Skip to main content

Advertisement

Log in

The influence of phthalates and bisphenol A on the obesity development and glucose metabolism disorders

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The prevalence of obesity and type 2 diabetes mellitus epidemics presents a great health problem worldwide. Beside the changes in diet and decreased physical activity, there is growing interest in endocrine disrupting chemicals that may have effects on these conditions. Among them, the role of certain phthalates and bisphenol A is confirmed. We have summarized the existing literature on this issue including cross-sectional, follow up epidemiological studies and in vivo and in vitro studies. Most data support the effects of bisphenol A and some phthalates, such as di-2-ethyl-hexyl phthalate, diethyl phthalate, dibuthyl phthalate, dimethyl phthalate, dibenzyl phthalate, diisononyl phthalate and others on the development obesity and type 2 diabetes mellitus. These endocrine disrupting chemicals interfere with different cell signaling pathways involved in weight and glucose homeostasis. Since the data are rather inconsistent, there is a need for new, well-designed prospective studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. World Health Organization, Obesity and overweight. (2015), http://www.who.int/mediacentre/factsheets/fs311/en/. Accessed 03 Mar 2016

  2. S.D. De Ferranti, S.K. Osganian, Epidemiology of pediatric metabolic syndrome and type 2 diabetes mellitus. Diabetes Vasc. Dis. Res. 4, 285–296 (1995)

    Article  Google Scholar 

  3. G.A. Bray, T. Bellanger, Epidemiology, trends, and morbidities of obesity and the metabolic syndrome. Endocrine 29, 109–117 (2006)

    Article  CAS  PubMed  Google Scholar 

  4. P. Almeda-Valdes, C.A. Aguilar-Salinas, M. Uribe, S.C. Quinteros, N. Méndez-Sánchez, Impact of anthropometric cutoff values in determining the prevalence of metabolic alterations. Eur. J. Clin. Investig. (2016). doi:10.1111/eci.12672

  5. A. De Lorenzo, L. Soldati, F. Sarlo, M. Calvani, N. Di Lorenzo, L. Di Renzo, New obesity classification criteria as a tool for bariatric surgery indication. World J. Gastroenterol. (2016). 10.3748/wjg.v22.i2.681

  6. L. Guariguata, D.R. Whiting, I. Hambleton, J. Beagley, V. Linnenkamp, J.E. Show, IDF Atlas. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract. (2014). doi:10.1016/j.diabres.2013.11.002

  7. R.B. Rosenbloom, J.R. Joe, R.S. Young, W.E. Winter, Emerging epidemic of type 2 diabetes in youth. Diabetes Care 22, 345–354 (1999)

    Article  CAS  PubMed  Google Scholar 

  8. E. Diamanti-Kandarakis, J.P. Bourguignon, L.C. Giudice, R. Hauser, G.S. Prins, A.M. Soto, R.T. Zoeller, A.C. Gore, Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr. Rev. (2009). doi:10.1210/er.2009-0002

  9. International Program for Chemical Safety (IPCS) in Global assessment of the state-of-the-science of endocrine disruptors Chapter 1, Executive Summary. (2010), http://www.who.int/ipcs/publications/en/ch1.pdf. Accessed 03 Mar 2016

  10. L.N. Vandenberg, T. Colborn, T.B. Hayes, J.J. Heindel, D.R. Jacobs Jr., D.H. Lee, T. Shioda, A.M. Soto, F.S. vom Saal, W.V. Welshons, R.T. Zoeller, J.P. Myers, Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr. Rev. (2012). doi:10.1210/er.2011-1050

  11. I. Bajkin, A. Bjelica, T. Icin, V. Dobric, B.K. Zavisic, M.M. Stojanoska, Effects of phthalic acid esters on fetal health. Med. Pregl. 67, 172–175 (2014)

    Article  PubMed  Google Scholar 

  12. A.C. Gore, V.A. Chappell, S.E. Fenton, J.A. Flaws, A. Nadal, G.S. Prins, J. Toppari, R.T. Zoeller, Executive summary to EDC-2: the endocrine society’s second scientific statement on endocrine-disrupting chemicals. Endocr. Rev. (2015). doi:10.1210/er.2015-1010

  13. T. Suzuki, K. Yaguchi, S. Suzuki, T. Suga, Monitoring of phthalic acid monoesters in river water by solid-phase extraction and GC-MS determination. Environ. Sci. Technol. 35, 3757–3763 (2001)

    Article  CAS  PubMed  Google Scholar 

  14. A.O. Earls, I.P. Axford, J.H. Braybrook, Gas chromatography-mass spectrometry determination of the migration of phthalate plasticisers from polyvinyl chloride toys and childcare articles. J. Chromatogr. A 983, 237–246 (2003)

    Article  CAS  PubMed  Google Scholar 

  15. J. Bosnir, D. Puntaric, A. Galic, I. Skes, T. Dijanic, M. Klaric, M. Grgic, M. Curkovic, Z. Smit, Migration of phthalates from plastic containers into soft drinks and mineral water. Food Technol. Biotechnol. 45, 91–95 (2007)

    CAS  Google Scholar 

  16. CDC (Centers for Disease Control and Prevention) Fourth National Report on Human Exposure to Environmental Chemicals, Updates tables.(2015). http://www.cdc.gov/exposurereport/. Accessed 03 March 2016

  17. D.W. Liang, T. Zhang, H.H. Fang, J. He, Phthalates biodegradation in the environment. Appl. Microbiol. Biotechnol. (2008). doi:10.1007/s00253-008-1548-5

  18. Lowell Center for Sustainable Production UI. Phthalates and their Alternatives. Health and Environmental Concerns. Lowell Center for Sustainable Production, University of Massachusetts, Lowell (2011). http://www.sustainableproduction.org/downloads/DEHP%20Full%20Text.pdf. Accessed 03 Mar 2016

  19. R. Mankidy, S. Wiseman, H. Ma, J.P. Giesy, Biological impact of phthalates. Toxicol. Lett. (2013). doi:10.1016/j.toxlet.2012.11.025

  20. H. Fredricksen, N.E. Skakkebaek, A.M. Andersson, Metabolism of phthalates in humans. Mol. Nutr. Food Res. 51, 899–911 (2007)

    Article  Google Scholar 

  21. ATSDR, Toxicological profile for di-(2-ethylhexyl) phthalate (DEHP). Atlanta: Agency for toxic substances and disease registry. http://www.atsdr.cdc.gov/toxprofiles Accessed 03 Mar 2016

  22. M. Medic Stojanoska, B. Vukovic, J. Novakovic Paro, I. Bajkin, T. Icin, N. Milic, A. Milankov, B. Kovacev Zavisic, Association between urinary phthalate metabolites and diabetes mellitus: a pilot study. Diabetologia. 56, pS164 (2013)

    Google Scholar 

  23. H.D. Duntas, Chemical contamination and the thyroid. Endocrine. (2015). doi:10.1007/s12020-014-0442-4

  24. M.J. Silva, D.B. Barr, J.A. Reidy, N.A. Malek, C.C. Hodge, S.P. Caudil, W.J. Brock, L.L. Needham, A.M. Calafat, Urinary levels of seven phthalate metabolites in the U.S population from the National Health and Nutrition Examination Survey (NHANES) 1999–2000. Environ. Health Perspect. 112, 331–338 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. World Health Organization (WHO), Guidelines for Drinking Water Quality. Chapter 8: Chemical Aspects. 4th edn. Geneva: World Health Organization (2011). http://whqlibdoc.who.int Accessed 05 February 2012

  26. US Environmental Protection Agency, Water: basic information about regulated drinking water contaminants. http://water.epa.gov/drink/contaminants/basicinformation/di_2_ethyl_phthalate.com. Accessed 03 Mar 2016

  27. ECHA, Evaluation of new scientific evidence concerning the restrictions contained in Annex XVII to regulation (EC) № 1907/2006 (REACH). http://www.echa.europa.eu. Accessed 03 Mar 2016

  28. J. Legler, T. Fletcher, E. Govarts, M. Porta, B. Blumberg, J.J. Heindel, L. Trasande, Obesity, diabetes, and associated costs of exposure to endocrine-disrupting chemicals in the European union. J. Clin. Endocrinol. Metab. (2015). doi:10.1210/jc.2014-4326

  29. K.E. Zimmer, A.C. Gutleb, S. Ravnum, M. Krayer von Krauss, A.J. Murk, E. Ropstad, J.U. Skaare, G.S. Eriksen, J.L. Lyche, J.G. Koppe, B.L. Magnanti, A. Yang, A. Bartonova, H. Keune, Policy relevant results from an expert elicitation on the health risks of phthalates. Environ. Health (2012). doi:10.1186/1476-069X-11-S1-S6

  30. A. Bergman, G. Becher, B. Blumberg, P. Bjerregaard, R. Bornman, I. Brandt, S.C. Casey, H. Frouin, L.C. Giudice, J.J. Heindel, T. Iguchi, S. Jobling, K.A. Kidd, A. Kortenkamp, P.M. Lind, D. Muir, R. Ocheing, E. Ropstad, P.S. Ross, N.E. Skakkebeak, J. Toppari, L.N. Vandenberg, T.J. Woodruff, R.T. Zoller, Disrupter science—a rebuttal of industry-sponsored critical comments on the UNEP/WHO report “State of the Science of Endocrine Disrupting Chemicals 2012”. Regul. Toxicol. Pharmacol. (2015). doi:10.1016/j.yrtph.2015.07.026

  31. T. Göen, L. Dobler, J. Koschorreck, J. Müller, G.A. Wiesmüller, H. Drexler, M. Kolossa-Gehring, Trends of the internal phthalate exposure of young adults in Germany—follow-up of a retrospective human biomonitoring study. Int. J. Hyg. Environ. Health (2011). doi:10.1016/j.ijheh.2011.07.011

  32. A.R. Zota, A.M. Calafat, T.J. Woodruff, Temporal trends in phthalate exposures: findings from the National Health and Nutrition Examination Survey, 2001–2010. Environ. Health Perspect. (2014). doi:10.1289/ehp.13066811

  33. T. Geens, D. Aerts, C. Berthot, J.P. Bourguignon, L. Goeyens, P. Lecomte, G. Maghuin-Rogister, A.M. Pironnet, L. Pussemier, M.L, Scippo, J. Van Loco, A. Covaci, A review of dietary and non-dietary exposure to bisphenol-A. Food Chem. Toxicol. (2012). doi:10.1016/j.fct.2012.07.059

  34. L.N. Vandenberg, M.V. Maffini, C. Sonnenschein, B.S. Rubin, A.M. Soto, Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr. Rev. 30, 75–95 (2009). doi:10.1210/er.2008-0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. J. Corrales, L.A. Kristofco, W.B. Steele, B.S. Yates, C.S. Breed, E.S. Williams, B.W. Brooks, Global assessment of bisphenol A in the environment: review and analysis of its occurrence and bioaccumulation. Dose-Response 13, 1–29 (2015)

    Article  CAS  Google Scholar 

  36. W. Völkel, T. Colnot, G.A. Csanády, J.G. Filser, W. Dekant, Metabolism and kinetics of bisphenol A in humans at low doses following oral administration. Chem. Res. Toxicol. 15, 1281–1287 (2002)

    Article  PubMed  Google Scholar 

  37. L.N. Vandenberg, R. Hauser, M. Marcus, N. Olea, W.V. Welshons, Human exposure to bisphenol A (BPA). Reprod. Toxicol. 24, 139–177 (2007)

    Article  CAS  PubMed  Google Scholar 

  38. R.W. Stahlhut, W.V. Welshons, S.H. Swan, Bisphenol A data in NHANES suggest longer than expected half-life, substantial nonfood exposure, or both. Environ. Health. Perspect. 117, 784–789 (2009). doi:10.1289/ehp.0800376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. A.M. Calafat, X. Ye, L.Y. Wong, J.A. Reidy, L.L. Needham, Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environ. Health Perspect. (2008). doi:10.1289/ehp.10753

  40. D. Caserta, G. Bordi, F. Ciardo, R. Marci, C. La Rocca, S. Tait, B. Bergamasco, L. Stecca, A. Mantovani, C. Guerranti, E.L. Fanello, G. Perra, F. Borghini, S.E. Focardi, M. Moscarini, The influence of endocrine disruptors in a selected population of infertile women. Gynecol. Endocrinol. (2013). doi:10.3109/09513590.2012.758702

  41. T. Takeuchi, O. Tsutsumi, Serum bisphenol A concentrations showed gender differences, possibly linked to androgen levels. Biochem. Biophys. Res. Commun. 291, 76–78 (2002)

    Article  CAS  PubMed  Google Scholar 

  42. E.S. Barrett, M. Sobolewski, Polycystic ovary syndrome: do endocrine disrupting chemicals play a role? Semin. Reprod. Med. (2014). doi:10.1055/s-0034-1371088

  43. J.D. Meeker, A.M. Calafat, R. Hauser, Urinary bisphenol A concentrations in relation to serum thyroid and reproductive hormone levels in men from an infertility clinic. Environ. Sci. Technol. (2010). doi:10.1021/es9028292

  44. D. Li, Z. Zhou, D. Qing, Y. He, T. Wu, M. Miao, J. Wang, X. Weng, J.R. Ferber, L.J. Herrinton, Q. Zhu, E. Gao, H. Checkoway, W. Yuan, Occupational exposure to bisphenol-A (BPA) and the risk of self-reported male sexual dysfunction. Hum. Reprod. (2010). doi:10.1093/humrep/dep381

  45. J.D. Meeker, S. Ehrlich, T.L. Toth, D.L. Wright, A.M. Calafat, A.T. Trisini, X. Ye, R. Hauser, Semen quality and sperm DNA damage in relation to urinary bisphenol A among men from an infertility clinic. Reprod. Toxicol. (2010). doi:10.1016/j.reprotox.2010.07.005

  46. M. Miao, W. Yuan, Y. He, Z. Zhou, J. Wang, E. Gao, G. Li, D.K. Li, In utero exposure to bisphenol-A and anogenital distance of male offspring. Birth Defects Res. A Clin. Mol. Teratol. (2011). doi:10.1002/bdra.22845

  47. A.B. Ropero, P. Alonso-Magdalena, E. García-García, C. Ripoll, E. Fuentes, A. Nadal, Bisphenol-A disruption of the endocrine pancreas and blood glucose homeostasis. Int. J. Androl. 31, 194–200 (2008)

    Article  CAS  PubMed  Google Scholar 

  48. E.R. Hugo, T.D. Brandebourg, J.G. Woo, J. Loftus, J.W. Alexander, N. Ben-Jonathan, Bisphenol A at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes. Environ. Health Perspect. (2008). doi:10.1289/ehp.11537

  49. A. Shankar, S. Teppala, Relationship between urinary bisphenol A levels and diabetes mellitus. J. Clin. Endocrinol. Metab. (2011). doi:10.1210/jc.2011-1682

  50. M.K. Silver, M.S. O’Neill, M.R. Sowers, S.K. Park, Urinary bisphenol A and type-2 diabetes in U.S. adults: data from NHANES 2003-2008. PLoS One. (2011). doi:10.1371/journal.pone.0026868

  51. A. Shankar, S. Teppala, Urinary bisphenol A and hypertension in a multiethnic sample of US adults. J. Environ. Public Health 2012, 481641 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  52. A. Shankar, S. Teppala, C. Sabanayagam, Bisphenol a and peripheral arterial disease: results from the NHANES. Environ. Health Perspect. (2012). doi:10.1289/ehp.1104114

  53. J.R. Rochester, Bisphenol A and human health: a review of the literature. Reprod. Toxicol. (2013). doi:10.1016/j.reprotox.2013.08.008

  54. C.M. Metz, Bisphenol A: understanding the controversy. Workplace Health Saf. (2016). doi:10.1177/2165079915623790

  55. European Food Safety Association, Scientific opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J. 2015;13(1):3978. doi:10.2903/j.efsa.2015.3978, http://www.efsa.europa.eu/en/topics/topic/bisphenol. Accessed 03 Mar 2016

  56. P.F. Baillie-Hamilton, Chemical toxins: a hypothesis to explain global obesity epidemic. J. Altern. Complement. Med. 8, 185–192 (2002)

    Article  PubMed  Google Scholar 

  57. R.W. Stahlhut, E. van Wijngaarden, T.D. Dye, S. Cook, S.H. Swan, Concentrations of urinary phthalate metabolites are associated with increased waist circumference and insulin resistance in adult U.S. males. Environ. Health Perspect. 115, 876–882 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. E.E. Hatch, J.W. Nelson, M.M. Qureshi, J. Weinberg, L.L. Moore, M. Singer, T.F. Webster, Association of urinary phthalate metabolite concentrations with body mass index and waist circumference: a cross-sectional study of NHANES data, 1999–2002. Environ. Health (2008). doi:10.1186/1476-069X-7-27

  59. M. Medic Stojanoska, A. Milankov, B. Vukovic, D. Vukcevic, J. Sudji, I. Bajkin, N. Curic, T. Icin, B. Kovacev Zavisic, N. Milic, Do diethyl phthalate (DEP) and di-2-ethylhexyl phthalate (DEHP) influence the metabolic syndrome parameters? Pilot study. Environ. Monit. Assess. (2015). doi:10.1007/s10661-015-4754-5

  60. P.M. Lind, V. Roos, M. Rönn, L. Johansson, H. Ahlström, J. Kullberg, L. Lind, Serum concentrations of phthalate metabolites are related to abdominal fat distribution two years later in elderly women. Environ. Health (2012). doi:10.1186/1476-069X-11-21

  61. Y. Song, R. Hauser, F.B. Hu, A.A. Franke, S. Liu, Q. Sun, Urinary concentrations of bisphenol A and phthalate metabolites and weight change: a prospective investigation in US women. Int. J. Obes. (Lond.) (2014). doi:10.1038/ijo.2014.63

  62. S.L. Teitelbaum, N. Mervish, E.L. Moshier, N. Vangeepuram, M.P. Galvez, A.M. Calafat, M.J. Silva, B.L. Brenner, M.S. Wolff, Associations between phthalate metabolite urinary concentrations and body size measures in New York city children. Environ. Res. (2012). doi:10.1016/j.envres.2011.12.006

  63. A. Smerieri, C. Testa, P. Lazzeroni, F. Nuti, E. Grossi, S. Cesari, L. Montanini, G. Latini, S. Bernasconi, A.M. Papini, M.E. Street, Di-(2-ethylhexyl) phthalate metabolites in urine show age-related changes and associations with adiposity and parameters of insulin sensitivity in childhood. PLoS One (2015). doi:10.1371/journal.pone.0117831

  64. C. Philippat, M. Mortamais, C. Chevrier, C. Petit, A.M. Calafat, X. Ye, M.J. Silva, C. Brambilla, I. Pin, M.A. Charles, S. Cordier, R. Slama, Exposure to phthalates and phenols during pregnancy and offspring size at birth. Environ. Health Perspect. (2012). doi:10.1289/ehp.1103634

  65. J.H. Kim, H. Park, J. Lee, G. Cho, S. Choi, G. Choi, S.Y. Kim, S.H. Eun, E. Suh, S.K. Kim, H.J. Kim, G.H. Kim, J.J. Lee, Y.D. Kim, S. Eom, S. Kim, S. Kim, Association of diethylhexyl phthalate with obesity-related markers and body mass change from birth to 3 months of age. J. Epidemiol. Community Health (2016). doi:10.1136/jech-2015-206315

  66. J. Ashley-Martin, L. Dodds, T.E. Arbuckle, A.S. Ettinger, G.D. Shapiro, M. Fisher, A.S. Morisset, S. Taback, M.F. Bouchard, P. Monnier, R. Dallaire, W.D. Fraser, A birth cohort study to investigate the association between prenatal phthalate and bisphenol A exposures and fetal markers of metabolic dysfunction. Environ. Health (2014). doi:10.1186/1476-069X-13-84

  67. S.J. Kwack, E.Y. Han, J.S. Park, J.Y. Bae, I.Y. Ahn, S.K. Lim, D.H. Kim, D.E. Jang, L. Choi, H.J. Lim, T.H. Kim, N. Patra, K.L. Park, H.S. Kim, B.M. Lee, Comparison of the short term toxicity of phthalate diesters and monoesters in sprague-dawley male rats. Toxicol. Res. (2010). doi:10.5487/TR.2010.26.1.075

  68. J.L. Carwile, K.B. Michels, Urinary bisphenol A and obesity: NHANES 2003–2006. Environ. Res. (2011). doi:10.1016/j.envres.2011.05.014

  69. A. Shankar, S. Teppala, C. Sabanayagam, Urinary bisphenol a levels and measures of obesity: results from the national health and nutrition examination survey 2003–2008. ISRN Endocrinol. (2012). doi:10.5402/2012/965243

  70. T. Wang, M. Li, B. Chen, M. Xu, Y. Xu, Y. Huang, J. Lu, Y. Chen, W. Wang, X. Li, Y. Liu, Y. Bi, S. Lai, G. Ning, Urinary bisphenol A (BPA) concentration associates with obesity and insulin resistance. J. Clin. Endocrinol. Metab. (2012). doi:10.1210/jc.2011-1989

  71. T. Takeuchi, O. Tsutsumi, Y. Ikezuki, Y. Takai, Y. Taketani, Positive relationship between androgen and the endocrine disruptor, bisphenol A, in normal women and women with ovarian dysfunction. Endocr. J. 51, 165–169 (2004)

    Article  CAS  PubMed  Google Scholar 

  72. N. Milić, D. Četojević-Simin, M. Milanović, J. Sudji, N. Milošević, N. Ćurić, L. Abenavoli, Medić-Stojanoska, M., Estimation of in vivo and in vitro exposure to bisphenol A as food contaminant. Food Chem. Toxicol. (2015). doi:10.1016/j.fct.2015.07.003

  73. H.Y. Zhao, Y.F. Bi, L.Y. Ma, L. Zhao, T.G. Wang, L.Z. Zhang, B. Tao, L.H. Sun, Y.J. Zhao, W.Q. Wang, X.Y. Li, M.Y. Xu, J.L. Chen, G. Ning, J.M. Liu, The effects of bisphenol A (BPA) exposure on fat mass and serum leptin concentrations have no impact on bone mineral densities in non-obese premenopausal women. Clin. Biochem. (2012). doi:10.1016/j.clinbiochem.2012.08.024

  74. T. Bushnik, D. Haines, P. Levallois, J. Levesque, J. Van Oostdam, C. Viau, Lead and bisphenol A concentrations in the Canadian population. Health Rep. 21, 7–18 (2010)

    PubMed  Google Scholar 

  75. R. Bhandari, J. Xiao, A. Shankar, Urinary bisphenol A and obesity in U.S. children. Am. J. Epidemiol. (2013). doi:10.1093/aje/kws391

  76. L. Trasande, T.M. Attina, J. Blustein, Association between urinary bisphenol A concentration and obesity prevalence in children and adolescents. JAMA. 308, 1113–1121 (2012)

    Article  CAS  PubMed  Google Scholar 

  77. D.S. Eng, J.M. Lee, A. Gebremariam, J.D. Meeker, K. Peterson, V. Padmanabhan, Bisphenol A and chronic disease risk factors in US children. Pediatrics. 132, e637–e645 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  78. D.K. Li, M. Miao, Z. Zhou, C. Wu, H. Shi, X. Liu, S. Wang, W. Yuan, Urine bisphenol-A level in relation to obesity and overweight in school-age children. PLoS One (2013). doi:10.1371/journal.pone.0065399s

  79. H.X. Wang, Y. Zhou, C.X. Tang, J.G. Wu, Y. Chen, Q.W. Jiang, Association between bisphenol A exposure and body mass index in Chinese school children: a cross-sectional study. Environ. Health (2012). doi:10.1186/1476-069X-11-79

  80. J. Xue, Q. Wu, S. Sakthivel, P.V. Pavithran, J.R. Vasukutty, K. Kannan, Urinary levels of endocrine-disrupting chemicals, including bisphenols, bisphenol A diglycidyl ethers, benzophenones, parabens, and triclosan in obese and non-obese Indian children. Environ. Res. (2015). doi:10.1016/j.envres.2014.12.007

  81. M.S. Wolff, S.L. Teitelbaum, G. Windham, S.M. Pinney, J.A. Britton, C. Chelimo, J. Godbold, F. Biro, L.H. Kushi, C.M. Pfeiffer, A.M. Calafat, Pilot study of urinary biomarkers of phytoestrogens, phthalates, and phenols in girls. Environ. Health Perspect. 115, 116–121 (2007)

    Article  CAS  PubMed  Google Scholar 

  82. W.C. Chou, J.L. Chen, C.F. Lin, Y.C. Chen, F.C. Shih, C.Y. Chuang, Biomonitoring of bisphenol A concentrations in maternal and umbilical cord blood in regard to birth outcomes and adipokine expression: a birth cohort study in Taiwan. Environ. Health (2011). doi:10.1186/1476-069X-10-94

  83. K.G. Harley, R. Aguilar Schall, J. Chevrier, K. Tyler, H. Aguirre, A. Bradman, N.T. Holland, R.H. Lustig, A.M. Calafat, B. Eskenazi, Prenatal and postnatal bisphenol A exposure and body mass index in childhood in the CHAMACOS cohort. Environ. Health Perspect. (2013). doi:10.1289/ehp.1205548

  84. P.M. Lind, B. Zethelius, L. Lind, Circulating levels of phthalate metabolites are associated with prevalent diabetes in the elderly. Diabetes Care (2012). doi:10.2337/dc11-2396

  85. L. Olsén, L. Lind, P.M. Lind, Associations between circulating levels of bisphenol A and phthalate metabolites and coronary risk in the elderly. Ecotoxicol. Environ. Saf. (2012). doi:10.1016/j.ecoenv.2012.02.023

  86. T. Huang, A.R. Saxena, E. Isganaitis, T. James-Todd, Gender and racial/ethnic differences in the associations of urinary phthalate metabolites with markers of diabetes risk: national health and nutrition examination survey 2001–2008. Environ. Health (2014). doi:10.1186/1476-069X-13-6

  87. J.H. Kim, H.Y. Park, S. Bae, Y.H. Lim, Y.C. Hong, Diethylhexyl phthalates is associated with insulin resistance via oxidative stress in the elderly, a panel study. PLoS One (2013). doi:10.1371/journal.pone.0071392

  88. T. James-Todd, R. Stahlhut, J.D. Meeker, S.G. Powell, R. Hauser, T. Huang, J. Rich-Edwards, Urinary phthalate metabolite concentrations and diabetes among women in the National Health and Nutrition Examination Survey (NHANES) 2001–2008. Environ. Health Perspect. (2012). doi:10.1289/ehp.11047177

  89. Q. Sun, M.C. Cornelis, M.K. Townsend, D.K. Tobias, A.H. Eliassen, A.A. Franke, R. Hauser, F.B. Hu, Association of urinary concentrations of bisphenol A and phthalate metabolites with risk of type 2 diabetes: a prospective investigation in the Nurses’ Health Study (NHS) and NHSII cohorts. Environ. Health Perspect. (2014). doi:10.1289/ehp.1307201

  90. K. Svensson, R.U. Hernández-Ramírez, A. Burguete-García, M.E. Cebrián, A.M. Calafat, L.L. Needham, L. Claudio, L. López-Carrillo, Phthalate exposure associated with self-reported diabetes among Mexican women. Environ. Res. (2011). doi:10.1016/j.envres.2011.05.015

  91. E.P. Hines, A.M. Calafat, M.J. Silva, P. Mendola, S.E. Fenton, Concentrations of phthalate metabolites in milk, urine, saliva, and serum of lactating North Carolina women. Environ. Health Perspect. (2009). doi:10.1289/ehp.11610

  92. T.M. Attina, L. Trasande, Association of exposure to di-2-ethylhexylphthalate replacements with increased insulin resistance in adolescents from NHANES 2009-2012. J. Clin. Endocrinol. Metab. (2015). doi:10.1210/jc.2015-1686

  93. M.I. Martinelli, N.O. Mocchiutti, C.A. Bernal, Dietary di(2-ethylhexyl)phthalate-impaired glucose metabolism in experimental animals. Hum. Exp. Toxicol. 25, 531–538 (2006)

    Article  CAS  PubMed  Google Scholar 

  94. J.N. Feige, A. Gerber, C. Casals-Casas, Q. Yang, C. Winkler, E. Bedu, M. Bueno, L. Gelman, J. Auwerx, F.J. Gonzalez, B. Desvergne, The pollutant diethylhexyl phthalate regulates hepatic energy metabolism via species-specific PPARalpha-dependent mechanisms. Environ. Health Perspect. (2010). doi:10.1289/ehp.0901217

  95. C. Hao, X. Cheng, H. Xia, X. Ma, The endocrine disruptor mono-(2-ethylhexyl) phthalate promotes adipocyte differentiation and induces obesity in mice. Biosci. Rep. (2012). doi:10.1042/BSR20120042

  96. S. Teppala, S. Madhavan, A. Shankar, Bisphenol A and metabolic syndrome: Results from NHANES. Int. J. Endocrinol. 2012, 598180 (2012). Article ID

    Article  PubMed  PubMed Central  Google Scholar 

  97. I.A. Lang, T.S. Galloway, A. Scarlett, W.E. Henley, M. Depledge, R.B. Wallace, D. Melzer, Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA (2008). doi:10.1001/jama.300.11.1303

  98. D. Melzer, N.E. Rice, C. Lewis, W.E. Henley, T.S. Galloway, Association of urinary bisphenol a concentration with heart disease: evidence from NHANES 2003/06. PLoS One (2010). doi:10.1371/journal.pone.0008673

  99. R. Ahmadkhaniha, M. Mansouri, M. Yunesian, K. Omidfar, M.Z. Jeddi, B. Larijani, A. Mesdaghinia, N. Rastkari, Association of urinary bisphenol a concentration with type-2 diabetes mellitus. J. Environ. Health Sci. Eng. (2014). doi:10.1186/2052-336X-12-64

  100. K. Kim, H. Park, Association between urinary concentrations of bisphenol A and type 2 diabetes in Korean adults: a population-based cross-sectional study. Int. J. Hyg. Environ. Health (2013). doi:10.1016/j.ijheh.2012.07.007

  101. G. Ning, Y. Bi, T. Wang, M. Xu, Y. Xu, Y. Huang, M. Li, X. Li, W. Wang, Y. Chen, Y. Wu, J. Hou, A. Song, Y. Liu, S. Lai, Relationship of urinary bisphenol A concentration to risk for prevalent type 2 diabetes in Chinese adults: a cross-sectional analysis. Ann. Intern. Med. (2011). doi:10.7326/0003-4819-155-6-201109200-00005

  102. F. Grün, B. Blumberg, Endocrine disrupters as obesogens. Mol. Cell. Endocrinol. (2009). doi:10.1016/j.mce.2009.02.018

  103. E.E. Hatch, J.W. Nelson, R.W. Stahlhut, T.F. Webster, Association of endocrine disruptors and obesity: perspectives from epidemiological studies. Int. J. Androl. (2010). doi:10.1111/j.1365-2605.2009.01035.x

  104. M. Grimaldi, A. Boulahtouf, V. Delfosse, E. Thouennon, W. Bourguet, P. Balaguer, Reporter cell lines for the characterization of the interactions between human nuclear receptors and endocrine disruptors. Front. Endocrinol. (Lausanne) (2015). doi:10.3389/fendo.2015.00062

  105. J.R. Barrett, To each his own: DEHP yields species-specific metabolic phenotypes. Environ. Health Perspect. (2010). doi:10.1289/ehp.118-a81a

  106. B. Migliarini, C.C. Piccinetti, A. Martella, F. Maradonna, G. Gioacchini, O. Carnevali, Perspectives on endocrine disruptor effects on metabolic sensors. Gen. Comp. Endocrinol. (2011). doi:10.1016/j.ygcen.2010.11.025

  107. J. Boberg, S. Metzdorff, R. Wortziger, M. Axelstad, L. Brokken, A.M. Vinggaard, M. Dalgaard, C. Nellemann, Impact of diisobutyl phthalate and other PPAR agonists on steroidogenesis and plasma insulin and leptin levels in fetal rats. Toxicology (2008). doi:10.1016/j.tox.2008.05.020

  108. J. Kwintkiewicz, Y. Nishi, T. Yanase, L.C. Giudice, Peroxisome proliferator-activated receptor-gamma mediates bisphenol A inhibition of FSH-stimulated IGF-1, aromatase, and estradiol in human granulosa cells. Environ. Health Perspect. (2010). doi:10.1289/ehp.0901161

  109. A. Riu, M. Grimaldi, A. le Maire, G. Bey, K. Phillips, A. Boulahtouf, E. Perdu, D. Zalko, W. Bourguet, P. Balaguer, Peroxisome proliferator-activated receptor γ is a target for halogenated analogs of bisphenol A. Environ. Health Perspect. (2011). doi:10.1289/ehp.1003328

  110. P. Alonso-Magdalena, S. Morimoto, C. Ripoll, E. Fuentes, A. Nadal, The estrogenic effect of bisphenol A disrupts pancreatic beta-cell function in vivo and induces insulin resistance. Environ. Health. Perspect. 114, 106–112 (2006)

    Article  CAS  PubMed  Google Scholar 

  111. M.K. Moon, I.K. Jeong, T. Jung Oh, H.Y. Ahn, H.H. Kim, Y.J. Park, H.C. Jang, K.S. Park, Long-term oral exposure to bisphenol A induces glucose intolerance and insulin resistance. J. Endocrinol. (2015). doi:10.1530/JOE-14-0714

  112. H. Masuno, T. Kidani, K. Sekiya, K. Sakayama, T. Shiosaka, H. Yamamoto, K. Honda, Bisphenol A in combination with insulin can accelerate the conversion of 3T3-L1 fibroblasts to adipocytes. J. Lipid. Res. 43, 676–684 (2002)

    CAS  PubMed  Google Scholar 

  113. S.H. Swan, Environmental phthalate exposure in relation to reproductive outcomes and other health endpoints in humans. Environ. Res. 108, 177–184 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. N.K. Chaturvedi, S. Kumar, S. Negi, R.K. Tyagi, Endocrine disruptors provoke differential modulatory responses on androgen receptor and pregnane and xenobiotic receptor:potential implications in metabolic disorders. Mol. Cell. Biochem. (2010). doi:10.1007/s11010-010-0583-6

  115. F.S. Vom Saal, S.C. Nagel, B.L. Coe, B.M. Angle, J.A. Taylor, The estrogenic endocrine disrupting chemical bisphenol A (BPA) and obesity. Mol. Cell. Endocrinol. (2012). doi:10.1016/j.mce.2012.01.001

  116. P. Thomas, J. Dong, Binding and activation of the seven-transmembrane estrogen receptor GPR30 by environmental estrogens: a potential novel mechanism of endocrine disruption. J. Steroid Biochem. Mol. Biol. 102, 175–179 (2006)

    Article  CAS  PubMed  Google Scholar 

  117. H. Okada, T. Tokunaga, X. Liu, S. Takayanagi, A. Matsushima, Y. Shimohigashi, Direct evidence revealing structural elements essential for the high binding ability of bisphenol A to human estrogen-related receptor-gamma. Environ. Health Perspect. (2008). doi:10.1289/ehp.10587

  118. É. Audet-Walsh, V. Giguére, The multiple universes of estrogen-related receptor α and γ in metabolic control and related diseases. Acta Pharmacol. Sin. (2015). doi:10.1038/aps.2014.121

  119. Y. Sui, N. Ai, S.H. Park, J. Rios-Pilier, J.T. Perkins, W.J. Welsh, C. Zhou, Bisphenol A and its analogues activate human pregnane X receptor. Environ. Health Perspect. (2012). doi:10.1289/ehp.1104426

  120. K. Ibhazehiebo, N. Koibuchi, Thyroid hormone receptor-mediated transcription is suppressed by low dose phthalate. Niger. J. Physiol. Sci. 26, 143–149 (2006)

    Google Scholar 

  121. Z.G. Sheng, Y. Tang, Y.X. Liu, Y. Yuan, B.Q. Zhao, X.J. Chao, B.Z. Zhu, Low concentrations of bisphenol a suppress thyroid hormone receptor transcription through a nongenomic mechanism. Toxicol. Appl. Pharmacol. (2012). doi:10.1016/j.taap.2011.12.018

  122. R.T. Zoeller, R. Bansal, C. Parris, Bisphenol-A, an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro, increases serum thyroxine, and alters RC3/neurogranin expression in the developing rat brain. Endocrinology. 146, 607–612 (2005)

    Article  CAS  PubMed  Google Scholar 

  123. P. Rajesh, S. Sathish, C. Srinivasan, J. Selvaraj, K. Balasubramanian, Phthalate is associated with insulin resistance in adipose tissue of male rat: role of antioxidant vitamins. J. Cell Biochem. (2013). doi:10.1002/jcb.24399

  124. W. Wang, Z.R. Craig, M.S. Basavarajappa, K.S. Hafner, J.A. Flaws, Mono-(2ethylhexyl) phthalate induces oxidative stress and inhibits growth of mouse ovarian antral follicles. Biol. Reprod. (2012). doi:10.1095/biolreprod.112.102467

  125. N. Ben-Jonathan, E.R. Hugo, T.D. Brandebourg, Effects of bisphenol A on adipokine release from human adipose tissue: implications for the metabolic syndrome. Mol. Cell. Endocrinol. (2009). doi:10.1016/j.mce.2009.02.022

  126. D. Kamimura, K. Ishihara, T. Hirano, IL-6 signal transduction and its physiological roles: the signal orchestration model. Rev. Physiol. Biochem. Pharmacol. 149, 1–38 (2003)

    CAS  PubMed  Google Scholar 

  127. M. Rydén, P. Arner, Tumour necrosis factor-alpha in human adipose tissue—from signalling mechanisms to clinical implications. J. Intern. Med. 262, 431–438 (2007)

    Article  PubMed  Google Scholar 

  128. Y. Masuo, M. Ishido, M. Morita, S. Oka, Effects of neonatal treatment with 6-hydroxydopamine and endocrine disruptors on motor activity and gene expression in rats. Neural Plast. 11, 59–76 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. S. Singh, S.S. Li, Phthalates: toxicogenomics and inferred human diseases. Genomics (2011). doi:10.1016/j.ygeno.2010.11.008

  130. Y. Lin, J. Wei, Y. Li, J. Chen, Z. Zhou, L. Song, Z. Wei, Z. Lv, X. Chen, W. Xia, S. Xu, Developmental exposure to di(2-ethylhexyl) phthalate impairs endocrine pancreas and leads to long-term adverse effects on glucose homeostasis in the rat. Am. J. Physiol. Endocrinol. Metab. (2011). doi:10.1152/ajpendo.00233.2011

  131. W.J. Crinnion, Toxic effects of the easily avoidable phthalates and parabens. Altern. Med. Rev. 15, 190–196 (2010)

    PubMed  Google Scholar 

  132. J. Wei, Y. Lin, Y. Li, C. Ying, J. Chen, L. Song, Z. Zhou, Z. Lv, W. Xia, X. Chen, S. Xu, Perinatal exposure to bisphenol A at reference dose predisposes offspring to metabolic syndrome in adult rats on a high-fat diet. Endocrinology. (2011). doi:10.1210/en.2011-0045

  133. J. Miyawaki, K. Sakayama, H. Kato, H. Yamamoto, H. Masuno, Perinatal and postnatal exposure to bisphenol a increases adipose tissue mass and serum cholesterol level in mice. J. Atheroscler. Thromb. 14, 245–252 (2007)

    Article  CAS  PubMed  Google Scholar 

  134. E. Somm, V.M. Schwitzgebel, A. Toulotte, C.R. Cederroth, C. Combescure, S. Nef, M.L. Aubert, P.S. Hüppi, Perinatal exposure to bisphenol A alters early adipogenesis in the rat. Health Perspect. (2009). doi:10.1289/ehp.11342

  135. B.M. Angle, R.P. Do, D. Ponzi, R.W. Stahlhut, B.E. Drury, S.C. Nagel, W.V. Welshons, C.L. Besch-Williford, P. Palanza, S. Parmigiani, F.S. vom Saal, J.A. Taylor, Metabolic disruption in male mice due to fetal exposure to low but not high doses of bisphenol A (BPA): evidence for effects on body weight, food intake, adipocytes, leptin, adiponectin, insulin and glucose regulation. Reprod. Toxicol. (2013). doi:10.1016/j.reprotox.2013.07.0177

  136. G. Li, H. Chang, W. Xia, Z. Mao, Y. Li, S. Xu, F0 maternal BPA exposure induced glucose intolerance of F2 generation through DNA methylation change in Gck. Toxicol. Lett. (2014). doi:10.1016/j.toxlet.2014.04.012

Download references

Funding

This article was funded by the project No. 175033 by the Ministry of Education, Science and Technological Development of the Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludovico Abenavoli.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stojanoska, M.M., Milosevic, N., Milic, N. et al. The influence of phthalates and bisphenol A on the obesity development and glucose metabolism disorders. Endocrine 55, 666–681 (2017). https://doi.org/10.1007/s12020-016-1158-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-016-1158-4

Keywords

Navigation