Skip to main content

Advertisement

Log in

Liver-derived FGF21 is essential for full adaptation to ketogenic diet but does not regulate glucose homeostasis

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Background

Fibroblast growth factor 21 (FGF21) is expressed in several metabolically active tissues, including liver, fat, and acinar pancreas, and has pleiotropic effects on metabolic homeostasis. The dominant source of FGF21 in the circulation is the liver.

Objective and methods

To analyze the physiological functions of hepatic FGF21, we generated a hepatocyte-specific knockout model (LKO) by mating albumin-Cre mice with FGF21 flox/flox (fl/fl) mice and challenged it with different nutritional models.

Results

Mice fed a ketogenic diet typically show increased energy expenditure; this effect was attenuated in LKO mice. LKO on KD also developed hepatic pathology and altered hepatic lipid homeostasis. When evaluated using hyperinsulinemic-euglycemic clamps, glucose infusion rates, hepatic glucose production, and glucose uptake were similar between fl/fl and LKO DIO mice.

Conclusions

We conclude that liver-derived FGF21 is important for complete adaptation to ketosis but has a more limited role in the regulation of glycemic homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FGF21:

Fibroblast growth factor 21

fl/fl:

Flox/flox

LKO:

FGF21 liver-specific knockout

KD:

Ketogenic diet

HFD:

High fat diet

PPAR α:

Peroxisome proliferator-activated receptor α

FGF21KO:

Fibroblast growth factor 21 knockout

WT:

Wild type

IP:

Intraperitoneal

[2-14C]D-G:

[2-14C]D-glucose

RG :

Glucose metabolic Index

SEM:

Standard error of the mean

CLAMS:

Comprehensive lab animal monitoring system oxymax

qNMR:

Quantitative nuclear magnetic resonance

ALT:

Alanine aminotransferase

PGK:

PhosphoGlycerate Kinase

NAFLD:

Nonalcoholic fatty liver disease

BAT:

Brown adipose tissue

UCP1:

Uncoupling protein 1

SNA:

Sympathetic nerve activity

ANOVA:

Analysis of variance

KLB:

β-Klotho

EWAT:

Epididymal white adipose tissue

IWAT:

Inguinal white adipose tissue

ipGTT:

Intraperitoneal glucose tolerance test

ITT:

Insulin tolerance test

RER:

Respiratory exchange ratio

MCD:

Methionine choline deficient

SNS:

Sympathetic nervous system

DIO:

Diet induced obesity

FAS:

Fatty acids synthase

SCD-1:

Stearoyl-CoA desaturase

CD36:

Cluster of differentiation 36

LCAD:

Long chain acyl-CoA dehydrogenase

VLCAD:

Very long chain acyl-CoA dehydrogenase

ACOX1:

Peroxisomal acyl-coenzyme A oxidase 1

CPT1α:

Carnitine palmitoyltransferase I α

PPAR:

Peroxisome proliferator-activated receptor

PGC1 α:

Peroxisome proliferator-activated receptor (PPAR) γ Coactivator 1α

PGC1 β:

Peroxisome proliferator-activated receptor (PPAR) γ Coactivator 1β

ABCG5:

ATP-binding cassette sub-family G member 5

ABCG8:

ATP-binding cassette sub-family G member 8

LXR:

Liver X receptor

Cyp7A1:

Cytochrome P450 7A1,

SHP:

Small heterodimer partner

HMGCS1:

3-hydroxy-3-methylglutaryl-CoA synthase

HMGCR:

3-hydroxy-3-methylglutaryl-CoA reductase

SREBP2:

Sterol regulatory element-binding protein 2

PCSK9:

Proprotein convertase subtilisin/kexin type 9

LDLR:

LDL receptor

TGF1 β:

Transforming growth factor 1 β

MCP1:

Monocyte chemoattractant protein-1

MMP2:

Matrix metalloproteinase-2

SMA:

Smooth muscle actin

IL1 β:

Interleukin 1 β

TIMP:

Metallopeptidase inhibitor 1

References

  1. T. Inagaki, M. Choi, A. Moschetta, L. Peng, C.L. Cummins, J.G. McDonald et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2, 217–225 (2005)

    Article  CAS  PubMed  Google Scholar 

  2. T. Shimada, S. Mizutani, T. Muto, T. Yoneya, R. Hino, S. Takeda et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc. Natl Acad. Sci. USA 98, 6500–6505 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. T. Shimada, Y. Yamazaki, M. Takahashi, H. Hasegawa, I. Urakawa, T. Oshima et al. Vitamin D receptor-independent FGF23 actions in regulating phosphate and vitamin D metabolism. Am. J. Physiol. Ren. Physiol. 289, F1088–F1095 (2005)

    Article  CAS  Google Scholar 

  4. A. Kharitonenkov, T.L. Shiyanova, A. Koester, A.M. Ford, R. Micanovic, E.J. Galbreath et al. FGF-21 as a novel metabolic regulator. J. Clin. Investig. 115, 1627–1635 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. T. Coskun, H.A. Bina, M.A. Schneider, J.D. Dunbar, C.C. Hu, Y. Chen et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149, 6018–6027 (2008)

    Article  CAS  PubMed  Google Scholar 

  6. G. Gaich, J.Y. Chien, H. Fu, L.C. Glass, M.A. Deeg, W.L. Holland et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab. 18, 333–340 (2013)

    Article  CAS  PubMed  Google Scholar 

  7. S. Talukdar, Y. Zhou, D. Li, M. Rossulek, J. Dong, V. Somayaji et al. A long-acting FGF21 molecule, PF-05231023, decreases body weight and improves lipid profile in non-human primates and type 2 diabetic subjects. Cell Metab. 23, 427–440 (2016)

    Article  CAS  PubMed  Google Scholar 

  8. J. Xu, S. Stanislaus, N. Chinookoswong, Y.Y. Lau, T. Hager, J. Patel et al. Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models-association with liver and adipose tissue effects. Am. J. Physiol. Endocrinol. Metab. 297, E1105–E1114 (2009)

    Article  CAS  PubMed  Google Scholar 

  9. M.K. Badman, P. Pissios, A.R. Kennedy, G. Koukos, J.S. Flier, E. Maratos-Flier, Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 5, 426–437 (2007)

    Article  CAS  PubMed  Google Scholar 

  10. T. Inagaki, P. Dutchak, G. Zhao, X. Ding, L. Gautron, V. Parameswara et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 5, 415–425 (2007)

    Article  CAS  PubMed  Google Scholar 

  11. K.J.P. Schwenger, S.E. Fischer, T.D. Jackson, A. Okrainec, J.P. Allard, Non-alcoholic fatty liver disease in morbidly obese individuals undergoing bariatric surgery: prevalence and effect of the pre-bariatric very low calorie diet. Obes. Surg. 28, 1109–1116 (2018)

    Article  PubMed  Google Scholar 

  12. F.M. Fisher, P.C. Chui, I.A. Nasser, Y. Popov, J.C. Cunniff, T. Lundasen et al. Fibroblast growth factor 21 limits lipotoxicity by promoting hepatic fatty acid activation in mice on methionine and choline-deficient diets. Gastroenterology 147(1073–1083), e1076 (2014)

    Google Scholar 

  13. M.J. Potthoff, T. Inagaki, S. Satapati, X. Ding, T. He, R. Goetz et al. FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc. Natl Acad. Sci. USA 106, 10853–10858 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. B.N. Desai, G. Singhal, M. Watanabe, D. Stevanovic, T. Lundasen, F.M. Fisher et al. Fibroblast growth factor 21 (FGF21) is robustly induced by ethanol and has a protective role in ethanol associated liver injury. Mol. Metab. 6, 1395–1406 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. J.R. Dushay, E. Toschi, E.K. Mitten, F.M. Fisher, M.A. Herman, E. Maratos-Flier, Fructose ingestion acutely stimulates circulating FGF21 levels in humans. Mol. Metab. 4, 51–57 (2015)

    Article  CAS  PubMed  Google Scholar 

  16. F.M. Fisher, M. Kim, L. Doridot, J.C. Cunniff, T.S. Parker, D.M. Levine et al. A critical role for ChREBP-mediated FGF21 secretion in hepatic fructose metabolism. Mol. Metab. 6, 14–21 (2017)

    Article  CAS  PubMed  Google Scholar 

  17. M.K. Badman, A. Koester, J.S. Flier, A. Kharitonenkov, E. Maratos-Flier, Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis. Endocrinology 150, 4931–4940 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. G. Singhal, G. Kumar, S. Chan, F.M. Fisher, Y. Ma, H.G. Vardeh et al. Deficiency of fibroblast growth factor 21 (FGF21) promotes hepatocellular carcinoma (HCC) in mice on a long term obesogenic diet. Mol Metab. 13, 56–66 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. S. Huang, J. He, X. Zhang, Y. Bian, L. Yang, G. Xie et al. Activation of the hedgehog pathway in human hepatocellular carcinomas. Carcinogenesis 27, 1334–1340 (2006)

    Article  CAS  PubMed  Google Scholar 

  20. D. Ye, Y. Wang, H. Li, W. Jia, K. Man, C.M. Lo et al. Fibroblast growth factor 21 protects against acetaminophen-induced hepatotoxicity by potentiating peroxisome proliferator-activated receptor coactivator protein-1alpha-mediated antioxidant capacity in mice. Hepatology 60, 977–989 (2014)

    Article  CAS  PubMed  Google Scholar 

  21. G. Singhal, F.M. Fisher, M.J. Chee, T.G. Tan, A. El Ouaamari, A.C. Adams et al. Fibroblast growth factor 21 (FGF21) protects against high fat diet induced inflammation and islet hyperplasia in pancreas. PLoS ONE 11, e0148252 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. M.K. Badman, A.R. Kennedy, A.C. Adams, P. Pissios, E. Maratos-Flier, A very low carbohydrate ketogenic diet improves glucose tolerance in ob/ob mice independently of weight loss. Am. J. Physiol. Endocrinol. Metab. 297, E1197–E1204 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. N. Douris, T. Melman, J.M. Pecherer, P. Pissios, J.S. Flier, L.C. Cantley et al. Adaptive changes in amino acid metabolism permit normal longevity in mice consuming a low-carbohydrate ketogenic diet. Biochim Biophys. Acta 1852, 2056–2065 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. A.R. Kennedy, P. Pissios, H. Otu, R. Roberson, B. Xue, K. Asakura et al. A high-fat, ketogenic diet induces a unique metabolic state in mice. Am. J. Physiol. Endocrinol. Metab. 292, E1724–E1739 (2007)

    Article  CAS  PubMed  Google Scholar 

  25. E.D. Berglund, C.Y. Li, H.A. Bina, S.E. Lynes, M.D. Michael, A.B. Shanafelt et al. Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity. Endocrinology 150, 4084–4093 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. J.P. Camporez, F.R. Jornayvaz, M.C. Petersen, D. Pesta, B.A. Guigni, J. Serr et al. Cellular mechanisms by which FGF21 improves insulin sensitivity in male mice. Endocrinology 154, 3099–3109 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. F.M. Fisher, P.C. Chui, P.J. Antonellis, H.A. Bina, A. Kharitonenkov, J.S. Flier et al. Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes 59, 2781–2789 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. H. Li, G. Wu, Q. Fang, M. Zhang, X. Hui, B. Sheng et al. Fibroblast growth factor 21 increases insulin sensitivity through specific expansion of subcutaneous fat. Nat. Commun. 9, 272 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. https://www.mousephenotype.org/data/alleles/MGI:1861377/tm1a(EUCOMM)Hmgu. Accessed 19 Jun 2019

  30. J.E. Ayala, D.P. Bracy, C. Malabanan, F.D. James, T. Ansari, P.T. Fueger et al. Hyperinsulinemic-euglycemic clamps in conscious, unrestrained mice. J Vis Exp. (2011)

  31. J.E. Ayala, D.P. Bracy, O.P. McGuinness, D.H. Wasserman, Considerations in the design of hyperinsulinemic-euglycemic clamps in the conscious mouse. Diabetes 55, 390–397 (2006)

    Article  CAS  PubMed  Google Scholar 

  32. K.X. Mulligan, R.T. Morris, Y.F. Otero, D.H. Wasserman, O.P. McGuinness, Disassociation of muscle insulin signaling and insulin-stimulated glucose uptake during endotoxemia. PLoS ONE 7, e30160 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. E.W. Kraegen, D.E. James, A.B. Jenkins, D.J. Chisholm, Dose-response curves for in vivo insulin sensitivity in individual tissues in rats. Am. J. Physiol. 248, E353–E362 (1985)

    CAS  PubMed  Google Scholar 

  34. G. Singhal, N. Douris, A.J. Fish, X. Zhang, A.C. Adams, J.S. Flier et al. Fibroblast growth factor 21 has no direct role in regulating fertility in female mice. Mol. Metab. 5, 690–698 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. E.M. Brunt, D.E. Kleiner, L.A. Wilson, P. Belt, B.A. Neuschwander-Tetri, N.C.R. Network, Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: distinct clinicopathologic meanings. Hepatology 53, 810–820 (2011)

    Article  CAS  PubMed  Google Scholar 

  36. S.M. Martinez, G. Crespo, M. Navasa, X. Forns, Noninvasive assessment of liver fibrosis. Hepatology 53, 325–335 (2011)

    Article  PubMed  Google Scholar 

  37. J. Folch, M. Lees, G.H. Sloane Stanley, A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509 (1957)

    Article  CAS  PubMed  Google Scholar 

  38. P. Seoane-Collazo, J. Roa, E. Rial-Pensado, L. Linares-Pose, D. Beiroa, F. Ruiz-Pino et al. SF1-specific AMPKalpha1 deletion protects against diet-induced obesity. Diabetes 67, 2213–2226 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. A. Guilherme, D.J. Pedersen, F. Henriques, A.H. Bedard, E. Henchey, M. Kelly et al. Neuronal modulation of brown adipose activity through perturbation of white adipocyte lipogenesis. Mol. Metab. 16, 116–125 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. K. Shinohara, P. Nakagawa, J. Gomez, D.A. Morgan, N.K. Littlejohn, M.D. Folchert et al. Selective deletion of renin-b in the brain alters drinking and metabolism. Hypertension 70, 990–997 (2017)

    Article  CAS  PubMed  Google Scholar 

  41. A.I. Mina, R.A. LeClair, K.B. LeClair, D.E. Cohen, L. Lantier, A.S. Banks, CalR: a web-based analysis tool for indirect calorimetry experiments. Cell Metab. 28(656–666), e651 (2018)

    Google Scholar 

  42. F.M. Fisher, E. Maratos-Flier, Understanding the physiology of FGF21. Annu Rev. Physiol. 78, 223–241 (2016)

    Article  CAS  PubMed  Google Scholar 

  43. A. Kharitonenkov, R. DiMarchi, FGF21 revolutions: recent advances illuminating FGF21 biology and medicinal properties. Trends Endocrinol. Metab. 26, 608–617 (2015)

    Article  CAS  PubMed  Google Scholar 

  44. N. Douris, D.M. Stevanovic, F.M. Fisher, T.I. Cisu, M.J. Chee, N.L. Nguyen et al. Central fibroblast growth factor 21 browns white fat via sympathetic action in male mice. Endocrinology 156, 2470–2481 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. F.M. Fisher, S. Kleiner, N. Douris, E.C. Fox, R.J. Mepani, F. Verdeguer et al. FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 26, 271–281 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. N.Y. Kalaany, D.J. Mangelsdorf, LXRS and FXR: the yin and yang of cholesterol and fat metabolism. Annu Rev. Physiol. 68, 159–191 (2006)

    Article  CAS  PubMed  Google Scholar 

  47. W. Luu, L.J. Sharpe, I.C. Gelissen, A.J. Brown, The role of signalling in cellular cholesterol homeostasis. IUBMB Life 65, 675–684 (2013)

    Article  CAS  PubMed  Google Scholar 

  48. J. Ye, R.A. DeBose-Boyd, Regulation of cholesterol and fatty acid synthesis. Cold Spring Harb. Perspect. Biol 3, 1–14 (2011).

    Article  CAS  Google Scholar 

  49. M.M. Chen, C. Hale, S. Stanislaus, J. Xu, M.M. Veniant, FGF21 acts as a negative regulator of bile acid synthesis. J. Endocrinol. 237, 139–152 (2018)

    Article  CAS  PubMed  Google Scholar 

  50. J. Zhang, J. Gupte, Y. Gong, J. Weiszmann, Y. Zhang, K.J. Lee et al. Chronic over-expression of fibroblast growth factor 21 increases bile acid biosynthesis by opposing FGF15/19 action. EBioMedicine 15, 173–183 (2017)

    Article  PubMed  Google Scholar 

  51. I. Tabas, Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. J. Clin. Invest. 110, 905–911 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. K.R. Markan, M.C. Naber, M.K. Ameka, M.D. Anderegg, D.J. Mangelsdorf, S.A. Kliewer et al. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes 63, 4057–4063 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. S. Vernia, J. Cavanagh-Kyros, T. Barrett, C. Tournier, R.J. Davis, Fibroblast growth factor 21 mediates glycemic regulation by hepatic JNK. Cell Rep. 14, 2273–2280 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. J.S. Flier, Irreproducibility of published bioscience research: diagnosis, pathogenesis and therapy. Mol. Metab. 6, 2–9 (2017)

    Article  CAS  PubMed  Google Scholar 

  55. D.J. Drucker, Never waste a good crisis: confronting reproducibility in translational research. Cell Metab. 24, 348–360 (2016)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Pavlos Pissios for scientific discussions and Dr Thomas Webb for technical assistance.

Author contributions

G.S., F.M.F., T.C.B., O.P.M., J.S.F. and E.M.F. conceived and designed the experiments. M.W., G.S., J.B., M.M., T.C.B., D.A.M. and R.R. and Vanderbilt MMPC performed the experiments. M.W., G.S., F.M.F., T.C.B., F.S., O.P.M. analyzed the data. E.M.F., J.S.F., F.M.F., K.R. and O.P.M. contributed with reagents/materials/analysis tools/critical revisions. M.W., G.S. and E.M.F. drafted the manuscript.

Funding

This work was supported by NIH Grant DK028082 (to E.M.F. and J.S.F.). M.W. was supported by funds from The Rotary Club of Rome. We are grateful for the help from the HDDC Core supported by NIH Grant NIDDK P30 DK034854. Generation of genetically altered floxed mice was made under the auspices of BADERC 5P30DK057521 and the BNORC 5P30DK046200. K.R was supported by funds from the NIH (HL084207), the American Heart Association (14EIA18860041) and the University of Iowa Fraternal Order of Eagles Diabetes Research Center. O.P.M. was supported by funds from the NIH (DK059637). The Vanderbilt Mouse Metabolic Phenotyping Center (DK059637) and the Hormone Assay and Analytical Services Core (DK059637 and DK020593) provided surgical and analytical support for clamp studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleftheria Maratos-Flier.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, M., Singhal, G., Fisher, F.M. et al. Liver-derived FGF21 is essential for full adaptation to ketogenic diet but does not regulate glucose homeostasis. Endocrine 67, 95–108 (2020). https://doi.org/10.1007/s12020-019-02124-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-019-02124-3

Keywords

Navigation