229–236.

    Article  CAS  Google Scholar 

  89. Azghadi, S. M. R., et al. (2016). Mesenchymal stromal cells support the viability and differentiation of thymocytes through direct contact in autologous co-cultures. Histochemistry and cell biology, 146(2), 153–165.

    Article  CAS  Google Scholar 

  90. Small, T., et al. (1999). Comparison of immune reconstitution after unrelated and related T-cell–depleted bone marrow transplantation: Effect of patient age and donor leukocyte infusions. Blood, The Journal of the American Society of Hematology, 93(2), 467–480.

    CAS  Google Scholar 

  91. Hakim, F. T., et al. (1997). Constraints on CD4 recovery postchemotherapy in adults: Thymic insufficiency and apoptotic decline of expanded peripheral CD4 cells. Blood, The Journal of the American Society of Hematology, 90(9), 3789–3798.

    CAS  Google Scholar 

  92. Ren, G., et al. (2008). Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell, 2(2), 141–150.

    Article  CAS  Google Scholar 

  93. Majumdar, M. K., et al. (2003). Characterization and functionality of cell surface molecules on human mesenchymal stem cells. Journal of Biomedical Science, 10(2), 228–241.

    Article  CAS  Google Scholar 

  94. Le Blanc, K., et al. (2003). Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scandinavian journal of immunology, 57(1), 11–20.

    Article  Google Scholar 

  95. Glennie, S., et al. (2005). Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood, 105(7), 2821–2827.

    Article  CAS  Google Scholar 

  96. Uccelli, A., Moretta, L., & Pistoia, V. (2006). Immunoregulatory function of mesenchymal stem cells. European journal of immunology, 36(10), 2566–2573.

    Article  CAS  Google Scholar 

  97. Li, X., et al. (2016) .Umbilical cord tissue-derived mesenchymal stem cells induce T lymphocyte apoptosis and cell cycle arrest by expression of indoleamine 2, 3-dioxygenase. Stem cells international, 2016.

  98. Benvenuto, F., et al. (2007). Human mesenchymal stem cells promote survival of T cells in a quiescent state. Stem cells, 25(7), 1753–1760.

    Article  CAS  Google Scholar 

  99. Yamaza, T., et al. (2008). Pharmacologic stem cell based intervention as a new approach to osteoporosis treatment in rodents. PLoS ONE, 3(7), e2615.

    Article  Google Scholar 

  100. Akiyama, K., et al. (2012). Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis. Cell Stem Cell, 10(5), 544–555.

    Article  CAS  Google Scholar 

  101. Ji, S., et al. (2012). Mesenchymal stem cell transplantation inhibits abnormal activation of Akt/GSK3β signaling pathway in T cells from systemic lupus erythematosus mice. Cellular Physiology and Biochemistry, 29(5–6), 705–712.

    Article  CAS  Google Scholar 

  102. Selmani, Z., et al. (2008). Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+ CD25highFOXP3+ regulatory T cells. Stem cells, 26(1), 212–222.

    Article  CAS  Google Scholar 

  103. Quaedackers, M. E., et al. (2009). Cell contact interaction between adipose-derived stromal cells and allo-activated T lymphocytes. European Journal of Immunology, 39(12), 3436–3446.

    Article  CAS  Google Scholar 

  104. Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105(4), 1815–1822.

    Article  CAS  Google Scholar 

  105. Shi, Y., et al. (2012). How mesenchymal stem cells interact with tissue immune responses. Trends in immunology, 33(3), 136–143.

    Article  CAS  Google Scholar 

  106. Rasmusson, I., et al. (2003). Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation, 76(8), 1208–1213.

    Article  Google Scholar 

  107. Hof-Nahor, I., et al. (2012). Human mesenchymal stem cells shift CD8+ T cells towards a suppressive phenotype by inducing tolerogenic monocytes. Journal of Cell Science, 125(19), 4640–4650.

    CAS  Google Scholar 

  108. Weng, N.-P., Araki, Y., & Subedi, K. (2012). The molecular basis of the memory T cell response: Differential gene expression and its epigenetic regulation. Nature Reviews Immunology, 12(4), 306–315.

    Article  CAS  Google Scholar 

  109. Luque-Campos, N., et al. (2019). Mesenchymal stem cells improve rheumatoid arthritis progression by controlling memory T cell response. Frontiers in immunology, 10, 798.

    Article  CAS  Google Scholar 

  110. Pianta, S., et al. (2015). Amniotic membrane mesenchymal cells-derived factors skew T cell polarization toward Treg and downregulate Th1 and Th17 cells subsets. Stem Cell Reviews and Reports, 11(3), 394–407.

    Article  CAS  Google Scholar 

  111. Haddad, R., & Saldanha-Araujo, F. (2014). Mechanisms of T-cell immunosuppression by mesenchymal stromal cells: What do we know so far? BioMed Research International, 2014, 216806.

    Article  Google Scholar 

  112. Augello, A., et al. (2005). Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. European Journal of Immunology, 35(5), 1482–1490.

    Article  CAS  Google Scholar 

  113. Yi, T., & Song, S. U. (2012). Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications. Archives of Pharmacal Research, 35(2), 213–221.

    Article  CAS  Google Scholar 

  114. Sharabi, A., et al. (2018). Regulatory T cells in the treatment of disease. Nature Reviews Drug Discovery, 17(11), 823–844.

    Article  CAS  Google Scholar 

  115. Chen, W., et al. (2003). Conversion of peripheral CD4+ CD25− naive T cells to CD4+ CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. The Journal of experimental medicine, 198(12), 1875–1886.

    Article  CAS  Google Scholar 

  116. Romano, M., et al. (2019). Past, present, and future of regulatory T cell therapy in transplantation and autoimmunity. Frontiers in immunology, 10, 43.

    Article  CAS  Google Scholar 

  117. Prevosto, C., et al. (2007). Generation of CD4+ or CD8+ regulatory T cells upon mesenchymal stem cell-lymphocyte interaction. Haematologica, 92(7), 881–888.

    Article  CAS  Google Scholar 

  118. Gu, Z., et al. (2010). Transplantation of umbilical cord mesenchymal stem cells alleviates lupus nephritis in MRL/lpr mice. Lupus, 19(13), 1502–1514.

    Article  CAS  Google Scholar 

  119. Choi, E. W., et al. (2012). Reversal of serologic, immunologic, and histologic dysfunction in mice with systemic lupus erythematosus by long-term serial adipose tissue–derived mesenchymal stem cell transplantation. Arthritis & Rheumatism, 64(1), 243–253.

    Article  CAS  Google Scholar 

  120. Shi, M., Liu, Z. W., & Wang, F. S. (2011). Immunomodulatory properties and therapeutic application of mesenchymal stem cells. Clinical and experimental immunology, 164(1), 1–8.

    Article  CAS  Google Scholar 

  121. Nam, Y., et al. (2018). Intraperitoneal infusion of mesenchymal stem cell attenuates severity of collagen antibody induced arthritis. PLoS ONE, 13(6), e0198740.

    Article  Google Scholar 

  122. Roux, C., et al. (2018). Immunosuppressive mesenchymal stromal cells derived from human-induced pluripotent stem cells induce human regulatory T cells in vitro and in vivo. Frontiers in immunology, 8, 1991.

    Article  Google Scholar 

  123. Hong, J. W., et al. (2017). Immune tolerance of human dental pulp-derived mesenchymal stem cells mediated by CD4+ CD25+ FoxP3+ regulatory T-cells and induced by TGF-β1 and IL-10. Yonsei Medical Journal, 58(5), 1031.

    Article  CAS  Google Scholar 

  124. Svobodova, E., et al. (2012). The role of mouse mesenchymal stem cells in differentiation of naive T-cells into anti-inflammatory regulatory T-cell or proinflammatory helper T-cell 17 population. Stem cells and development, 21(6), 901–910.

    Article  CAS  Google Scholar 

  125. He, J.-G., et al. (2020). Indoleamine 2, 3-dioxgenase-transfected mesenchymal stem cells suppress heart allograft rejection by increasing the production and activity of dendritic cells and regulatory T cells. Journal of Investigative Medicine, 68(3), 728–737.

    Article  Google Scholar 

  126. Mougiakakos, D., et al. (2011). The impact of inflammatory licensing on heme oxygenase-1–mediated induction of regulatory T cells by human mesenchymal stem cells. Blood, 117(18), 4826–4835.

    Article  CAS  Google Scholar 

  127. Chen, C., et al. (2017). Mesenchymal stem cells upregulate Treg cells via sHLA-G in SLE patients. International immunopharmacology, 44, 234–241.

    Article  CAS  Google Scholar 

  128. Negi, N., & Griffin, M. D. (2020). Effects of mesenchymal stromal cells on regulatory T cells: Current understanding and clinical relevance. Stem Cells, 38(5), 596–605.

    Article  Google Scholar 

  129. Duffy, M. M., et al. (2011). Mesenchymal stem cell effects on T-cell effector pathways. Stem cell research & therapy, 2(4), 1–9.

    Article  Google Scholar 

  130. Wang, S., Qu, X., & Zhao, R. C. (2012). Clinical applications of mesenchymal stem cells. Journal of hematology & oncology, 5(1), 1–9.

    Article  CAS  Google Scholar 

  131. Yang, H.-Y., et al. (2020). Combination product of dermal matrix, human mesenchymal stem cells, and timolol promotes diabetic wound healing in mice. Stem cells translational medicine, 9(11), 1353–1364.

    Article  CAS  Google Scholar 

  132. Qiu, X., et al. (2018). Mesenchymal stem cells and extracellular matrix scaffold promote muscle regeneration by synergistically regulating macrophage polarization toward the M2 phenotype. Stem Cell Research & Therapy, 9(1), 1–15.

    Article  Google Scholar 

  133. Del Papa, B., et al. (2013). Notch1 modulates mesenchymal stem cells mediated regulatory T- cell induction. European Journal of Immunology, 43(1), 182–187.

    Article  Google Scholar 

  134. Cahill, E. F., et al. (2015). Jagged-1 is required for the expansion of CD4+ CD25+ FoxP3+ regulatory T- cells and tolerogenic dendritic cells by murine mesenchymal stromal cells. Stem Cell Research & Therapy, 6(1), 1–13.

    Article  CAS  Google Scholar 

  135. Rashedi, I., et al. (2017). TLR3 or TLR4 activation enhances mesenchymal stromal cell-mediated Treg induction via notch signaling. Stem Cells, 35(1), 265–275.

    Article  CAS  Google Scholar 

  136. Mota, C., et al. (2014). Delta-like 1–mediated Notch signaling enhances the in vitro conversion of human memory CD4 T cells into FOXP3-expressing regulatory T cells. The Journal of Immunology, 193(12), 5854–5862.

    Article  CAS  Google Scholar 

  137. Gu, F., et al. (2014). Allogeneic mesenchymal stem cell transplantation for lupus nephritis patients refractory to conventional therapy. Clinical Rheumatology, 33(11), 1611–1619.

    Article  Google Scholar 

  138. Pers, Y.-M., et al. (2018). Injection of adipose-derived stromal cells in the knee of patients with severe osteoarthritis has a systemic effect and promotes an anti-inflammatory phenotype of circulating immune cells. Theranostics, 8(20), 5519.

    Article  CAS  Google Scholar 

  139. Martin, J. C., Baeten, D. L., & Josien, R. (2014). Emerging role of IL-17 and Th17 cells in systemic lupus erythematosus. Clinical immunology, 154(1), 1–12.

    Article  CAS  Google Scholar 

  140. Xu, S., & Cao, X. (2010). Interleukin-17 and its expanding biological functions. Cellular & molecular immunology, 7(3), 164–174.

    Article  CAS  Google Scholar 

  141. Amarilyo, G., et al. (2014). IL-17 promotes murine lupus. The Journal of Immunology, 193(2), 540–543.

    Article  CAS  Google Scholar 

  142. Talaat, R. M., et al. (2015). Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: Correlation with disease activity. Cytokine, 72(2), 146–153.

    Article  CAS  Google Scholar 

  143. Wen, Z., et al. (2014). Detection of dynamic frequencies of Th17 cells and their associations with clinical parameters in patients with systemic lupus erythematosus receiving standard therapy. Clinical Rheumatology, 33(10), 1451–1458.

    Article  Google Scholar 

  144. Wong, C., et al. (2000). Elevation of proinflammatory cytokine (IL-18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus. Lupus, 9(8), 589–593.

    Article  CAS  Google Scholar 

  145. Wong, C. K., et al. (2008). Hyperproduction of IL-23 and IL-17 in patients with systemic lupus erythematosus: Implications for Th17-mediated inflammation in auto-immunity. Clinical immunology, 127(3), 385–393.

    Article  CAS  Google Scholar 

  146. Vincent, F. B., et al. (2013). Clinical associations of serum interleukin-17 in systemic lupus erythematosus. Arthritis research & therapy, 15(4), 1–9.

    Article  Google Scholar 

  147. Zhang, Z., Kyttaris, V. C., & Tsokos, G. C. (2009). The role of IL-23/IL-17 axis in lupus nephritis. The Journal of Immunology, 183(5), 3160–3169.

    Article  CAS  Google Scholar 

  148. Schmidt, T., et al. (2015). Function of the Th17/interleukin-17A immune response in murine lupus nephritis. Arthritis & rheumatology, 67(2), 475–487.

    Article  CAS  Google Scholar 

  149. Pisitkun, P., et al. (2012). Interleukin-17 cytokines are critical in development of fatal lupus glomerulonephritis. Immunity, 37(6), 1104–1115.

    Article  CAS  Google Scholar 

  150. Shah, K., et al. (2010). Dysregulated balance of Th17 and Th1 cells in systemic lupus erythematosus. Arthritis research & therapy, 12(2), 1–10.

    Article  Google Scholar 

  151. Lee, H.-Y., et al. (2008). Altered frequency and migration capacity of CD4+ CD25+ regulatory T cells in systemic lupus erythematosus. Rheumatology, 47(6), 789–794.

    Article  CAS  Google Scholar 

  152. Tselios, K., et al. (2014). CD4+ CD25highFOXP3+ T regulatory cells as a biomarker of disease activity in systemic lupus erythematosus: A prospective study. Clinical and Experimental Rheumatology, 32(5), 630–639.

    Google Scholar 

  153. Wang, D., et al. (2017). The regulation of the Treg/Th17 balance by mesenchymal stem cells in human systemic lupus erythematosus. Cellular & Molecular Immunology, 14(5), 423–431.

    Article  CAS  Google Scholar 

  154. Yang, J., et al. (2011). Recovery of the immune balance between Th17 and regulatory T cells as a treatment for systemic lupus erythematosus. Rheumatology, 50(8), 1366–1372.

    Article  CAS  Google Scholar 

  155. Qu, X., et al. (2012). Mesenchymal stem cells inhibit Th17 cell differentiation by IL-10 secretion. Experimental hematology, 40(9), 761–770.

    Article  CAS  Google Scholar 

  156. Luz-Crawford, P., et al. (2019). Mesenchymal stem cell repression of Th17 cells is triggered by mitochondrial transfer. Stem cell research & therapy, 10(1), 1–13.

    Article  CAS  Google Scholar 

  157. Ghannam, S., et al. (2010). Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. The Journal of Immunology, 185(1), 302–312.

    Article  CAS  Google Scholar 

  158. Shi, M., et al. (2017). A pilot study of mesenchymal stem cell therapy for acute liver allograft rejection. Stem Cells Translational Medicine, 6(12), 2053–2061.

    Article  CAS  Google Scholar 

  159. Hsu, H. C., et al. (2008). Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nature Immunology, 9(2), 166–175.

    Article  CAS  Google Scholar 

  160. Liu, X., et al. (2015). Mesenchymal stem cells inhibit Th17 cells differentiation via IFN-γ-mediated SOCS3 activation. Immunologic Research, 61(3), 219–229.

    Article  CAS  Google Scholar 

  161. Tumangelova-Yuzeir, K., et al. (2019). Mesenchymal stem cells derived and cultured from glioblastoma multiforme increase tregs, downregulate Th17, and induce the tolerogenic phenotype of monocyte-derived cells. Stem Cells Int, 2019, 6904638.

    Article  Google Scholar 

  162. Nurieva, R. I., et al. (2008). Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity, 29(1), 138–149.

    Article  CAS  Google Scholar 

  163. Ray, J. P., et al. (2014). Transcription factor STAT3 and type I interferons are corepressive insulators for differentiation of follicular helper and T helper 1 cells. Immunity, 40(3), 367–377.

    Article  CAS  Google Scholar 

  164. Zhu, Y., Zou, L., & Liu, Y. C. (2016). T follicular helper cells, T follicular regulatory cells and autoimmunity. International Immunology, 28(4), 173–179.

    Article  CAS  Google Scholar 

  165. Fazilleau, N., et al. (2009). Follicular helper T cells: Lineage and location. Immunity, 30(3), 324–335.

    Article  CAS  Google Scholar 

  166. McPhee, C. G., et al. (2013). IL-21 is a double-edged sword in the systemic lupus erythematosus-like disease of BXSB.Yaa mice. J Immunol, 191(9), 4581–8.

    Article  CAS  Google Scholar 

  167. King, C., Tangye, S. G., & Mackay, C. R. (2008). T follicular helper (TFH) cells in normal and dysregulated immune responses. Annual Review of Immunology, 26, 741–766.

    Article  CAS  Google Scholar 

  168. Johnston, R. J., et al. (2009). Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science, 325(5943), 1006–1010.

    Article  CAS  Google Scholar 

  169. Choi, J. Y., et al. (2015). Circulating follicular helper-like T cells in systemic lupus erythematosus: Association with disease activity. Arthritis & Rhematology, 67(4), 988–999.

    Article  CAS  Google Scholar 

  170. Crotty, S. (2014). T follicular helper cell differentiation, function, and roles in disease. Immunity, 41(4), 529–542.

    Article  CAS  Google Scholar 

  171. Liu, R., et al. (2015). Allogeneic mesenchymal stem cells inhibited T follicular helper cell generation in rheumatoid arthritis. Science and Reports, 5, 12777.

    Article  CAS  Google Scholar 

  172. Liu, R., et al. (2015). Umbilical cord mesenchymal stem cells inhibit the differentiation of circulating T follicular helper cells in patients with primary Sjögren’s syndrome through the secretion of indoleamine 2,3-dioxygenase. Rheumatology (Oxford), 54(2), 332–342.

    Article  CAS  Google Scholar 

  173. Yang, X., et al. (2018). Bone marrow-derived mesenchymal stem cells inhibit T follicular helper cell in lupus-prone mice. Lupus, 27(1), 49–59.

    Article  CAS  Google Scholar 

  174. Jang, E., et al. (2016). Infusion of human bone marrow-derived mesenchymal stem cells alleviates autoimmune nephritis in a lupus model by suppressing follicular helper T-cell development. Cell Transplantation, 25(1), 1–15.

    Article  Google Scholar 

  175. Brady, M. T., et al. (2014). Mesenchymal stromal cells support the viability and differentiation of follicular lymphoma-infiltrating follicular helper T-cells. PLoS ONE, 9(5), e97597.

    Article  Google Scholar 

  176. Lee, H. J., et al. (2017). ICOSL expression in human bone marrow-derived mesenchymal stem cells promotes induction of regulatory T cells. Science and Reports, 7, 44486.

    Article  CAS  Google Scholar 

  177. Chung, Y., et al. (2011). Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nature Medicine, 17(8), 983–988.

    Article  CAS  Google Scholar 

  178. Linterman, M. A., et al. (2011). Foxp3+ follicular regulatory T cells control the germinal center response. Nature Medicine, 17(8), 975–982.

    Article  CAS  Google Scholar 

  179. Yang, X., et al. (2013). T follicular helper cells mediate expansion of regulatory B cells via IL-21 in Lupus-prone MRL/lpr mice. PLoS ONE, 8(4), e62855.

    Article  CAS  Google Scholar 

  180. Yang, X., et al. (2014). T follicular helper cells and regulatory B cells dynamics in systemic lupus erythematosus. PLoS ONE, 9(2), e88441.

    Article  Google Scholar 

  181. Spolski, R., et al. (2009). IL-21 mediates suppressive effects via its induction of IL-10. The Journal of Immunology, 182(5), 2859–2867.

    Article  CAS  Google Scholar 

  182. Wollenberg, I., et al. (2011). Regulation of the germinal center reaction by Foxp3+ follicular regulatory T cells. The Journal of Immunology, 187(9), 4553–4560.

    Article  CAS  Google Scholar 

  183. Nagy, G., et al. (2000). Measurement of intracellular interferon-gamma and interleukin-4 in whole blood T lymphocytes from patients with systemic lupus erythematosus. Immunology Letters, 74(3), 207–210.

    Article  CAS  Google Scholar 

  184. Youd, M., et al. (2010). Allogeneic mesenchymal stem cells do not protect NZBxNZW F1 mice from developing lupus disease. Clinical and Experimental Immunology, 161(1), 176–186.

    Article  CAS  Google Scholar 

  185. Keyhanmanesh, R., et al. (2018). Systemic delivery of mesenchymal stem cells condition media in repeated doses acts as magic bullets in restoring IFN-γ/IL-4 balance in asthmatic rats. Life Sciences, 212, 30–36.

    Article  CAS  Google Scholar 

  186. Ezquer, F., et al. (2012). The antidiabetic effect of mesenchymal stem cells is unrelated to their transdifferentiation potential but to their capability to restore Th1/Th2 balance and to modify the pancreatic microenvironment. Stem Cells, 30(8), 1664–1674.

    Article  CAS  Google Scholar 

  187. Lim, J. Y., et al. (2014). Combination cell therapy using mesenchymal stem cells and regulatory T-cells provides a synergistic immunomodulatory effect associated with reciprocal regulation of TH1/TH2 and th17/treg cells in a murine acute graft-versus-host disease model. Cell Transplantation, 23(6), 703–714.

    Article  Google Scholar 

  188. Akahoshi, M., et al. (1999). Th1/Th2 balance of peripheral T helper cells in systemic lupus erythematosus. Arthritis and Rheumatism, 42(8), 1644–1648.

    Article  CAS  Google Scholar 

  189. Sun, L., et al. (2010). Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis and Rheumatism, 62(8), 2467–2475.

    Article  CAS  Google Scholar 

  190. Kidd, P. (2003). Th1/Th2 balance: The hypothesis, its limitations, and implications for health and disease. Alternative Medicine Review, 8(3), 223–246.

    Google Scholar 

  191. Gómez, D., et al. (2004). Th1/Th2 cytokines in patients with systemic lupus erythematosus: Is tumor necrosis factor alpha protective? Seminars in Arthritis and Rheumatism, 33(6), 404–413.

    Article  Google Scholar 

  192. Zhang, A., et al. (2020). IL-1β enhances human placenta-derived mesenchymal stromal cells ability to mediate Th1/Th2 and Th1/CD4(+)IL-10(+) T cell balance and regulates its adhesion, proliferation and migration via PD-L1. Cellular Immunology, 352, 104113.

    Article  CAS  Google Scholar 

  193. Rad, F., et al. (2019). Mesenchymal stem cell-based therapy for autoimmune diseases: Emerging roles of extracellular vesicles. Molecular Biology Reports, 46(1), 1533–1549.

    Article  CAS  Google Scholar 

  194. Bosi, C., Lanzoni, G., & Pugliese, A. (2016). Clinical trials of mesenchymal stem cell transplantation in patients with type 1 diabetes and systemic lupus erythematosus: Is it time for larger studies. CellR4, 4(5), e2134.

    Google Scholar 

  195. Xu, J. (2018). Therapeutic applications of mesenchymal stem cells for systemic lupus erythematosus. Advances in Experimental Medicine and Biology, 1089, 73–85.

    Article  CAS  Google Scholar 

  196. Dardalhon, V., et al. (2008). Role of Th1 and Th17 cells in organ-specific autoimmunity. Journal of autoimmunity, 31(3), 252–256.

    Article  CAS  Google Scholar 

  197. Batten, P., et al. (2006). Human mesenchymal stem cells induce T cell anergy and downregulate T cell allo-responses via the TH2 pathway: Relevance to tissue engineering human heart valves. Tissue engineering, 12(8), 2263–2273.

    Article  CAS  Google Scholar 

  198. Podestà, M. A., Remuzzi, G., & Casiraghi, F. (2019). Mesenchymal stromal cells for transplant tolerance. Frontiers in Immunology, 10, 1287.

    Article  Google Scholar 

  199. Rawat, S., Gupta, S., Mohanty, S. (2019). Mesenchymal stem cells modulate the immune system in developing therapeutic interventions. Immune Response Activation and Immunomodulation.

  200. Najar, M., et al. (2016). Mesenchymal stromal cells and immunomodulation: A gathering of regulatory immune cells. Cytotherapy, 18(2), 160–171.

    Article  CAS  Google Scholar 

  201. Gómez, D., et al. (2004). Th1/Th2 cytokines in patients with systemic lupus erythematosus: is tumor necrosis factor α protective? in Seminars in arthritis and rheumatism. Elsevier.

  202. Deng, W., et al. (2005). Effects of allogeneic bone marrow-derived mesenchymal stem cells on T and B lymphocytes from BXSB mice. DNA and cell biology, 24(7), 458–463.

    Article  CAS  Google Scholar 

  203. Mauri, C., & Bosma, A. (2012). Immune regulatory function of B cells. Annual review of immunology, 30, 221–241.

    Article  CAS  Google Scholar 

  204. Park, M. J., et al. (2015). Adipose tissue-derived mesenchymal stem cells induce expansion of interleukin-10-producing regulatory B cells and ameliorate autoimmunity in a murine model of systemic lupus erythematosus. Cell Transplantation, 24(11), 2367–2377.

    Article  Google Scholar 

  205. Comoli, P., et al. (2008). Human mesenchymal stem cells inhibit antibody production induced in vitro by allostimulation. Nephrology, Dialysis, Transplantation, 23(4), 1196–1202.

    Article  CAS  Google Scholar 

  206. Liu, F., et al. (2020). Immunotherapeutic effects of allogeneic mesenchymal stem cells on systemic lupus erythematosus. Lupus, 29(8), 872–883.

    Article  CAS  Google Scholar 

  207. Corcione, A., et al. (2006). Human mesenchymal stem cells modulate B-cell functions. Blood, 107(1), 367–372.

    Article  CAS  Google Scholar 

  208. Looney, R. J., et al. (2004). B cell depletion as a novel treatment for systemic lupus erythematosus: A phase I/II dose-escalation trial of rituximab. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology, 50(8), 2580–2589.

    Article  CAS  Google Scholar 

  209. Tokoyoda, K., et al. (2004). Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity, 20(6), 707–718.

    Article  CAS  Google Scholar 

  210. Asari, S., et al. (2009). Mesenchymal stem cells suppress B-cell terminal differentiation. Experimental hematology, 37(5), 604–615.

    Article  CAS  Google Scholar 

  211. Zhang, J., et al. (2001). Cutting edge: A role for B lymphocyte stimulator in systemic lupus erythematosus. The Journal of Immunology, 166(1), 6–10.

    Article  CAS  Google Scholar 

  212. Rafei, M., et al. (2008). Mesenchymal stromal cell-derived CCL2 suppresses plasma cell immunoglobulin production via STAT3 inactivation and PAX5 induction. Blood, 112(13), 4991–4998.

    Article  CAS  Google Scholar 

  213. Che, N., et al. (2014). Impaired B cell inhibition by lupus bone marrow mesenchymal stem cells is caused by reduced CCL2 expression. The Journal of Immunology, 193(10), 5306–5314.

    Article  CAS  Google Scholar 

  214. Chun, W., Tian, J., & Zhang, Y. (2021). Transplantation of mesenchymal stem cells ameliorates systemic lupus erythematosus and upregulates B10 cells through TGF-β1. Stem Cell Research & Therapy, 12(1), 1–11.

    Article  Google Scholar 

  215. Blair, P. A., et al. (2010). CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic Lupus Erythematosus patients. Immunity, 32(1), 129–140.

    Article  CAS  Google Scholar 

  216. Wu, H.-H., et al. (2019). Mesenchymal stem cell-based drug delivery strategy: From cells to biomimetic. Journal of Controlled Release, 294, 102–113.

    Article  CAS  Google Scholar 

  217. Rasmusson, I., et al. (2007). Mesenchymal stem cells stimulate antibody secretion in human B cells. Scandinavian journal of immunology, 65(4), 336–343.

    Article  CAS  Google Scholar 

  218. Fillatreau, S., et al. (2002). B cells regulate autoimmunity by provision of IL-10. Nature immunology, 3(10), 944–950.

    Article  CAS  Google Scholar 

  219. Carter, N. A., et al. (2011). Mice lacking endogenous IL-10–producing regulatory B cells develop exacerbated disease and present with an increased frequency of Th1/Th17 but a decrease in regulatory T cells. The Journal of Immunology, 186(10), 5569–5579.

    Article  CAS  Google Scholar 

  220. Mauri, C. (2010). CD19 CD24 hi CD38 hi B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic Lupus Erythematosus patients. Immunity, 32, 129–140.

    Article  Google Scholar 

  221. Veneri, D., et al. (2008). Peripheral blood CD5-positive B lymphocytes (B-1a cells) after allogeneic stem cell transplantation for acute myeloid leukaemia in humans. Blood Transfusion, 6(4), 220–224.

    Google Scholar 

  222. Peng, Y., et al. (2015). Mesenchymal stromal cells infusions improve refractory chronic graft versus host disease through an increase of CD5+ regulatory B cells producing interleukin 10. Leukemia, 29(3), 636–646.

    Article  CAS  Google Scholar 

  223. Soldevila, G., Raman, C., & Lozano, F. (2011). The immunomodulatory properties of the CD5 lymphocyte receptor in health and disease. Current Opinion in Immunology, 23(3), 310–318.

    Article  CAS  Google Scholar 

  224. Iwata, Y., et al. (2011). Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood, 117(2), 530–541.

    Article  CAS  Google Scholar 

  225. Vadasz, Z., et al. (2013). B-regulatory cells in autoimmunity and immune mediated inflammation. FEBS Letters, 587(13), 2074–2078.

    Article  CAS  Google Scholar 

  226. Budoni, M., et al. (2013). The immunosuppressive effect of mesenchymal stromal cells on B lymphocytes is mediated by membrane vesicles. Cell Transplantation, 22(2), 369–379.

    Article  Google Scholar 

  227. Rosado, M. M., et al. (2015). Inhibition of B-cell proliferation and antibody production by mesenchymal stromal cells is mediated by T cells. Stem Cells Dev, 24(1), 93–103.

    Article  CAS  Google Scholar 

  228. Franquesa, M., et al. (2015). Human adipose tissue-derived mesenchymal stem cells abrogate plasmablast formation and induce regulatory B cells independently of T helper cells. Stem Cells, 33(3), 880–891.

    Article  CAS  Google Scholar 

  229. Cheema, G. S., et al. (2001). Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis and Rheumatism, 44(6), 1313–1319.

    Article  CAS  Google Scholar 

  230. Fan, L., et al. (2016). Interaction between Mesenchymal Stem Cells and B-Cells. International Journal of Molecular Sciences, 17(5).

  231. Wang, Y., et al. (2014). Plasticity of mesenchymal stem cells in immunomodulation: Pathological and therapeutic implications. Nature immunology, 15(11), 1009–1016.

    Article  CAS  Google Scholar 

  232. Liu, S., et al. (2019). Treatment of murine lupus with TIGIT-Ig. Clinical immunology, 203, 72–80.

    Article  CAS  Google Scholar 

  233. Choi, E. W., et al. (2016). Comparative efficacies of long-term serial transplantation of syngeneic, allogeneic, xenogeneic, or CTLA4Ig-overproducing xenogeneic adipose tissue-derived mesenchymal stem cells on murine systemic Lupus Erythematosus. Cell Transplantation, 25(6), 1193–1206.

    Article  Google Scholar 

  234. Ohl, K., & Tenbrock, K. (2015). Regulatory T cells in systemic Lupus Erythematosus. European journal of immunology, 45(2), 344–355.

    Article  CAS  Google Scholar 

  235. Tsokos, G. C., et al. (2016). New insights into the immunopathogenesis of systemic Lupus Erythematosus. Nature Reviews Rheumatology, 12(12), 716–730.

    Article  CAS  Google Scholar 

  236. Brunstein, C. G., et al. (2011). Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: Safety profile and detection kinetics. Blood, The Journal of the American Society of Hematology, 117(3), 1061–1070.

    CAS  Google Scholar 

  237. Marek-Trzonkowska, N., et al. (2013). Clinical application of regulatory T cells in type 1 diabetes. Pediatric diabetes, 14(5), 322–332.

    Article  CAS  Google Scholar 

  238. Issa, F., & Wood, K. J. (2010). CD4+ regulatory T cells in solid organ transplantation. Current opinion in organ transplantation, 15(6), 757.

    Article  Google Scholar 

  239. Kasper, I. R., et al. (2016). Empowering regulatory T cells in autoimmunity. Trends in molecular medicine, 22(9), 784–797.

    Article  CAS  Google Scholar 

  240. He, J., et al. (2016). Low-dose interleukin-2 treatment selectively modulates CD4+ T cell subsets in patients with systemic Lupus Erythematosus. Nature medicine, 22(9), 991–993.

    Article  CAS  Google Scholar 

  241. Koga, T., et al. (2012). Calcium/calmodulin-dependent protein kinase IV suppresses IL-2 production and regulatory T cell activity in lupus. The Journal of Immunology, 189(7), 3490–3496.

    Article  CAS  Google Scholar 

  242. Serakinci, N., Fahrioglu, U., & Christensen, R. (2014). Mesenchymal stem cells, cancer challenges and new directions. European Journal of Cancer, 50(8), 1522–1530.

    Article  CAS  Google Scholar 

  243. Hagiwara, M., et al. (2008). Kallikrein-modified mesenchymal stem cell implantation provides enhanced protection against acute ischemic kidney injury by inhibiting apoptosis and inflammation. Human gene therapy, 19(8), 807–819.

    Article  CAS  Google Scholar 

  244. Mangi, A. A., et al. (2003). Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nature medicine, 9(9), 1195–1201.

    Article  CAS  Google Scholar 

  245. Li, Y., et al. (2014). Delivering oxidation resistance-1 (OXR1) to mouse kidney by genetic modified mesenchymal stem cells exhibited enhanced protection against nephrotoxic serum induced renal injury and lupus nephritis. Journal of stem cell research & therapy, 4(9).

  246. Li, Y., et al. (2013). Kallikrein transduced mesenchymal stem cells protect against anti-GBM disease and lupus nephritis by ameliorating inflammation and oxidative stress. PLoS ONE, 8(7), e67790.

    Article  CAS  Google Scholar 

  247. Diaz, M. F., et al. (2017). Biomechanical forces promote immune regulatory function of bone marrow mesenchymal stromal cells. Stem Cells, 35(5), 1259–1272.

    Article  CAS  Google Scholar 

  248. Zhang, Z., et al. (2019). Clearance of apoptotic cells by mesenchymal stem cells contributes to immunosuppression via PGE2. eBioMedicine, 45, 341–350.

    Article  Google Scholar 

  249. Huang, S., et al. (2016). No significant effects of Poly (I: C) on human umbilical cord-derived mesenchymal stem cells in the treatment of B6. MRL-Faslpr mice. Current Research in Translational Medicine, 64(2), 55–60.

    Article  CAS  Google Scholar 

  250. Mastri, M., et al. (2012). Activation of Toll-like receptor 3 amplifies mesenchymal stem cell trophic factors and enhances therapeutic potency. American Journal of Physiology-Cell Physiology, 303(10), C1021–C1033.

    Article  CAS  Google Scholar 

  251. Szabó, E., et al. (2015). Licensing by inflammatory cytokines abolishes heterogeneity of immunosuppressive function of mesenchymal stem cell population. Stem Cells and Development, 24(18), 2171–2180.

    Article  Google Scholar 

  252. Boland, L., et al. (2018). IFN-γ and TNF-α pre-licensing protects mesenchymal stromal cells from the pro-inflammatory effects of palmitate. Molecular Therapy, 26(3), 860–873.

    Article  CAS  Google Scholar 

  253. Nozari, P., et al. (2022). Investigation of the effect of IFN-γ/TNF-α-treated mesenchymal stem cells on Th9-and Treg cell-related parameters in a mouse model of ovalbumin-induced allergic asthma. Immunopharmacology and Immunotoxicology, (just-accepted): 1–26.

  254. Hackel, A., et al. (2021). TNF-α and IL-1β sensitize human MSC for IFN-γ signaling and enhance neutrophil recruitment. European Journal of Immunology, 51(2), 319–330.

    Article  CAS  Google Scholar 

  255. Polchert, D., et al. (2008). IFN-γ activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. European journal of immunology, 38(6), 1745–1755.

    Article  CAS  Google Scholar 

  256. Han, X., et al. (2014). Interleukin-17 enhances immunosuppression by mesenchymal stem cells. Cell Death & Differentiation, 21(11), 1758–1768.

    Article  CAS  Google Scholar 

  257. Waterman, R. S., et al. (2010). A new mesenchymal stem cell (MSC) paradigm: Polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS ONE, 5(4), e10088.

    Article  Google Scholar 

  258. Elloumi, N., et al. (2021). RNA receptors, TLR3 and TLR7, are potentially associated with SLE clinical features. International Journal of Immunogenetics, 48(3), 250–259.

    Article  CAS  Google Scholar 

  259. Petri, M., et al. (2013). Vitamin D in systemic Lupus Erythematosus: Modest association with disease activity and the urine protein-to-creatinine ratio. Arthritis & Rheumatism, 65(7), 1865–1871.

    Article  CAS  Google Scholar 

  260. Dall’Ara, F., et al. (2017). Vitamin D and systemic lupus erythematous: A review of immunological and clinical aspects. Clinical and experimental rheumatology, 36(1), 153–162.

    Google Scholar 

  261. Terrier, B., et al. (2012). Restoration of regulatory and effector T cell balance and B cell homeostasis in systemic Lupus Erythematosus patients through vitamin D supplementation. Arthritis research & therapy, 14(5), 1–10.

    Article  Google Scholar 

  262. Shahin, D., et al. (2017). Serum 25-OH vitamin D level in treatment-naïve systemic Lupus Erythematosus patients: Relation to disease activity, IL-23 and IL-17. Lupus, 26(9), 917–926.

    Article  CAS  Google Scholar 

  263. Geng, S., et al. (2013). Vitamin D metabolism in human bone marrow stromal (mesenchymal stem) cells. Metabolism, 62(6), 768–777.

    Article  CAS  Google Scholar 

  264. Andrukhov, O., et al. (2020). Vitamin D3 and dental mesenchymal stromal cells. Applied Sciences, 10(13), 4527.

    Article  CAS  Google Scholar 

  265. Salehpour, A., et al. (2021). 1, 25-Dihydroxyvitamin D3 modulates adipogenesis of human adipose-derived mesenchymal stem cells dose-dependently. Nutrition & metabolism, 18(1), 1–9.

    Google Scholar 

  266. Xu, J.-J., et al. (2015). Vitamin D analog EB1089 could repair the defective bone marrow-derived mesenchymal stromal cells in patients with systemic Lupus Erythematosus. International Journal of Clinical and Experimental Medicine, 8(1), 916.

    CAS  Google Scholar 

  267. Hou, Y.-C., et al. (2020). The role of vitamin D in modulating mesenchymal stem cells and endothelial progenitor cells for vascular calcification. International Journal of Molecular Sciences, 21(7), 2466.

    Article  CAS  Google Scholar 

  268. Blufstein, A., et al. (2021). Effect of vitamin D3 on the osteogenic differentiation of human periodontal ligament stromal cells under inflammatory conditions. Journal of Periodontal Research, 56(3), 579–588.

    Article  CAS  Google Scholar 

  269. Motlagh, B. M., Froushani, S. M. A., Ahangaran, N. A. (2017). Vitamin D3 modifies the impacts of the supernatants of mesenchymal stem cells on macrophages functions. Zahedan Journal of Research in Medical Sciences, 19(6).

  270. Hamza, R. Z., Al-Eisa, R. A., & El-Shenawy, N. S. (2021). Efficacy of mesenchymal stem cell and vitamin D in the treatment of diabetes mellitus induced in a rat model: Pancreatic tissues. Coatings, 11(3), 317.

    Article  CAS  Google Scholar 

  271. McMurray, R. W., & May, W. (2003). Sex hormones and systemic Lupus Erythematosus: Review and meta-analysis. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology, 48(8), 2100–2110.

    Article  CAS  Google Scholar 

  272. Olsen, N. J., & Kovacs, W. J. (1995). Case report: Testosterone treatment of systemic Lupus Erythematosus in a patient with Klinefelter’s syndrome. The American journal of the medical sciences, 310(4), 158–160.

    Article  CAS  Google Scholar 

  273. Yung, R. (1999). Mechanisms of lupus: The role of estrogens. Clinical and experimental rheumatology, 17, 271–275.

    CAS  Google Scholar 

  274. Schmohl, K. A., et al. (2020). Thyroid hormone effects on mesenchymal stem cell biology in the tumour microenvironment. Experimental and Clinical Endocrinology & Diabetes, 128(06/07), 462–468.

    Article  CAS  Google Scholar 

  275. Munoz, L. E., et al. (2010). The role of defective clearance of apoptotic cells in systemic autoimmunity. Nature Reviews Rheumatology, 6(5), 280–289.

    Article  Google Scholar 

  276. Lee, C. S., et al. (2016). Boosting apoptotic cell clearance by colonic epithelial cells attenuates inflammation in vivo. Immunity, 44(4), 807–820.

    Article  CAS  Google Scholar 

  277. Najafian, N., & Sayegh, M. H. (2000). CTLA4-Ig: A novel immunosuppressive agent. Expert opinion on investigational drugs, 9(9), 2147–2157.

    Article  CAS  Google Scholar 

  278. Abrams, J. R., et al. (1999). CTLA4Ig-mediated blockade of T-cell costimulation in patients with psoriasis vulgaris. The Journal of clinical investigation, 103(9), 1243–1252.

    Article  CAS  Google Scholar 

  279. Ceccarelli, F., et al. (2015). Assessment of disease activity in systemic Lupus Erythematosus: Lights and shadows. Autoimmunity reviews, 14(7), 601–608.

    Article  Google Scholar 

  280. Mattar, P., & Bieback, K. (2015). Comparing the immunomodulatory properties of bone marrow, adipose tissue, and birth-associated tissue mesenchymal stromal cells. Frontiers in immunology, 6, 560.

    Article  Google Scholar 

  281. Youd, M., et al. (2010). Allogeneic mesenchymal stem cells do not protect NZB× NZW F1 mice from developing lupus disease. Clinical & Experimental Immunology, 161(1), 176–186.

  282. Shahror, R.A., et al. (2020) Genetically modified mesenchymal stem cells: the next generation of stem cell-based therapy for TBI. International Journal of Molecular Sciences, 21 (11)

  283. Rostami, M., Haidari, K., & Shahbazi, M. (2018). Genetically engineered adipose mesenchymal stem cells using hiv-based lentiviral vectors as gene therapy for autoimmune diseases Cell Reprogram, 20(6), 337–346.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Akram Hoseinzadeh has drafted the work.

Mahmoud Mahmoudi, Zahra Rezaieyazdi, Jalil Tavakol Afshari, Seyed-Alireza Esmaeili and Reza Moradi thoroughly reviewed it.

Ali Mahmoudi and Sahar Heydari have drawn the figures.

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mahmoud Mahmoudi.

Ethics declarations

Ethics Approval and Consent to Participate

“Not applicable”.

Consent for Publication

“Not applicable”.

Competing Interests

All authors declare that they have no competing of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoseinzadeh, A., Rezaieyazdi, Z., Afshari, J.T. et al. Modulation of Mesenchymal Stem Cells-Mediated Adaptive Immune Effectors’ Repertoire in the Recovery of Systemic Lupus Erythematosus. Stem Cell Rev and Rep 19, 322–344 (2023). https://doi.org/10.1007/s12015-022-10452-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-022-10452-7

Keywords

Navigation