Skip to main content

Advertisement

Log in

Ethanol Causes Cell Death and Neuronal Differentiation Defect During Initial Neurogenesis of the Neural Retina by Disrupting Calcium Signaling in Human Retinal Organoids

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Fetal Alcohol Syndrome (FAS) affects a significant proportion, exceeding 90%, of afflicted children, leading to severe ocular aberrations such as microphthalmia and optic nerve hypoplasia. During the early stages of pregnancy, the commencement of neural retina neurogenesis represents a critical period for human eye development, concurrently exposing the developing retinal structures to the highest risk of prenatal ethanol exposure due to a lack of awareness. Despite the paramount importance of this period, the precise influence and underlying mechanisms of short-term ethanol exposure on the developmental process of the human neural retina have remained largely elusive. In this study, we utilize the human embryonic stem cells derived retinal organoids (hROs) to recapitulate the initial retinal neurogenesis and find that 1% (v/v) ethanol slows the growth of hROs by inducing robust cell death and retinal ganglion cell differentiation defect. Bulk RNA-seq analysis and two-photon microscope live calcium imaging reveal altered calcium signaling dynamics derived from ethanol-induced down-regulation of RYR1 and CACNA1S. Moreover, the calcium-binding protein RET, one of the downstream effector genes of the calcium signaling pathway, synergistically integrates ethanol and calcium signals to abort neuron differentiation and cause cell death. To sum up, our study illustrates the effect and molecular mechanism of ethanol on the initial neurogenesis of the human embryonic neural retina, providing a novel interpretation of the ocular phenotype of FAS and potentially informing preventative measures for susceptible populations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Mattson, S. N., Bernes, G. A., & Doyle, L. R. (2019). Fetal alcohol spectrum disorders: A review of the neurobehavioral deficits associated with prenatal alcohol exposure. Alcoholism, Clinical and Experimental Research, 43(6), 1046–1062.

    PubMed  PubMed Central  Google Scholar 

  2. Roozen, S., Peters, G. J., Kok, G., Townend, D., Nijhuis, J., & Curfs, L. (2016). Worldwide prevalence of fetal alcohol spectrum disorders: A systematic literature review including meta-analysis. Alcoholism, Clinical and Experimental Research, 40(1), 18–32.

    PubMed  Google Scholar 

  3. Abdelrahman, A., & Conn, R. (2009). Eye abnormalities in fetal alcohol syndrome. The Ulster Medical Journal, 78(3), 164–165.

    PubMed  PubMed Central  Google Scholar 

  4. Ethen, M. K., Ramadhani, T. A., Scheuerle, A. E., Canfield, M. A., Wyszynski, D. F., Druschel, C. M., et al. (2009). Alcohol consumption by women before and during pregnancy. Maternal and Child Health Journal, 13(2), 274–285.

    PubMed  Google Scholar 

  5. Centanin, L., & Wittbrodt, J. (2014). Retinal neurogenesis. Development, 141(2), 241–244.

    CAS  PubMed  Google Scholar 

  6. Zhang, Z., Xu, Z., Yuan, F., Jin, K., & Xiang, M. (2021). Retinal organoid technology: Where are we now? International Journal of Molecular Sciences, 22(19), 10244.

  7. Dorgau, B., Georgiou, M., Chaudhary, A., Moya-Molina, M., Collin, J., Queen, R., et al. (2022). Human retinal organoids provide a suitable tool for toxicological investigations: A comprehensive validation using drugs and compounds affecting the retina. Stem Cells Translational Medicine, 11(2), 159–177.

    PubMed  PubMed Central  Google Scholar 

  8. Kang, J., Gong, J., Yang, C., Lin, X., Yan, L., Gong, Y., et al. (2023). Application of human stem cell derived retinal organoids in the exploration of the mechanisms of early retinal development. Stem Cell Reviews and Reports, 19(6), 1755–1772.

  9. Li, M., Gong, J., Gao, L., Zou, T., Kang, J., & Xu, H. (2022). Advanced human developmental toxicity and teratogenicity assessment using human organoid models. Ecotoxicology and Environmental Safety, 235, 113429.

    CAS  PubMed  Google Scholar 

  10. Horejs, C. (2021). Organ chips, organoids and the animal testing conundrum. Nature Reviews Materials, 6(5), 372–373.

    PubMed  PubMed Central  Google Scholar 

  11. Toth, A. B., Shum, A. K., & Prakriya, M. (2016). Regulation of neurogenesis by calcium signaling. Cell Calcium, 59(2–3), 124–134.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim, J. W., Oh, H. A., Kim, S. R., Ko, M. J., Seung, H., Lee, S. H., et al. (2020). Epigenetically upregulated T-Type calcium channels contribute to abnormal proliferation of embryonic neural progenitor cells exposed to valproic acid. Biomolecules & Therapeutics (Seoul), 28(5), 389–396.

    CAS  Google Scholar 

  13. Paladino, O., Moranda, A., & Falugi, C. (2022). Spatiotemporal role of muscarinic signaling in early chick development: Exposure to cholinomimetic agents by a mathematical model. Cell Biology and Toxicology. https://doi.org/10.1007/s10565-022-09770-w

  14. Sison, S. L., O'Brien, B. S., Johnson, A. J., Seminary, E. R., Terhune, S. S., & Ebert, A. D. (2019). Human cytomegalovirus disruption of calcium signaling in neural progenitor cells and organoids. Journal of Virology, 93(17), e00954–19.

  15. Bootman, M. D., & Bultynck, G. (2020). Fundamentals of cellular calcium signaling: A Primer. Cold Spring Harbor Perspectives in Biology, 12(1), a038802.

  16. Shim, S., Goyal, R., Panoutsopoulos, A. A., Balashova, O. A., Lee, D., & Borodinsky, L. N. (2023). Calcium dynamics at the neural cell primary cilium regulate Hedgehog signaling-dependent neurogenesis in the embryonic neural tube. Proceedings of the National Academy of Sciences of the United States of America, 120(23), e2220037120.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Latoszek, E., & Czeredys, M. (2021). molecular components of store-operated calcium channels in the regulation of neural stem cell physiology, neurogenesis, and the pathology of Huntington’s disease. Frontiers in Cell and Developmental Biology, 9, 657337.

    PubMed  PubMed Central  Google Scholar 

  18. Brennan, D., & Giles, S. (2013). Sonic hedgehog expression is disrupted following in ovo ethanol exposure during early chick eye development. Reproductive Toxicology (Elmsford, NY), 41, 49–56.

    CAS  Google Scholar 

  19. Kahn, B. M., Corman, T. S., Lovelace, K., Hong, M., Krauss, R. S., & Epstein, D. J. (2017). Prenatal ethanol exposure in mice phenocopies Cdon mutation by impeding Shh function in the etiology of optic nerve hypoplasia. Disease Models & Mechanisms, 10(1), 29–37.

    CAS  Google Scholar 

  20. Becker, D. L., Webb, K. F., Thrasivoulou, C., Lin, C. C., Nadershahi, R., Tsakiri, N., et al. (2007). Multiphoton imaging of chick retinal development in relation to gap junctional communication. Journal of Physiology, 585(Pt 3), 711–719.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Voufo, C., Chen, A. Q., Smith, B. E., Yan, R., Feller, M. B., & Tiriac, A. (2023). Circuit mechanisms underlying embryonic retinal waves. Elife, 12, e81983.

  22. Sridhar, A., Hoshino, A., Finkbeiner, C. R., Chitsazan, A., Dai, L., Haugan, A. K., et al. (2020). Single-cell transcriptomic comparison of human fetal retina, hPSC-derived retinal organoids, and long-term retinal cultures. Cell Reports, 30(5), 1644–59.e4.

    CAS  PubMed  Google Scholar 

  23. Kuwahara, A., Ozone, C., Nakano, T., Saito, K., Eiraku, M., & Sasai, Y. (2015). Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue. Nature Communications, 6, 6286.

    CAS  PubMed  Google Scholar 

  24. Leclerc, C., Néant, I., & Moreau, M. (2011). Early neural development in vertebrates is also a matter of calcium. Biochimie, 93(12), 2102–2111.

    CAS  PubMed  Google Scholar 

  25. Chung, H. Y., Chang, C. T., Young, H. W., Hu, S. P., Tzou, W. S., & Hu, C. H. (2013). Ethanol inhibits retinal and CNS differentiation due to failure of cell cycle exit via an apoptosis-independent pathway. Neurotoxicology and Teratology, 38, 92–103.

    CAS  PubMed  Google Scholar 

  26. Pan, J. B., Hu, S. C., Shi, D., Cai, M. C., Li, Y. B., Zou, Q., et al. (2013). PaGenBase: A pattern gene database for the global and dynamic understanding of gene function. PLoS ONE, 8(12), e80747.

    PubMed  PubMed Central  Google Scholar 

  27. Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., et al. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America, 102(43), 15545–15550.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hodskinson, M. R., Bolner, A., Sato, K., Kamimae-Lanning, A. N., Rooijers, K., Witte, M., et al. (2020). Alcohol-derived DNA crosslinks are repaired by two distinct mechanisms. Nature, 579(7800), 603–608.

  29. des Georges, A., Clarke, O. B., Zalk, R., Yuan, Q., Condon, K. J., Grassucci, R. A., et al. (2016). Structural basis for gating and activation of RyR1. Cell, 167(1), 145–57.e17.

    PubMed  PubMed Central  Google Scholar 

  30. Schartner, V., Romero, N. B., Donkervoort, S., Treves, S., Munot, P., Pierson, T. M., et al. (2017). Dihydropyridine receptor (DHPR, CACNA1S) congenital myopathy. Acta Neuropathologica, 133(4), 517–533.

    CAS  PubMed  Google Scholar 

  31. Strömland, K., & Pinazo-Durán, M. D. (2002). Ophthalmic involvement in the fetal alcohol syndrome: Clinical and animal model studies. Alcohol and Alcoholism (Oxford, Oxfordshire), 37(1), 2–8.

    PubMed  Google Scholar 

  32. May, P. A., & Gossage, J. P. (2011). Maternal risk factors for fetal alcohol spectrum disorders: Not as simple as it might seem. Alcohol Research & Health, 34(1), 15–26.

    Google Scholar 

  33. Kennelly, K., Brennan, D., Chummun, K., & Giles, S. (2011). Histological characterisation of the ethanol-induced microphthalmia phenotype in a chick embryo model system. Reproductive Toxicology (Elmsford, NY), 32(2), 227–234.

    CAS  Google Scholar 

  34. Harris, S. J., Wilce, P., & Bedi, K. S. (2000). Exposure of rats to a high but not low dose of ethanol during early postnatal life increases the rate of loss of optic nerve axons and decreases the rate of myelination. Journal of Anatomy, 197(Pt 3), 477–485.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Santos-Ledo, A., Arenzana, F. J., Porteros, A., Lara, J., Velasco, A., Aijon, J., et al. (2011). Cytoarchitectonic and neurochemical differentiation of the visual system in ethanol-induced cyclopic zebrafish larvae. Neurotoxicology and Teratology, 33(6), 686–697.

    CAS  PubMed  Google Scholar 

  36. Rahimi-Balaei, M., Bergen, H., Kong, J., & Marzban. H. (2018). Neuronal migration during development of the cerebellum. Frontiers in Cellular Neuroscience, 12, 484.

  37. Zhu, Y., Wang, L., Yin, F., Yu, Y., Wang, Y., Shepard, M. J., et al. (2017). Probing impaired neurogenesis in human brain organoids exposed to alcohol. Integrative Biology (Camb)., 9(12), 968–978.

    CAS  Google Scholar 

  38. Kashyap, B., Frederickson, L. C., & Stenkamp, D. L. (2007). Mechanisms for persistent microphthalmia following ethanol exposure during retinal neurogenesis in zebrafish embryos. Visual Neuroscience, 24(3), 409–421.

    PubMed  PubMed Central  Google Scholar 

  39. Tufan, A. C., Abban, G., Akdogan, I., Erdogan, D., & Ozogul, C. (2007). The effect of in ovo ethanol exposure on retina and optic nerve in a chick embryo model system. Reproductive Toxicology (Elmsford, NY), 23(1), 75–82.

    CAS  Google Scholar 

  40. Glaser, T., Arnaud Sampaio, V. F., Lameu, C., & Ulrich, H. (2019). Calcium signalling: A common target in neurological disorders and neurogenesis. Seminars in Cell & Developmental Biology, 95, 25–33.

    CAS  Google Scholar 

  41. Dupont, G., Combettes, L., Bird, G. S., & Putney, J. W. (2011). Calcium oscillations. Cold Spring Harbor Perspectives in Biology, 3(3), a004226.

  42. Humeau, J., Bravo-San Pedro, J. M., Vitale, I., Nuñez, L., Villalobos, C., Kroemer, G., et al. (2018). Calcium signaling and cell cycle: Progression or death. Cell Calcium, 70, 3–15.

    CAS  PubMed  Google Scholar 

  43. Liu, S. Y., Yuan, D., Sun, R. J., Zhu, J. J., & Shan, N. N. (2021). Significant reductions in apoptosis-related proteins (HSPA6, HSPA8, ITGB3, YWHAH, and PRDX6) are involved in immune thrombocytopenia. Journal of Thrombosis and Thrombolysis, 51(4), 905–914.

    CAS  PubMed  Google Scholar 

  44. Fu, S., Li, L., Kang, H., Yang, X., Men, S., & Shen, Y. (2017). Chronic mitochondrial calcium elevation suppresses leaf senescence. Biochemical and Biophysical Research Communications, 487(3), 672–677.

    CAS  PubMed  Google Scholar 

  45. Szabadkai, G., Bianchi, K., Várnai, P., De Stefani, D., Wieckowski, M. R., Cavagna, D., et al. (2006). Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. The Journal of Cell Biology, 175(6), 901–911.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Szalai, G., Krishnamurthy, R., & Hajnóczky, G. (1999). Apoptosis driven by IP(3)-linked mitochondrial calcium signals. EMBO Journal, 18(22), 6349–6361.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Shabbir, A., Kojadinovic, A., Shafiq, T., & Mundi, P. S. (2022). Targeting RET alterations in cancer: Recent progress and future directions. Critical Reviews in Oncology Hematology, 181, 103882.

  48. Regua, A. T., Najjar, M., & Lo, H. W. (2022). RET signaling pathway and RET inhibitors in human cancer. Frontiers in Oncology, 12, 932353.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu, Y. Z., Boxer, L. M., & Latchman, D. S. (1999). Activation of the Bcl-2 promoter by nerve growth factor is mediated by the p42/p44 MAPK cascade. Nucleic Acids Research, 27(10), 2086–2090.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu, Y., Carlsson, R., Ambjørn, M., Hasan, M., Badn, W., Darabi, A., et al. (2013). PD-L1 expression by neurons nearby tumors indicates better prognosis in glioblastoma patients. Journal of Neuroscience, 33(35), 14231–14245.

    CAS  PubMed  Google Scholar 

  51. Gong, Y., He, X., Li, Q., He, J., Bian, B., Li, Y., et al. (2019). SCF/SCFR signaling plays an important role in the early morphogenesis and neurogenesis of human embryonic neural retina. Development, 146(20), dev 174409.

  52. Li, Q. Y., Zou, T., Gong, Y., Chen, S. Y., Zeng, Y. X., Gao, L. X., et al. (2021). Functional assessment of cryopreserved clinical grade hESC-RPE cells as a qualified cell source for stem cell therapy of retinal degenerative diseases. Experimental Eye Research, 202, 108305.

    CAS  PubMed  Google Scholar 

  53. He, X. Y., Zhao, C. J., Xu, H., Chen, K., Bian, B. S., Gong, Y., et al. (2021). Synaptic repair and vision restoration in advanced degenerating eyes by transplantation of retinal progenitor cells. Stem Cell Reports, 16(7), 1805–1817.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Agarwal, A., Wu, P. H., Hughes, E. G., Fukaya, M., Tischfield, M. A., Langseth, A. J., et al. (2017). Transient opening of the mitochondrial permeability transition pore induces microdomain calcium transients in astrocyte processes. Neuron., 93(3), 587-605 e7.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang, J., Chen, X, A, L., Gao, H., Zhao, M., Ge, L., et al. (2023). Alleviation of photoreceptor degeneration based on fullerenols in rd1 Mice by reversing mitochondrial dysfunction via modulation of mitochondrial DNA transcription and leakage. Small, 5, e2205998.

Download references

Funding

This study was supported by funding from the National Key Research and Development Program of China grants 2021YFA1101203; the National Natural Science Foundation of China grants 31930068; General Project of Chongqing Natural Science Foundation CSTB2022NSCQ-MSX0065; Chongqing Medical University Program for Youth Innovation in Future Medicine W0158. The funding bodies had no role in study design, in the collection, analysis, or interpretation of data, in the writing of the report, or in the decision to submit the paper for publication.

Author information

Authors and Affiliations

Authors

Contributions

YG, LG, QL, JG, MC, HG, JK, and TY performed the experiments and analyzed the results. JL and HX designed the project and directed the research. YG and LG wrote the manuscript.

Corresponding authors

Correspondence to Jiawen Li or Haiwei Xu.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

All authors consent to publication of this manuscript.

Competing Interests

All authors declare no competing or financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 797 KB)

Video 1. Clones of hESC-GCaMP5G visualized with GCaMP5G and two-photon microscopy. (Framerate 60/min; fast forward 5x) (MP4 41.3 MB)

Video 2. PBS-treated hROs-GCaMP5G at D30 imaged with two-photon microscopy at room temperature. (Total duration:1000 s; framerate 60/min; fast forward 5x) (AVI 37.4 MB)

Video 3. 1% EtOH treated hROs-GCaMP5G at D30 imaged with two-photon microscopy at room temperature. (Total duration:1000 s; framerate 60/min; fast forward 5x) (AVI 63.8 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Y., Ge, L., Li, Q. et al. Ethanol Causes Cell Death and Neuronal Differentiation Defect During Initial Neurogenesis of the Neural Retina by Disrupting Calcium Signaling in Human Retinal Organoids. Stem Cell Rev and Rep 19, 2790–2806 (2023). https://doi.org/10.1007/s12015-023-10604-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10604-3

Keywords

Navigation