Skip to main content

Advertisement

Log in

Mast Cell Biology at Molecular Level: a Comprehensive Review

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Mast cells (MCs) are portions of the innate and adaptive immune system derived from bone marrow (BM) progenitors that are rich in cytoplasmic granules. MC maturation, phenotype, and function are determined by their microenvironment. MCs accumulate at inflammatory sites associated with atopy, wound healing, and malignancies. They interact with the external environment and are predominantly located in close proximity of blood vessels and sensory nerves. MCs are key initiators and modulators of allergic, anaphylactic, and other inflammatory reactions, by induction of vasodilation, promoting of vascular permeability, recruitment of inflammatory cells, facilitation of adaptive immune responses, and modulation of angiogenesis, and fibrosis. They express a wide range of receptors, e.g., for IgE (FcεRI), IgG (FcγR), stem cell factor (SCF) (KIT receptor or CD117), complement (including C5aR), and cytokines, that upon activation trigger various signaling pathways. The final consequence of such ligand receptor–based activation of MCs is the release of a broad array of mediators which are classified in three categories. While some mediators are preformed and remain stored in granules such as heparin, histamine, and enzymes mainly chymase and tryptase, others are de novo synthesized only after activation including LTB4, LTD4, PDG2, and PAF, and the cytokines IL-10, IL-8, IL-5, IL-3, IL-1, GM-CSF, TGF-β, VEGF, and TNF-α. Depending on the stimulus, MCs calibrate their pattern of mediator release, modulate the amplification of allergic inflammation, and are involved in the resolution of the immune responses. Here, we review recent findings and reports that help to understand the MC biology, pathology, and physiology of diseases with MC involvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BM:

Bone marrow

CM:

Cutaneous mastocytosis

DAMPs:

Damage-associated molecular patterns

HCMCs:

Human cultured mast cells

JAK:

Janus kinase

LAT:

Linker for activator of T cells

LT:

Leukotriene

MC:

Mast cell

MCp:

Mast cell progenitor

NGF:

Nerve growth factor

PAMPs:

Pathogen-associated molecular patterns

PAR2:

Protease-activated receptor2

PG:

Prostaglandin

RER:

Rough endoplasmic reticulum

SCF:

Stem cell factor

SG:

Secretory granules

SM:

Systemic mastocytosis

SM-AHNMD:

SM with associated clonal hematological non–mast cell lineage disease

Syk:

Spleen tyrosine kinase

VEGF:

Vascular endothelial growth factor

References

  1. Crivellato E, Beltrami C, Mallardi F, Ribatti D (2003) Paul Ehrlich’s doctoral thesis: a milestone in the study of mast cells. Br J Haematol 123(1):19–21

    PubMed  Google Scholar 

  2. Seneviratne SL, Maitland A (2017) Mast cell disorders in. Ehlers-Danlos Syndrome 175(1):226–236. https://doi.org/10.1002/ajmg.c.31555

    Google Scholar 

  3. Friberg U, Graf W, Aberg B (1951) On the histochemistry of the mast cells. Acta Pathol Microbiol Scand 29(2):197–202

    CAS  PubMed  Google Scholar 

  4. Leclere M, Desnoyers M, Beauchamp G, Lavoie JP (2006) Comparison of four staining methods for detection of mast cells in equine bronchoalveolar lavage fluid. J Vet Intern Med 20(2):377–381

    PubMed  Google Scholar 

  5. Muller T (1994) Supravital uptake of cationic dyes by mast cell granules: a light and electron microscope study. Biotech Histochem Off Publ Biol Stain Comm 69(3):171–176

    CAS  Google Scholar 

  6. Goldstein SM, Kaempfer CE, Kealey JT, Wintroub BU (1989) Human mast cell carboxypeptidase. Purification and characterization. J Clin Invest 83(5):1630–1636. https://doi.org/10.1172/jci114061

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gibson S, Miller HR (1986) Mast cell subsets in the rat distinguished immunohistochemically by their content of serine proteinases. Immunology 58(1):101–104

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bulfone-Paus S, Bahri R (2015) Mast cells as regulators of T cell responses. Front Immunol 6:394. https://doi.org/10.3389/fimmu.2015.00394

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Beaven MA (2009) Our perception of the mast cell from Paul Ehrlich to now. Eur J Immunol 39(1):11–25. https://doi.org/10.1002/eji.200838899

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kinet JP (1999) The high-affinity IgE receptor (fc epsilon RI): from physiology to pathology. Annu Rev Immunol 17:931–972. https://doi.org/10.1146/annurev.immunol.17.1.931

    CAS  PubMed  Google Scholar 

  11. Frandji P, Tkaczyk C, Oskeritzian C, David B, Desaymard C, Mecheri S (1996) Exogenous and endogenous antigens are differentially presented by mast cells to CD4+ T lymphocytes. Eur J Immunol 26(10):2517–2528. https://doi.org/10.1002/eji.1830261036

    CAS  PubMed  Google Scholar 

  12. Yarden Y, Kuang WJ, Yang-Feng T, Coussens L, Munemitsu S, Dull TJ, Chen E, Schlessinger J, Francke U, Ullrich A (1987) Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO J 6(11):3341–3351

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Williams DE, Eisenman J, Baird A, Rauch C, Van Ness K, March CJ, Park LS, Martin U, Mochizuki DY, Boswell HS et al (1990) Identification of a ligand for the c-kit proto-oncogene. Cell 63(1):167–174

    CAS  PubMed  Google Scholar 

  14. Nagata H, Worobec AS, Oh CK, Chowdhury BA, Tannenbaum S, Suzuki Y, Metcalfe DD (1995) Identification of a point mutation in the catalytic domain of the protooncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologic disorder. Proc Natl Acad Sci U S A 92(23):10560–10564

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Grimbaldeston MA, Chen CC, Piliponsky AM, Tsai M, Tam SY, Galli SJ (2005) Mast cell-deficient W-sash c-kit mutant Kit W-sh/W-sh mice as a model for investigating mast cell biology in vivo. Am J Pathol 167(3):835–848. https://doi.org/10.1016/s0002-9440(10)62055-x

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, Zimmermann J, Lydon NB (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2(5):561–566

    CAS  PubMed  Google Scholar 

  17. McNeil BD, Pundir P, Meeker S, Han L, Undem BJ, Kulka M, Dong X (2015) Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature 519(7542):237–241. https://doi.org/10.1038/nature14022

    CAS  PubMed  Google Scholar 

  18. Ginsburg H, Lagunoff D (1967) The in vitro differentiation of mast cells. Cultures of cells from immunized mouse lymph nodes and thoracic duct lymph on fibroblast monolayers. J Cell Biol 35(3):685–697

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ishizaka K, Ishizaka T, Hornbrook MM (1966) Physicochemical properties of reaginic antibody. V. Correlation of reaginic activity wth gamma-E-globulin antibody. J Immunol (Baltimore, Md : 1950) 97(6):840–853

    CAS  Google Scholar 

  20. Kirshenbaum AS, Goff JP, Semere T, Foster B, Scott LM, Metcalfe DD (1999) Demonstration that human mast cells arise from a progenitor cell population that is CD34(+), c-kit(+), and expresses aminopeptidase N (CD13). Blood 94(7):2333–2342

    CAS  PubMed  Google Scholar 

  21. Young JD, Liu CC, Butler G, Cohn ZA, Galli SJ (1987) Identification, purification, and characterization of a mast cell-associated cytolytic factor related to tumor necrosis factor. Proc Natl Acad Sci U S A 84(24):9175–9179

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakano T, Sonoda T, Hayashi C, Yamatodani A, Kanayama Y, Yamamura T, Asai H, Yonezawa T, Kitamura Y, Galli SJ (1985) Fate of bone marrow-derived cultured mast cells after intracutaneous, intraperitoneal, and intravenous transfer into genetically mast cell-deficient W/Wv mice. Evidence that cultured mast cells can give rise to both connective tissue type and mucosal mast cells. J Exp Med 162(3):1025–1043

    CAS  PubMed  Google Scholar 

  23. Edwards AM (2005) The discovery of cromolyn sodium and its effect on research and practice in allergy and immunology. J Allergy Clin Immunol 115(4):885–888. https://doi.org/10.1016/j.jaci.2005.01.063

    CAS  PubMed  Google Scholar 

  24. Dudeck A, Dudeck J, Scholten J, Petzold A, Surianarayanan S, Kohler A, Peschke K, Vohringer D, Waskow C, Krieg T, Muller W, Waisman A, Hartmann K, Gunzer M, Roers A (2011) Mast cells are key promoters of contact allergy that mediate the adjuvant effects of haptens. Immunity 34(6):973–984. https://doi.org/10.1016/j.immuni.2011.03.028

    CAS  PubMed  Google Scholar 

  25. Otsuka A, Kubo M, Honda T, Egawa G, Nakajima S, Tanizaki H, Kim B, Matsuoka S, Watanabe T, Nakae S, Miyachi Y, Kabashima K (2011) Requirement of interaction between mast cells and skin dendritic cells to establish contact hypersensitivity. PLoS One 6(9):e25538. https://doi.org/10.1371/journal.pone.0025538

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lilla JN, Chen CC, Mukai K, BenBarak MJ, Franco CB, Kalesnikoff J, Yu M, Tsai M, Piliponsky AM, Galli SJ (2011) Reduced mast cell and basophil numbers and function in Cpa3-Cre; mcl-1fl/fl mice. Blood 118(26):6930–6938. https://doi.org/10.1182/blood-2011-03-343962

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Reber LL, Sibilano R, Mukai K, Galli SJ (2015) Potential effector and immunoregulatory functions of mast cells in mucosal immunity. Mucosal Immunol 8(3):444–463. https://doi.org/10.1038/mi.2014.131

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gri G, Frossi B, D’Inca F, Danelli L, Betto E, Mion F, Sibilano R, Pucillo C (2012) Mast cell: an emerging partner in immune interaction. Front Immunol 3:120. https://doi.org/10.3389/fimmu.2012.00120

    PubMed  PubMed Central  Google Scholar 

  29. Gilfillan AM, Austin SJ, Metcalfe DD (2011) Mast cell biology: introduction and overview. Adv Exp Med Biol 716:2–12. https://doi.org/10.1007/978-1-4419-9533-9_1

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nocka K, Buck J, Levi E, Besmer P (1990) Candidate ligand for the c-kit transmembrane kinase receptor: KL, a fibroblast derived growth factor stimulates mast cells and erythroid progenitors. EMBO J 9(10):3287–3294

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Campillo-Navarro M, Chavez-Blanco AD, Wong-Baeza I, Serafin-Lopez J, Flores-Mejia R, Estrada-Parra S, Estrada-Garcia I, Chacon-Salinas R (2014) Mast cells in lung homeostasis: beyond type I hypersensitivity. Current Respiratory Medicine Reviews 10(2):115–123. https://doi.org/10.2174/1573398x10666141024220151

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kalesnikoff J, Galli SJ (2008) New developments in mast cell biology. Nat Immunol 9(11):1215–1223. https://doi.org/10.1038/ni.f.216

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ronnberg E, Melo FR, Pejler G (2012) Mast cell proteoglycans. J Histochem Cytochem Off J Histochem Soc 60(12):950–962. https://doi.org/10.1369/0022155412458927

    CAS  Google Scholar 

  34. Vogel P, Janke L, Gravano DM, Lu M, Sawant DV, Bush D, Shuyu E, Vignali DAA, Pillai A, Rehg JE (2018) Globule leukocytes and other mast cells in the mouse intestine. Vet Pathol 55(1):76–97. https://doi.org/10.1177/0300985817705174

    PubMed  Google Scholar 

  35. Metcalfe DD, Baram D, Mekori YA (1997) Mast cells. Physiol Rev 77(4):1033–1079. https://doi.org/10.1152/physrev.1997.77.4.1033

    CAS  PubMed  Google Scholar 

  36. Nakahata T, Kobayashi T, Ishiguro A, Tsuji K, Naganuma K, Ando O, Yagi Y, Tadokoro K, Akabane T (1986) Extensive proliferation of mature connective-tissue type mast cells in vitro. Nature 324(6092):65–67. https://doi.org/10.1038/324065a0

    CAS  PubMed  Google Scholar 

  37. Tsuji K, Nakahata T, Takagi M, Kobayashi T, Ishiguro A, Kikuchi T, Naganuma K, Koike K, Miyajima A, Arai K et al (1990) Effects of interleukin-3 and interleukin-4 on the development of “connective tissue-type” mast cells: interleukin-3 supports their survival and interleukin-4 triggers and supports their proliferation synergistically with interleukin-3. Blood 75(2):421–427

    CAS  PubMed  Google Scholar 

  38. Enerback L, Lundin PM (1974) Ultrastructure of mucosal mast cells in normal and compound 48-80-treated rats. Cell Tissue Res 150(1):95–105

    CAS  PubMed  Google Scholar 

  39. Okabe T, Hide M, Hiragun T, Morita E, Koro O, Yamamoto S (2006) Bone marrow derived mast cell acquire responsiveness to substance P with ca(2+) signals and release of leukotriene B(4) via mitogen-activated protein kinase. J Neuroimmunol 181(1–2):1–12. https://doi.org/10.1016/j.jneuroim.2006.07.011

    CAS  PubMed  Google Scholar 

  40. Galli SJ, Borregaard N, Wynn TA (2011) Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol 12(11):1035–1044. https://doi.org/10.1038/ni.2109

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Pejler G, Abrink M, Ringvall M, Wernersson S (2007) Mast cell proteases. Adv Immunol 95:167–255. https://doi.org/10.1016/s0065-2776(07)95006-3

    CAS  PubMed  Google Scholar 

  42. Irani AM, Bradford TR, Kepley CL, Schechter NM, Schwartz LB (1989) Detection of MCT and MCTC types of human mast cells by immunohistochemistry using new monoclonal anti-tryptase and anti-chymase antibodies. J Histochem Cytochem Off J Histochem Soc 37(10):1509–1515. https://doi.org/10.1177/37.10.2674273

    CAS  Google Scholar 

  43. Schwartz LB, Irani AM, Roller K, Castells MC, Schechter NM (1987) Quantitation of histamine, tryptase, and chymase in dispersed human T and TC mast cells. J Immunol (Baltimore, Md : 1950) 138(8):2611–2615

    CAS  Google Scholar 

  44. Oliani SM, Vugman I, Jamur MC (1993) Ultrastructural similarity between bat and human mast cell secretory granules. Int Arch Allergy Immunol 100(3):230–233. https://doi.org/10.1159/000236416

    CAS  PubMed  Google Scholar 

  45. Weidner N, Austen KF (1991) Ultrastructural and immunohistochemical characterization of normal mast cells at multiple body sites. The Journal of Investigative Dermatology 96(3):26S–30S discussion 30S-31S

    PubMed  Google Scholar 

  46. Frossi B, Mion F, Sibilano R, Danelli L, Pucillo CEM (2018) Is it time for a new classification of mast cells? What do we know about mast cell heterogeneity? Immunol Rev 282(1):35–46. https://doi.org/10.1111/imr.12636

    CAS  PubMed  Google Scholar 

  47. Dahlin JS, Ding Z, Hallgren J (2015) Distinguishing mast cell progenitors from mature mast cells in mice. Stem Cells Dev 24(14):1703–1711. https://doi.org/10.1089/scd.2014.0553

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Guiraldelli MF, Franca CN, de Souza DA Jr, da Silva EZ, Toso VD, Carvalho CC, Jamur MC, Oliver C (2013) Rat embryonic mast cells originate in the AGM. PLoS One 8(3):e57862. https://doi.org/10.1371/journal.pone.0057862

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Jamur MC, Moreno AN, Mello LF, Souza Junior DA, Campos MR, Pastor MV, Grodzki AC, Silva DC, Oliver C (2010) Mast cell repopulation of the peritoneal cavity: contribution of mast cell progenitors versus bone marrow derived committed mast cell precursors. BMC Immunol 11:32. https://doi.org/10.1186/1471-2172-11-32

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kitamura Y, Shimada M, Hatanaka K, Miyano Y (1977) Development of mast cells from grafted bone marrow cells in irradiated mice. Nature 268(5619):442–443

    CAS  PubMed  Google Scholar 

  51. Gurish MF, Tao H, Abonia JP, Arya A, Friend DS, Parker CM, Austen KF (2001) Intestinal mast cell progenitors require CD49dbeta7 (alpha4beta7 integrin) for tissue-specific homing. J Exp Med 194(9):1243–1252

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Oren M, Escande ML, Paz G, Fishelson Z, Rinkevich B (2008) Urochordate histoincompatible interactions activate vertebrate-like coagulation system components. PLoS One 3(9):e3123. https://doi.org/10.1371/journal.pone.0003123

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Raftos DA, Tait NN, Briscoe DA (1987) Cellular basis of allograft rejection in the solitary urochordate, Styela plicata. Dev Comp Immunol 11(4):713–725

    CAS  PubMed  Google Scholar 

  54. Voehringer D (2013) Protective and pathological roles of mast cells and basophils. Nat Rev Immunol 13(5):362–375. https://doi.org/10.1038/nri3427

    CAS  PubMed  Google Scholar 

  55. Arock M (2016) Mast cell differentiation: still open questions? Blood 127(4):373–374. https://doi.org/10.1182/blood-2015-12-686592

    CAS  PubMed  Google Scholar 

  56. Dahlin JS, Malinovschi A, Ohrvik H, Sandelin M (2016) Lin-CD34hi CD117int/hi FcepsilonRI+ cells in human blood constitute a rare population of mast cell progenitors. Blood 127(4):383–391. https://doi.org/10.1182/blood-2015-06-650648

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Okayama Y, Kawakami T (2006) Development, migration, and survival of mast cells. Immunol Res 34(2):97–115. https://doi.org/10.1385/ir:34:2:97

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Xu Y, Chen G (2015) Mast cell and autoimmune diseases. Mediat Inflamm 2015:246126. https://doi.org/10.1155/2015/246126

    CAS  Google Scholar 

  59. Grimbaldeston MA, Simpson A, Finlay-Jones JJ, Hart PH (2003) The effect of ultraviolet radiation exposure on the prevalence of mast cells in human skin. Br J Dermatol 148(2):300–306. https://doi.org/10.1046/j.1365-2133.2003.05113.x

    CAS  PubMed  Google Scholar 

  60. Kim MS, Kim YK, Lee DH, Seo JE, Cho KH, Eun HC, Chung JH (2009) Acute exposure of human skin to ultraviolet or infrared radiation or heat stimuli increases mast cell numbers and tryptase expression in human skin in vivo. Br J Dermatol 160(2):393–402. https://doi.org/10.1111/j.1365-2133.2008.08838.x

    CAS  PubMed  Google Scholar 

  61. Migalovich-Sheikhet H, Friedman S, Mankuta D, Levi-Schaffer F (2012) Novel identified receptors on mast cells. Front Immunol 3:238. https://doi.org/10.3389/fimmu.2012.00238

    PubMed  PubMed Central  Google Scholar 

  62. Gilfillan AM, Beaven MA (2011) Regulation of mast cell responses in health and disease. Crit Rev Immunol 31(6):475–529

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Halova I, Draberova L, Draber P (2012) Mast cell chemotaxis - chemoattractants and signaling pathways. Front Immunol 3:119. https://doi.org/10.3389/fimmu.2012.00119

    PubMed  PubMed Central  Google Scholar 

  64. Bulanova E, Bulfone-Paus S (2010) P2 receptor-mediated signaling in mast cell biology. Purinergic Signal 6(1):3–17. https://doi.org/10.1007/s11302-009-9173-z

    CAS  PubMed  Google Scholar 

  65. Stone KD, Prussin C, Metcalfe DD (2010) IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol 125(2 Suppl 2):S73–S80. https://doi.org/10.1016/j.jaci.2009.11.017

    PubMed  PubMed Central  Google Scholar 

  66. Kulka M, Metcalfe DD (2010) Isolation of tissue mast cells. Current protocols in immunology Chapter 7:Unit 7.25. https://doi.org/10.1002/0471142735.im0725s90

  67. Mizrahi S, Gibbs BF, Karra L, Ben-Zimra M, Levi-Schaffer F (2014) Siglec-7 is an inhibitory receptor on human mast cells and basophils. J Allergy Clin Immunol 134(1):230–233. https://doi.org/10.1016/j.jaci.2014.03.031

    CAS  PubMed  Google Scholar 

  68. O’Sullivan JA, Carroll DJ, Cao Y, Salicru AN, Bochner BS (2017) Leveraging Siglec-8 endocytic mechanisms to kill human eosinophils and malignant mast cells. J Allergy Clin Immunol. https://doi.org/10.1016/j.jaci.2017.06.028

    PubMed  Google Scholar 

  69. Kiwamoto T, Kawasaki N, Paulson JC, Bochner BS (2012) Siglec-8 as a drugable target to treat eosinophil and mast cell-associated conditions. Pharmacol Ther 135(3):327–336. https://doi.org/10.1016/j.pharmthera.2012.06.005

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Meixiong J, Anderson M, Limjunyawong N, Sabbagh MF, Hu E, Mack MR, Oetjen LK, Wang F, Kim BS, Dong X (2019) Activation of mast-cell-expressed mas-related G-protein-coupled receptors drives non-histaminergic itch. Immunity 50(5):1163–1171.e1165. https://doi.org/10.1016/j.immuni.2019.03.013

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Green DP, Limjunyawong N, Gour N, Pundir P, Dong X (2019) A mast-cell-specific receptor mediates neurogenic inflammation and pain. Neuron 101(3):412–420.e413. https://doi.org/10.1016/j.neuron.2019.01.012

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Frieri M, Patel R, Celestin J (2013) Mast cell activation syndrome: a review. Curr Allergy Asthma Rep 13(1):27–32. https://doi.org/10.1007/s11882-012-0322-z

    CAS  PubMed  Google Scholar 

  73. Blechman JM, Lev S, Givol D, Yarden Y (1993) Structure-function analyses of the kit receptor for the steel factor. Stem Cells (Dayton, Ohio) 11(Suppl 2):12–21. https://doi.org/10.1002/stem.5530110804

    CAS  Google Scholar 

  74. Besmer P, Manova K, Duttlinger R, Huang EJ, Packer A, Gyssler C, Bachvarova RF (1993) The kit-ligand (steel factor) and its receptor c-kit/W: pleiotropic roles in gametogenesis and melanogenesis. Development (Cambridge, Engl) Supplement:125–137

  75. Gilfillan AM, Rivera J (2009) The tyrosine kinase network regulating mast cell activation. Immunol Rev 228(1):149–169. https://doi.org/10.1111/j.1600-065X.2008.00742.x

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Alvarez-Errico D, Lessmann E, Rivera J (2009) Adapters in the organization of mast cell signaling. Immunol Rev 232(1):195–217. https://doi.org/10.1111/j.1600-065X.2009.00834.x

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Silveira ESAM, Mazucato VM, Jamur MC, Oliver C (2011) Lipid rafts in mast cell biology. J Lipids 2011:752906. https://doi.org/10.1155/2011/752906

    CAS  Google Scholar 

  78. Blank U, Rivera J (2004) The ins and outs of IgE-dependent mast-cell exocytosis. Trends Immunol 25(5):266–273. https://doi.org/10.1016/j.it.2004.03.005

    CAS  PubMed  Google Scholar 

  79. Draber P, Sulimenko V, Draberova E (2012) Cytoskeleton in mast cell signaling. Front Immunol 3:130. https://doi.org/10.3389/fimmu.2012.00130

    PubMed  PubMed Central  Google Scholar 

  80. Siraganian RP, de Castro RO, Barbu EA, Zhang J (2010) Mast cell signaling: the role of protein tyrosine kinase Syk, its activation and screening methods for new pathway participants. FEBS Lett 584(24):4933–4940. https://doi.org/10.1016/j.febslet.2010.08.006

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Blank U, Madera-Salcedo IK, Danelli L, Claver J, Tiwari N, Sanchez-Miranda E, Vazquez-Victorio G, Ramirez-Valadez KA, Macias-Silva M, Gonzalez-Espinosa C (2014) Vesicular trafficking and signaling for cytokine and chemokine secretion in mast cells. Front Immunol 5:453. https://doi.org/10.3389/fimmu.2014.00453

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Moon TC, Befus AD, Kulka M (2014) Mast cell mediators: their differential release and the secretory pathways involved. Front Immunol 5:569. https://doi.org/10.3389/fimmu.2014.00569

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Hammel I, Lagunoff D, Galli SJ (2010) Regulation of secretory granule size by the precise generation and fusion of unit granules. J Cell Mol Med 14(7):1904–1916. https://doi.org/10.1111/j.1582-4934.2010.01071.x

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Azouz NP, Hammel I, Sagi-Eisenberg R (2014) Characterization of mast cell secretory granules and their cell biology. DNA Cell Biol 33(10):647–651. https://doi.org/10.1089/dna.2014.2543

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Lorentz A, Baumann A, Vitte J, Blank U (2012) The SNARE machinery in mast cell secretion. Front Immunol 3:143. https://doi.org/10.3389/fimmu.2012.00143

    PubMed  PubMed Central  Google Scholar 

  86. Woska JR Jr, Gillespie ME (2012) SNARE complex-mediated degranulation in mast cells. J Cell Mol Med 16(4):649–656. https://doi.org/10.1111/j.1582-4934.2011.01443.x

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Puri N, Roche PA (2008) Mast cells possess distinct secretory granule subsets whose exocytosis is regulated by different SNARE isoforms. Proc Natl Acad Sci U S A 105(7):2580–2585. https://doi.org/10.1073/pnas.0707854105

    PubMed  PubMed Central  Google Scholar 

  88. Cabeza JM, Acosta J, Ales E (2013) Mechanisms of granule membrane recapture following exocytosis in intact mast cells. J Biol Chem 288(28):20293–20305. https://doi.org/10.1074/jbc.M113.459065

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Garcia-Faroldi G, Rodriguez CE, Urdiales JL, Perez-Pomares JM, Davila JC, Pejler G, Sanchez-Jimenez F, Fajardo I (2010) Polyamines are present in mast cell secretory granules and are important for granule homeostasis. PLoS One 5(11):e15071. https://doi.org/10.1371/journal.pone.0015071

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Theoharides TC, Alysandratos KD, Angelidou A, Delivanis DA, Sismanopoulos N, Zhang B, Asadi S, Vasiadi M, Weng Z, Miniati A, Kalogeromitros D (2012) Mast cells and inflammation. Biochim Biophys Acta 1822(1):21–33. https://doi.org/10.1016/j.bbadis.2010.12.014

    CAS  PubMed  Google Scholar 

  91. Metcalfe DD, Pawankar R, Ackerman SJ, Akin C, Clayton F, Falcone FH, Gleich GJ, Irani AM, Johansson MW, Klion AD, Leiferman KM, Levi-Schaffer F, Nilsson G, Okayama Y, Prussin C, Schroeder JT, Schwartz LB, Simon HU, Walls AF, Triggiani M (2016) Biomarkers of the involvement of mast cells, basophils and eosinophils in asthma and allergic diseases. World Allergy Organ J 9:7. https://doi.org/10.1186/s40413-016-0094-3

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Wernersson S, Pejler G (2014) Mast cell secretory granules: armed for battle. Nat Rev Immunol 14(7):478–494. https://doi.org/10.1038/nri3690

    CAS  PubMed  Google Scholar 

  93. Caughey GH (2011) Mast cell proteases as protective and inflammatory mediators. Adv Exp Med Biol 716:212–234. https://doi.org/10.1007/978-1-4419-9533-9_12

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lefrancais E, Duval A, Mirey E, Roga S, Espinosa E, Cayrol C, Girard JP (2014) Central domain of IL-33 is cleaved by mast cell proteases for potent activation of group-2 innate lymphoid cells. Proc Natl Acad Sci U S A 111(43):15502–15507. https://doi.org/10.1073/pnas.1410700111

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Le QT, Gomez G, Zhao W, Hu J, Xia HZ, Fukuoka Y, Katunuma N, Schwartz LB (2011) Processing of human protryptase in mast cells involves cathepsins L, B, and C. J Immunol (Baltimore, Md : 1950) 187(4):1912–1918. https://doi.org/10.4049/jimmunol.1001806

    CAS  Google Scholar 

  96. Caughey GH (2007) Mast cell tryptases and chymases in inflammation and host defense. Immunol Rev 217:141–154. https://doi.org/10.1111/j.1600-065X.2007.00509.x

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Trivedi NN, Caughey GH (2010) Mast cell peptidases: chameleons of innate immunity and host defense. Am J Respir Cell Mol Biol 42(3):257–267. https://doi.org/10.1165/rcmb.2009-0324RT

    CAS  PubMed  Google Scholar 

  98. Galli SJ, Grimbaldeston M, Tsai M (2008) Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nat Rev Immunol 8(6):478–486. https://doi.org/10.1038/nri2327

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Henningsson F, Yamamoto K, Saftig P, Reinheckel T, Peters C, Knight SD, Pejler G (2005) A role for cathepsin E in the processing of mast-cell carboxypeptidase a. J Cell Sci 118(Pt 9):2035–2042. https://doi.org/10.1242/jcs.02333

    CAS  PubMed  Google Scholar 

  100. He SH, Zhang HY, Zeng XN, Chen D, Yang PC (2013) Mast cells and basophils are essential for allergies: mechanisms of allergic inflammation and a proposed procedure for diagnosis. Acta Pharmacol Sin 34(10):1270–1283. https://doi.org/10.1038/aps.2013.88

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Parameswaran K, Radford K, Fanat A, Stephen J, Bonnans C, Levy BD, Janssen LJ, Cox PG (2007) Modulation of human airway smooth muscle migration by lipid mediators and Th-2 cytokines. Am J Respir Cell Mol Biol 37(2):240–247. https://doi.org/10.1165/rcmb.2006-0172OC

    CAS  PubMed  Google Scholar 

  102. Kasperska-Zajac A, Brzoza Z, Rogala B (2008) Platelet-activating factor (PAF): a review of its role in asthma and clinical efficacy of PAF antagonists in the disease therapy. Recent Patents Inflamm Allergy Drug Discov 2(1):72–76

    CAS  Google Scholar 

  103. Huttunen M, Aalto ML, Harvima RJ, Horsmanheimo M, Harvima IT (2000) Alterations in mast cells showing tryptase and chymase activity in epithelializating and chronic wounds. Exp Dermatol 9(4):258–265

    CAS  PubMed  Google Scholar 

  104. KleinJan A (2016) Airway inflammation in asthma: key players beyond the Th2 pathway. Curr Opin Pulm Med 22(1):46–52. https://doi.org/10.1097/mcp.0000000000000224

    CAS  PubMed  Google Scholar 

  105. Nakae S, Morita H, Ohno T, Arae K, Matsumoto K, Saito H (2013) Role of interleukin-33 in innate-type immune cells in allergy. Allergol Int Off J Jpn Soc Allergol 62(1):13–20. https://doi.org/10.2332/allergolint.13-RAI-0538

    CAS  Google Scholar 

  106. de Vries VC, Noelle RJ (2010) Mast cell mediators in tolerance. Curr Opin Immunol 22(5):643–648. https://doi.org/10.1016/j.coi.2010.08.015

    CAS  PubMed  Google Scholar 

  107. Shiota N, Nishikori Y, Kakizoe E, Shimoura K, Niibayashi T, Shimbori C, Tanaka T, Okunishi H (2010) Pathophysiological role of skin mast cells in wound healing after scald injury: study with mast cell-deficient W/W(V) mice. Int Arch Allergy Immunol 151(1):80–88. https://doi.org/10.1159/000232573

    PubMed  Google Scholar 

  108. Wasiuk A, de Vries VC, Hartmann K, Roers A, Noelle RJ (2009) Mast cells as regulators of adaptive immunity to tumours. Clin Exp Immunol 155(2):140–146. https://doi.org/10.1111/j.1365-2249.2008.03840.x

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Overed-Sayer C, Rapley L, Mustelin T, Clarke DL (2013) Are mast cells instrumental for fibrotic diseases? Front Pharmacol 4:174. https://doi.org/10.3389/fphar.2013.00174

    CAS  PubMed  Google Scholar 

  110. Waern I, Karlsson I, Pejler G, Wernersson S (2016) IL-6 and IL-17A degradation by mast cells is mediated by a serglycin:serine protease axis. Immun Inflamm Dis 4(1):70–79. https://doi.org/10.1002/iid3.95

    CAS  PubMed  Google Scholar 

  111. Dichlberger A, Kovanen PT, Schneider WJ (2013) Mast cells: from lipid droplets to lipid mediators. Clin Sci (Lond, Engl : 1979) 125(3):121–130. https://doi.org/10.1042/cs20120602

    CAS  Google Scholar 

  112. Nocka K, Majumder S, Chabot B, Ray P, Cervone M, Bernstein A, Besmer P (1989) Expression of c-kit gene products in known cellular targets of W mutations in normal and W mutant mice--evidence for an impaired c-kit kinase in mutant mice. Genes Dev 3(6):816–826

    CAS  PubMed  Google Scholar 

  113. Ronnstrand L (2004) Signal transduction via the stem cell factor receptor/c-kit. Cell Mol Life Sci CMLS 61(19–20):2535–2548. https://doi.org/10.1007/s00018-004-4189-6

    CAS  PubMed  Google Scholar 

  114. Reber LL, Marichal T, Galli SJ (2012) New models for analyzing mast cell functions in vivo. Trends Immunol 33(12):613–625. https://doi.org/10.1016/j.it.2012.09.008

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Galli SJ, Kalesnikoff J, Grimbaldeston MA, Piliponsky AM, Williams CM, Tsai M (2005) Mast cells as “tunable” effector and immunoregulatory cells: recent advances. Annu Rev Immunol 23:749–786. https://doi.org/10.1146/annurev.immunol.21.120601.141025

    CAS  PubMed  Google Scholar 

  116. Wedemeyer J, Galli SJ (2005) Decreased susceptibility of mast cell-deficient kit(W)/kit(W-v) mice to the development of 1, 2-dimethylhydrazine-induced intestinal tumors. Lab Invest J Tech Methods Pathol 85(3):388–396. https://doi.org/10.1038/labinvest.3700232

    CAS  Google Scholar 

  117. Galli SJ, Tsai M (2010) Mast cells in allergy and infection: versatile effector and regulatory cells in innate and adaptive immunity. Eur J Immunol 40(7):1843–1851. https://doi.org/10.1002/eji.201040559

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Duttlinger R, Manova K, Chu TY, Gyssler C, Zelenetz AD, Bachvarova RF, Besmer P (1993) W-sash affects positive and negative elements controlling c-kit expression: ectopic c-kit expression at sites of kit-ligand expression affects melanogenesis. Development (Cambridge, England) 118(3):705–717

    CAS  Google Scholar 

  119. Chmelar J, Chatzigeorgiou A, Chung KJ, Prucnal M, Voehringer D, Roers A, Chavakis T (2016) No role for mast cells in obesity-related metabolic dysregulation. Front Immunol 7:524. https://doi.org/10.3389/fimmu.2016.00524

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Feyerabend TB, Weiser A, Tietz A, Stassen M, Harris N, Kopf M, Radermacher P, Moller P, Benoist C, Mathis D, Fehling HJ, Rodewald HR (2011) Cre-mediated cell ablation contests mast cell contribution in models of antibody- and T cell-mediated autoimmunity. Immunity 35(5):832–844. https://doi.org/10.1016/j.immuni.2011.09.015

    CAS  PubMed  Google Scholar 

  121. Feyerabend TB, Gutierrez DA, Rodewald HR (2016) Of mouse models of mast cell deficiency and metabolic syndrome. Cell Metab 24(1):1–2. https://doi.org/10.1016/j.cmet.2016.06.019

    CAS  PubMed  Google Scholar 

  122. Lei Y, Gregory JA, Nilsson GP, Adner M (2013) Insights into mast cell functions in asthma using mouse models. Pulm Pharmacol Ther 26(5):532–539. https://doi.org/10.1016/j.pupt.2013.03.019

    CAS  PubMed  Google Scholar 

  123. Elieh Ali Komi D, Rambasek T, Bielory L (2018) Clinical implications of mast cell involvement in allergic conjunctivitis. Allergy 73(3):528–539. https://doi.org/10.1111/all.13334

    CAS  PubMed  Google Scholar 

  124. Church MK, Kolkhir P, Metz M, Maurer M (2018) The role and relevance of mast cells in urticaria. Immunol Rev 282(1):232–247. https://doi.org/10.1111/imr.12632

    CAS  PubMed  Google Scholar 

  125. Lee CC, Lin CL, Leu SJ, Lee YL (2018) Overexpression of notch ligand Delta-like-1 by dendritic cells enhances their immunoregulatory capacity and exerts antiallergic effects on Th2-mediated allergic asthma in mice. Clin Immunol (Orlando, FL) 187:58–67. https://doi.org/10.1016/j.clim.2017.10.005

    CAS  Google Scholar 

  126. Galli SJ, Tsai M (2012) IgE and mast cells in allergic disease. Nat Med 18(5):693–704. https://doi.org/10.1038/nm.2755

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Ciprandi G, Marseglia GL, Castagnoli R, Valsecchi C, Tagliacarne C, Caimmi S, Licari A (2015) From IgE to clinical trials of allergic rhinitis. Expert Rev Clin Immunol 11(12):1321–1333. https://doi.org/10.1586/1744666x.2015.1086645

    CAS  PubMed  Google Scholar 

  128. Shamji MH, Durham SR (2017) Mechanisms of allergen immunotherapy for inhaled allergens and predictive biomarkers. J Allergy Clin Immunol 140(6):1485–1498. https://doi.org/10.1016/j.jaci.2017.10.010

    CAS  PubMed  Google Scholar 

  129. Modena BD, Dazy K, White AA (2016) Emerging concepts: mast cell involvement in allergic diseases. Transl Res J Lab Clin Med 174:98–121. https://doi.org/10.1016/j.trsl.2016.02.011

    CAS  Google Scholar 

  130. Brown MA, Hatfield JK (2012) Mast cells are important modifiers of autoimmune disease: with so much evidence, why is there still controversy? Front Immunol 3:147. https://doi.org/10.3389/fimmu.2012.00147

    PubMed  PubMed Central  Google Scholar 

  131. Rivellese F, Nerviani A, Rossi FW, Marone G, Matucci-Cerinic M, de Paulis A, Pitzalis C (2017) Mast cells in rheumatoid arthritis: friends or foes? Autoimmun Rev 16(6):557–563. https://doi.org/10.1016/j.autrev.2017.04.001

    CAS  PubMed  Google Scholar 

  132. Sato K, Takayanagi H (2006) Osteoclasts, rheumatoid arthritis, and osteoimmunology. Curr Opin Rheumatol 18(4):419–426. https://doi.org/10.1097/01.bor.0000231912.24740.a5

    CAS  PubMed  Google Scholar 

  133. Elieh-Ali-Komi D, Cao Y (2016) Role of mast cells in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Rev Allergy Immunol. https://doi.org/10.1007/s12016-016-8595-y

    Google Scholar 

  134. Theoharides TC, Kempuraj D, Kourelis T, Manola A (2008) Human mast cells stimulate activated T cells: implications for multiple sclerosis. Ann N Y Acad Sci 1144:74–82. https://doi.org/10.1196/annals.1418.029

    CAS  PubMed  Google Scholar 

  135. Conti P, Kempuraj D (2016) Important role of mast cells in multiple sclerosis. Mult Scler Relat Disord 5:77–80. https://doi.org/10.1016/j.msard.2015.11.005

    CAS  PubMed  Google Scholar 

  136. Medic N, Vita F, Abbate R, Soranzo MR, Pacor S, Fabbretti E, Borelli V, Zabucchi G (2008) Mast cell activation by myelin through scavenger receptor. J Neuroimmunol 200(1–2):27–40. https://doi.org/10.1016/j.jneuroim.2008.05.019

    CAS  PubMed  Google Scholar 

  137. Li H, Nourbakhsh B, Safavi F, Li K, Xu H, Cullimore M, Zhou F, Zhang G, Rostami A (2011) Kit (W-sh) mice develop earlier and more severe experimental autoimmune encephalomyelitis due to absence of immune suppression. J Immunol (Baltimore, Md : 1950) 187(1):274–282. https://doi.org/10.4049/jimmunol.1003603

    CAS  Google Scholar 

  138. Komi DEA, Redegeld FA (2019) Role of mast cells in shaping the tumor microenvironment. Clin Rev Allergy Immunol. https://doi.org/10.1007/s12016-019-08753-w

  139. Rigoni A, Colombo MP, Pucillo C (2015) The role of mast cells in molding the tumor microenvironment. Cancer Microenviron Off J Int Cancer Microenviron Soc 8(3):167–176. https://doi.org/10.1007/s12307-014-0152-8

    CAS  Google Scholar 

  140. Huang B, Lei Z, Zhang GM, Li D, Song C, Li B, Liu Y, Yuan Y, Unkeless J, Xiong H, Feng ZH (2008) SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood 112(4):1269–1279. https://doi.org/10.1182/blood-2008-03-147033

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Maciel TT, Moura IC, Hermine O (2015) The role of mast cells in cancers. F1000prime reports 7:09. https://doi.org/10.12703/p7-09

  142. Gounaris E, Blatner NR, Dennis K, Magnusson F, Gurish MF, Strom TB, Beckhove P, Gounari F, Khazaie K (2009) T-regulatory cells shift from a protective anti-inflammatory to a cancer-promoting proinflammatory phenotype in polyposis. Cancer Res 69(13):5490–5497. https://doi.org/10.1158/0008-5472.Can-09-0304

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Danelli L, Frossi B, Pucillo CE (2015) Mast cell/MDSC a liaison immunosuppressive for tumor microenvironment. Oncoimmunology 4(4):e1001232. https://doi.org/10.1080/2162402x.2014.1001232

    PubMed  PubMed Central  Google Scholar 

  144. Ryan JJ, Morales JK, Falanga YT, Fernando JF, Macey MR (2009) Mast cell regulation of the immune response. World Allergy Organ J 2(10):224–232. https://doi.org/10.1097/WOX.0b013e3181c2a95e

    PubMed  PubMed Central  Google Scholar 

  145. Wulff BC, Wilgus TA (2013) Mast cell activity in the healing wound: more than meets the eye? Exp Dermatol 22(8):507–510. https://doi.org/10.1111/exd.12169

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Kennelly R, Conneely JB, Bouchier-Hayes D, Winter DC (2011) Mast cells in tissue healing: from skin to the gastrointestinal tract. Curr Pharm Des 17(34):3772–3775

    CAS  PubMed  Google Scholar 

  147. Ng MF (2010) The role of mast cells in wound healing. Int Wound J 7(1):55–61. https://doi.org/10.1111/j.1742-481X.2009.00651.x

    PubMed  Google Scholar 

  148. Trautmann A, Toksoy A, Engelhardt E, Brocker EB, Gillitzer R (2000) Mast cell involvement in normal human skin wound healing: expression of monocyte chemoattractant protein-1 is correlated with recruitment of mast cells which synthesize interleukin-4 in vivo. J Pathol 190(1):100–106. https://doi.org/10.1002/(sici)1096-9896(200001)190:1<100::aid-path496>3.0.co;2-q

    CAS  PubMed  Google Scholar 

  149. Tellechea A, Leal EC, Kafanas A, Auster ME, Kuchibhotla S, Ostrovsky Y, Tecilazich F, Baltzis D, Zheng Y, Carvalho E, Zabolotny JM, Weng Z, Petra A, Patel A, Panagiotidou S, Pradhan-Nabzdyk L, Theoharides TC, Veves A (2016) Mast cells regulate wound healing in diabetes. Diabetes 65(7):2006–2019. https://doi.org/10.2337/db15-0340

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Artuc M, Hermes B, Steckelings UM, Grutzkau A, Henz BM (1999) Mast cells and their mediators in cutaneous wound healing--active participants or innocent bystanders? Exp Dermatol 8(1):1–16

    CAS  PubMed  Google Scholar 

  151. Rao KN, Brown MA (2008) Mast cells: multifaceted immune cells with diverse roles in health and disease. Ann N Y Acad Sci 1143:83–104. https://doi.org/10.1196/annals.1443.023

    CAS  PubMed  Google Scholar 

  152. Mekori YA, Hershko AY (2012) T cell-mediated modulation of mast cell function: heterotypic adhesion-induced stimulatory or inhibitory effects. Front Immunol 3:6. https://doi.org/10.3389/fimmu.2012.00006

    PubMed  PubMed Central  Google Scholar 

  153. Martin RK, Saleem SJ, Folgosa L, Zellner HB, Damle SR, Nguyen GK, Ryan JJ, Bear HD, Irani AM, Conrad DH (2014) Mast cell histamine promotes the immunoregulatory activity of myeloid-derived suppressor cells. J Leukoc Biol 96(1):151–159. https://doi.org/10.1189/jlb.5A1213-644R

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Carroll-Portillo A, Cannon JL, te Riet J, Holmes A, Kawakami Y, Kawakami T, Cambi A, Lidke DS (2015) Mast cells and dendritic cells form synapses that facilitate antigen transfer for T cell activation. J Cell Biol 210(5):851–864. https://doi.org/10.1083/jcb.201412074

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Galli SJ, Nakae S, Tsai M (2005) Mast cells in the development of adaptive immune responses. Nat Immunol 6(2):135–142. https://doi.org/10.1038/ni1158

    CAS  PubMed  Google Scholar 

  156. Dahdah A, Gautier G, Attout T, Fiore F, Lebourdais E, Msallam R, Daeron M, Monteiro RC, Benhamou M, Charles N, Davoust J, Blank U, Malissen B, Launay P (2014) Mast cells aggravate sepsis by inhibiting peritoneal macrophage phagocytosis. J Clin Invest 124(10):4577–4589. https://doi.org/10.1172/jci75212

    CAS  PubMed  PubMed Central  Google Scholar 

  157. De Filippo K, Dudeck A, Hasenberg M, Nye E, van Rooijen N, Hartmann K, Gunzer M, Roers A, Hogg N (2013) Mast cell and macrophage chemokines CXCL1/CXCL2 control the early stage of neutrophil recruitment during tissue inflammation. Blood 121(24):4930–4937. https://doi.org/10.1182/blood-2013-02-486217

    CAS  PubMed  Google Scholar 

  158. Hodges K, Kennedy L, Meng F, Alpini G, Francis H (2012) Mast cells, disease and gastrointestinal cancer: a comprehensive review of recent findings. Transl Gastrointest Cancer 1(2):138–150

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Schramm R, Thorlacius H (2004) Neutrophil recruitment in mast cell-dependent inflammation: inhibitory mechanisms of glucocorticoids. Inflamm Res Off J Eur Histamine Res Soc 53(12):644–652. https://doi.org/10.1007/s00011-004-1307-8

    CAS  Google Scholar 

  160. Symowski C, Voehringer D (2017) Interactions between innate lymphoid cells and cells of the innate and adaptive immune system. Front Immunol 8:1422. https://doi.org/10.3389/fimmu.2017.01422

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Ganeshan K, Bryce PJ (2012) Regulatory T cells enhance mast cell production of IL-6 via surface-bound TGF-beta. J Immunol (Baltimore, Md : 1950) 188(2):594–603. https://doi.org/10.4049/jimmunol.1102389

    CAS  Google Scholar 

  162. de Vries VC, Wasiuk A, Bennett KA, Benson MJ, Elgueta R, Waldschmidt TJ, Noelle RJ (2009) Mast cell degranulation breaks peripheral tolerance. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg 9(10):2270–2280. https://doi.org/10.1111/j.1600-6143.2009.02755.x

    CAS  Google Scholar 

  163. Hershko AY, Rivera J (2010) Mast cell and T cell communication; amplification and control of adaptive immunity. Immunol Lett 128(2):98–104. https://doi.org/10.1016/j.imlet.2009.10.013

    CAS  PubMed  Google Scholar 

  164. Satoh T, Akira S (2016) Toll-like receptor signaling and its inducible proteins. Microbiol Spectr 4(6). https://doi.org/10.1128/microbiolspec.MCHD-0040-2016

  165. Leifer CA, Medvedev AE (2016) Molecular mechanisms of regulation of toll-like receptor signaling. J Leukoc Biol 100(5):927–941. https://doi.org/10.1189/jlb.2MR0316-117RR

    CAS  PubMed  PubMed Central  Google Scholar 

  166. St John AL, Abraham SN (2013) Innate immunity and its regulation by mast cells. J Immunol (Baltimore, Md : 1950) 190(9):4458–4463. https://doi.org/10.4049/jimmunol.1203420

    CAS  Google Scholar 

  167. Abraham SN, St John AL (2010) Mast cell-orchestrated immunity to pathogens. Nat Rev Immunol 10(6):440–452. https://doi.org/10.1038/nri2782

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Chan CY, St John AL, Abraham SN (2012) Plasticity in mast cell responses during bacterial infections. Curr Opin Microbiol 15(1):78–84. https://doi.org/10.1016/j.mib.2011.10.007

    PubMed  Google Scholar 

  169. Saluja R, Metz M, Maurer M (2012) Role and relevance of mast cells in fungal infections. Front Immunol 3:146. https://doi.org/10.3389/fimmu.2012.00146

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Carlos D, Frantz FG, Souza-Junior DA, Jamur MC, Oliver C, Ramos SG, Quesniaux VF, Ryffel B, Silva CL, Bozza MT, Faccioli LH (2009) TLR2-dependent mast cell activation contributes to the control of mycobacterium tuberculosis infection. Microbes Infect 11(8–9):770–778. https://doi.org/10.1016/j.micinf.2009.04.025

    CAS  PubMed  Google Scholar 

  171. Sutherland RE, Olsen JS, McKinstry A, Villalta SA, Wolters PJ (2008) Mast cell IL-6 improves survival from Klebsiella pneumonia and sepsis by enhancing neutrophil killing. J Immunol (Baltimore, Md : 1950) 181(8):5598–5605

    CAS  Google Scholar 

  172. Junkins RD, Carrigan SO, Wu Z, Stadnyk AW, Cowley E, Issekutz T, Berman J, Lin TJ (2014) Mast cells protect against Pseudomonas aeruginosa-induced lung injury. Am J Pathol 184(8):2310–2321. https://doi.org/10.1016/j.ajpath.2014.05.009

    CAS  PubMed  Google Scholar 

  173. Siebenhaar F, Syska W, Weller K, Magerl M, Zuberbier T, Metz M, Maurer M (2007) Control of Pseudomonas aeruginosa skin infections in mice is mast cell-dependent. Am J Pathol 170(6):1910–1916. https://doi.org/10.2353/ajpath.2007.060770

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Walker ME, Hatfield JK, Brown MA (2012) New insights into the role of mast cells in autoimmunity: evidence for a common mechanism of action? Biochim Biophys Acta 1822(1):57–65. https://doi.org/10.1016/j.bbadis.2011.02.009

    CAS  PubMed  Google Scholar 

  175. Wang Z, Lai Y, Bernard JJ, Macleod DT, Cogen AL, Moss B, Di Nardo A (2012) Skin mast cells protect mice against vaccinia virus by triggering mast cell receptor S1PR2 and releasing antimicrobial peptides. J Immunol (Baltimore, Md : 1950) 188(1):345–357. https://doi.org/10.4049/jimmunol.1101703

    CAS  Google Scholar 

  176. Aoki R, Kawamura T, Goshima F, Ogawa Y, Nakae S, Nakao A, Moriishi K, Nishiyama Y, Shimada S (2013) Mast cells play a key role in host defense against herpes simplex virus infection through TNF-alpha and IL-6 production. J Invest Dermatol 133(9):2170–2179. https://doi.org/10.1038/jid.2013.150

    CAS  PubMed  Google Scholar 

  177. Choi HW, Abraham SN (2015) Mast cell mediator responses and their suppression by pathogenic and commensal microorganisms. Mol Immunol 63(1):74–79. https://doi.org/10.1016/j.molimm.2014.02.006

    CAS  PubMed  Google Scholar 

  178. Elieh Ali Komi D, Shafaghat F, Zwiener RD (2017) Immunology of bee venom. Clin Rev Allergy Immunol. https://doi.org/10.1007/s12016-017-8597-4

    Google Scholar 

  179. Galli SJ, Starkl P, Marichal T, Tsai M (2017) Mast cells and IgE can enhance survival during innate and acquired host responses to venoms. Trans Am Clin Climatol Assoc 128:193–221

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Daniel Elieh Ali Komi, Stefan Wöhrl, and Leonard Bielory have been directly involved in the preparation of the manuscript. Daniel Elieh Ali Komi has designed and created the figures. Leonard Bielory and Stefan Wöhrl have reviewed, revised, and added inputs.

Corresponding author

Correspondence to Leonard Bielory.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

No informed consent was required to prepare the manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elieh Ali Komi, D., Wöhrl, S. & Bielory, L. Mast Cell Biology at Molecular Level: a Comprehensive Review. Clinic Rev Allerg Immunol 58, 342–365 (2020). https://doi.org/10.1007/s12016-019-08769-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-019-08769-2

Keywords

Navigation