Skip to main content

Advertisement

Log in

Changes in white adipose tissue gene expression in a randomized control trial of dieting obese men with lowered serum testosterone alone or in combination with testosterone treatment

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to determine early weight loss-associated changes in subcutaneous abdominal white adipose tissue (WAT) gene expression in obese men with lowered serum testosterone by RNA next-generation sequencing.

Methods

Fourteen men, mean age (IQR) 51.6 years (43.4–54.5), BMI 38.3 kg/m2 (34.6–40.8) and total testosterone 8.4 nmol/L (7.5–9.5) provided subcutaneous WAT samples at baseline and after 2 weeks of a very low energy diet.

Results

Body weight loss was similar in participants receiving testosterone (n = 6), −5.27 kg [95% CI −6.17; −4.26], and placebo (n = 8), −4.57 kg [95% CI −6.10; −3.55], p = 0.86. In placebo-treated men, of the 14,410 genes expressed in subcutaneous WAT, four genes, Angiopoietin-like 4, Semaphorin 3 G, Neuropilin 2 and Angiopoietin 4, were upregulated (adjusted false discovery rate P < 0.05). In an exploratory analysis comparing men receiving testosterone and placebo, the most-upregulated gene in the testosterone group (exploratory p < 0.0005) was the neuropeptide y receptor 2.

Conclusions

In obese men, dieting is associated with upregulation of WAT-expressed Angiopoietin-like 4, a secreted protein that regulates lipid metabolism, Semaphorin 3 G, a proposed adipocyte differentiation factor and secreted adipokine, and its receptor Neuropilin 2, as well as Angiopoietin 4, a vascular integrity factor. In an exploratory analysis, testosterone was associated with the upregulation of neuropeptide y receptor 2, a receptor involved in appetite regulation. Further studies are needed to confirm these observations and their potential biological implications.

Trial registration

clinicaltrials.gov, Identifier NCT01616732, Registration date: June 8, 2012.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. A. Tajar, G. Forti, T.W. O’Neill, D.M. Lee, A.J. Silman, J.D. Finn, G. Bartfai, S. Boonen, F.F. Casanueva, A. Giwercman, T.S. Han, K. Kula, F. Labrie, M.E. Lean, N. Pendleton, M. Punab, D. Vanderschueren, I.T. Huhtaniemi, F.C. Wu,, Characteristics of secondary, primary, and compensated hypogonadism in aging men: evidence from the European Male Ageing Study. J. Clin. Endocrinol. Metab. 95(4), 1810–18818 (2010). https://doi.org/10.1210/jc.2009-1796

    Article  CAS  PubMed  Google Scholar 

  2. G.K. Jasuja, S. Bhasin, J.I. Reisman, J.T. Hanlon, D.R. Miller, A.P. Morreale, L.M. Pogach, F.E. Cunningham, A. Park, D.R. Berlowitz, A.J. Rose, Who gets testosterone? Patient characteristics associated with testosterone prescribing in the veteran affairs system: a cross-sectional study. J. Gen. Intern. Med. 32(3), 304–311 (2017). https://doi.org/10.1007/s11606-016-3940-7

    Article  PubMed  Google Scholar 

  3. A.M. Isidori, E. Giannetta, E.A. Greco, D. Gianfrilli, V. Bonifacio, A. Isidori, A. Lenzi, A. Fabbri, Effects of testosterone on body composition, bone metabolism and serum lipid profile in middle-aged men: a meta-analysis. Clin. Endocrinol. (Oxf) 63(3), 280–293 (2005)

    Article  CAS  Google Scholar 

  4. G. Corona, V.A. Giagulli, E. Maseroli, L. Vignozzi, A. Aversa, M. Zitzmann, F. Saad, E. Mannucci, M. Maggi, THERAPY OF ENDOCRINE DISEASE: Testosterone supplementation and body composition: results from a meta-analysis study. Eur. J. Endocrinol. 174(3), R99–R116 (2016). https://doi.org/10.1530/EJE-15-0262

    Article  CAS  PubMed  Google Scholar 

  5. M. Grossmann, Hypogonadism and male obesity: focus on unresolved questions. Clin. Endocrinol. (Oxf) 89(1), 11–211 (2018). https://doi.org/10.1111/cen.13723

    Article  Google Scholar 

  6. M. Ng Tang Fui, L.A. Prendergast, P. Dupuis, M. Raval, B.J. Strauss, J.D. Zajac, M. Grossmann, Effects of testosterone treatment on body fat and lean mass in obese men on a hypocaloric diet: a randomised controlled trial. BMC Med. 14(1), 153 (2016). https://doi.org/10.1186/s12916-016-0700-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. F. Saad, G. Doros, K.S. Haider, A. Haider,, Differential effects of 11 years of long-term injectable testosterone undecanoate therapy on anthropometric and metabolic parameters in hypogonadal men with normal weight, overweight and obesity in comparison with untreated controls: real-world data from a controlled registry study. Int. J. Obes (Lond) 44(6), 1264–12278 (2020). https://doi.org/10.1038/s41366-019-0517-7

    Article  CAS  Google Scholar 

  8. A. Tchernof, D. Brochu, I. Maltais-Payette, M.F. Mansour, G.B. Marchand, A.M. Carreau, J. Kapeluto, Androgens and the regulation of adiposity and body fat distribution in humans. Compr. Physiol. 8(4), 1253–1290 (2018). https://doi.org/10.1002/cphy.c170009

    Article  PubMed  Google Scholar 

  9. J.S. Finkelstein, H. Lee, S.A. Burnett-Bowie, J.C. Pallais, E.W. Yu, L.F. Borges, B.F. Jones, C.V. Barry, K.E. Wulczyn, B.J. Thomas, B.Z. Leder, Gonadal steroids and body composition, strength, and sexual function in men. N. Engl. J. Med. 369(11), 1011–1022 (2013). https://doi.org/10.1056/NEJMoa1206168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. M. Ng Tang Fui, R. Hoermann, M. Grossmann, Effect of testosterone treatment on adipokines and gut hormones in obese men on a hypocaloric diet. J. Endocr. Soc. 1(4), 302–312 (2017). https://doi.org/10.1210/js.2017-00062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. A.S. Cheung, C. de Rooy, I. Levinger, K. Rana, M.V. Clarke, J.M. How, A. Garnham, C. McLean, J.D. Zajac, R.A. Davey, M. Grossmann, Actin alpha cardiac muscle 1 gene expression is upregulated in the skeletal muscle of men undergoing androgen deprivation therapy for prostate cancer. J. Steroid Biochem. Mol. Biol. 174, 56–64 (2017). https://doi.org/10.1016/j.jsbmb.2017.07.029

    Article  CAS  PubMed  Google Scholar 

  12. M.D. Robinson, D.J. McCarthy, G.K. Smyth,, EdgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1), 139–1340 (2010). https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  13. Y. Liao, G.K. Smyth, W. Shi,, FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7), 923–9230 (2014). https://doi.org/10.1093/bioinformatics/btt656

    Article  CAS  PubMed  Google Scholar 

  14. Y. Benjamini, Y. Hochberg, Controlling the False Discovery Rate: a practical and powerful approach to multiple testing. J. Royal. Stat. Soc. Ser. B. 57(1), 289–300 (1995)

    Google Scholar 

  15. S.K. Koliwad, N.E. Gray, J.C. Wang, Angiopoietin-like 4 (Angptl4): a glucocorticoid-dependent gatekeeper of fatty acid flux during fasting. Adipocyte 1(3), 182–187 (2012). https://doi.org/10.4161/adip.20787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. S. Kersten, S. Mandard, N.S. Tan, P. Escher, D. Metzger, P. Chambon, F.J. Gonzalez, B. Desvergne, W. Wahli,, Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene. J. Biol. Chem 275(37), 28488–28493 (2000). https://doi.org/10.1074/jbc.M004029200

    Article  CAS  PubMed  Google Scholar 

  17. P.M.M. Ruppert, C. Michielsen, E.J. Hazebroek, A. Pirayesh, G. Olivecrona, L.A. Afman, S. Kersten, Fasting induces ANGPTL4 and reduces LPL activity in human adipose tissue. Mol. Metab. 40, 101033 (2020). https://doi.org/10.1016/j.molmet.2020.101033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. N. Franck, A. Gummesson, M. Jernas, C. Glad, P.A. Svensson, G. Guillot, M. Rudemo, F.H. Nystrom, L.M. Carlsson, B. Olsson, Identification of adipocyte genes regulated by caloric intake. J. Clin. Endocrinol. Metab. 96(2), E413–E418 (2011). https://doi.org/10.1210/jc.2009-2534

    Article  CAS  PubMed  Google Scholar 

  19. W. Liu, J. Li, M. Liu, H. Zhang, N. Wang, PPAR-gamma promotes endothelial cell migration by inducing the expression of Sema3g. J. Cell. Biochem. 116(4), 514–523 (2015). https://doi.org/10.1002/jcb.24994

    Article  CAS  PubMed  Google Scholar 

  20. C. Tan, N.N. Lu, C.K. Wang, D.Y. Chen, N.H. Sun, H. Lyu, J. Korbelin, W.X. Shi, K. Fukunaga, Y.M. Lu, F. Han, Endothelium-derived semaphorin 3G regulates hippocampal synaptic structure and plasticity via neuropilin-2/PlexinA4. Neuron 101(5), 920–937 e913 (2019). https://doi.org/10.1016/j.neuron.2018.12.036

    Article  CAS  PubMed  Google Scholar 

  21. C. Fromm-Dornieden, S. von der Heyde, O. Lytovchenko, G. Salinas-Riester, B. Brenig, T. Beissbarth, B.G. Baumgartner, Novel polysome messages and changes in translational activity appear after induction of adipogenesis in 3T3-L1 cells. BMC Mol. Biol. 13, 9 (2012). https://doi.org/10.1186/1471-2199-13-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. M. Liu, S. Xie, W. Liu, J. Li, C. Li, W. Huang, H. Li, J. Song, H. Zhang, Mechanism of SEMA3G knockdown-mediated attenuation of high-fat diet-induced obesity. J. Endocrinol. 244(1), 223–236 (2020). https://doi.org/10.1530/JOE-19-0029

    Article  CAS  PubMed  Google Scholar 

  23. X. Shao, M. Wang, X. Wei, S. Deng, N. Fu, Q. Peng, Y. Jiang, L. Ye, J. Xie, Y. Lin, Peroxisome proliferator-activated receptor-gamma: master regulator of adipogenesis and obesity. Curr. Stem. Cell Res. Ther. 11(3), 282–289 (2016). https://doi.org/10.2174/1574888x10666150528144905

    Article  CAS  PubMed  Google Scholar 

  24. H.J. Lee, C.H. Cho, S.J. Hwang, H.H. Choi, K.T. Kim, S.Y. Ahn, J.H. Kim, J.L. Oh, G.M. Lee, G.Y. Koh, Biological characterization of angiopoietin-3 and angiopoietin-4. FASEB J. 18(11), 1200–1208 (2004). https://doi.org/10.1096/fj.03-1466com

    Article  CAS  PubMed  Google Scholar 

  25. C.T. Kesler, E.R. Pereira, C.H. Cui, G.M. Nelson, D.J. Masuck, J.W. Baish, T.P. Padera,, Angiopoietin-4 increases permeability of blood vessels and promotes lymphatic dilation. FASEB J. 29(9), 3668–3677 (2015). https://doi.org/10.1096/fj.14-268920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. R.A. Forman, M.L. deSchoolmeester, R.J. Hurst, S.H. Wright, A.D. Pemberton, K.J. Else, The goblet cell is the cellular source of the anti-microbial angiogenin 4 in the large intestine post Trichuris muris infection. PLoS One 7(9), e42248 (2012). https://doi.org/10.1371/journal.pone.0042248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. X. Guo, J. Li, R. Tang, G. Zhang, H. Zeng, R.J. Wood, Z. Liu, High fat diet alters gut microbiota and the expression of paneth cell-antimicrobial peptides preceding changes of circulating inflammatory cytokines. Mediators Inflamm. 2017, 9474896 (2017). https://doi.org/10.1155/2017/9474896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. J. Tomas, C. Mulet, A. Saffarian, J.B. Cavin, R. Ducroc, B. Regnault, C. Kun Tan, K. Duszka, R. Burcelin, W. Wahli, P.J. Sansonetti, T. Pedron, High-fat diet modifies the PPAR-gamma pathway leading to disruption of microbial and physiological ecosystem in murine small intestine. Proc. Natl Acad. Sci. U.S.A. 113(40), E5934–E5943 (2016). https://doi.org/10.1073/pnas.1612559113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. E. Maseroli, P. Comeglio, C. Corno, I. Cellai, S. Filippi, T. Mello, A. Galli, E. Rapizzi, L. Presenti, M. C. Truglia, F. Lotti, E. Facchiano, B. Beltrame, M. Lucchese, F. Saad, G. Rastrelli, M. Maggi, L. Vignozzi, Testosterone treatment is associated with reduced adipose tissue dysfunction and nonalcoholic fatty liver disease in obese hypogonadal men. J. Endocrinol. Invest. (2020). https://doi.org/10.1007/s40618-020-01381-8

  30. M. Yi, H. Li, Z. Wu, J. Yan, Q. Liu, C. Ou, M. Chen, A promising therapeutic target for metabolic diseases: neuropeptide Y receptors in humans. Cell Physiol. Biochem. 45(1), 88–107 (2018). https://doi.org/10.1159/000486225

    Article  CAS  PubMed  Google Scholar 

  31. P. Naveilhan, H. Hassani, J.M. Canals, A.J. Ekstrand, A. Larefalk, V. Chhajlani, E. Arenas, K. Gedda, L. Svensson, P. Thoren, P. Ernfors, Normal feeding behavior, body weight and leptin response require the neuropeptide Y Y2 receptor. Nat. Med. 5(10), 1188–1193 (1999). https://doi.org/10.1038/13514

    Article  CAS  PubMed  Google Scholar 

  32. A. Sainsbury, C. Schwarzer, M. Couzens, S. Fetissov, S. Furtinger, A. Jenkins, H.M. Cox, G. Sperk, T. Hokfelt, H. Herzog,, Important role of hypothalamic Y2 receptors in body weight regulation revealed in conditional knockout mice. Proc. Natl Acad. Sci. U.S.A. 99(13), 8938–8943 (2002). https://doi.org/10.1073/pnas.132043299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. S.S. Torekov, L.H. Larsen, G. Andersen, A. Albrechtsen, C. Glumer, K. Borch-Johnsen, T. Jorgensen, T. Hansen, O. Pedersen,, Variants in the 5’ region of the neuropeptide Y receptor Y2 gene (NPY2R) are associated with obesity in 5,971 white subjects. Diabetologia 49(11), 2653–2658 (2006). https://doi.org/10.1007/s00125-006-0425-y

    Article  CAS  PubMed  Google Scholar 

  34. D.D. Pierroz, A.C. Aebi, I.T. Huhtaniemi, M.L. Aubert, Many LH peaks are needed to physiologically stimulate testosterone secretion: modulation by fasting and NPY. Am. J. Physiol. 276(4), E603–66010 (1999). https://doi.org/10.1152/ajpendo.1999.276.4.E603

    Article  CAS  PubMed  Google Scholar 

  35. E.H. Sohn, T. Wolden-Hanson, A.M. Matsumoto, Testosterone (T.)-induced changes in arcuate nucleus cocaine-amphetamine-regulated transcript and NPY mRNA are attenuated in old compared to young male brown Norway rats: contribution of T to age-related changes in cocaine-amphetamine-regulated transcript and NPY gene expression. Endocrinology 143(3), 954–963 (2002). https://doi.org/10.1210/endo.143.3.8670

    Article  CAS  PubMed  Google Scholar 

  36. G. Rastrelli, T.W. O’Neill, T. Ahern, G. Bartfai, F.F. Casanueva, G. Forti, B. Keevil, A. Giwercman, T.S. Han, J. Slowikowska-Hilczer, M.E.J. Lean, N. Pendleton, M. Punab, L. Antonio, J. Tournoy, D. Vanderschueren, M. Maggi, I.T. Huhtaniemi, F.C.W. Wu, Symptomatic androgen deficiency develops only when both total and free testosterone decline in obese men who may have incident biochemical secondary hypogonadism: Prospective results from the EMAS. Clin. Endocrinol. (Oxf) 89(4), 459–469 (2018). https://doi.org/10.1111/cen.13756. group, E.S

    Article  CAS  Google Scholar 

  37. S. Bhasin, M. Pencina, G.K. Jasuja, T.G. Travison, A. Coviello, E. Orwoll, P.Y. Wang, C. Nielson, F. Wu, A. Tajar, F. Labrie, H. Vesper, A. Zhang, J. Ulloor, R. Singh, R. D’Agostino, R.S. Vasan,, Reference ranges for testosterone in men generated using liquid chromatography tandem mass spectrometry in a community-based sample of healthy nonobese young men in the Framingham Heart Study and applied to three geographically distinct cohorts. J. Clin. Endocrinol. Metab. 96(8), 2430–2439 (2011). https://doi.org/10.1210/jc.2010-3012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. F.C. Wu, A. Tajar, J.M. Beynon, S.R. Pye, A.J. Silman, J.D. Finn, T.W. O’Neill, G. Bartfai, F.F. Casanueva, G. Forti, A. Giwercman, T.S. Han, K. Kula, M.E. Lean, N. Pendleton, M. Punab, S. Boonen, D. Vanderschueren, F. Labrie, I.T. Huhtaniemi, E. Group, Identification of late-onset hypogonadism in middle-aged and elderly men. N. Engl. J. Med. 363(2), 123–135 (2010). https://doi.org/10.1056/NEJMoa0911101

    Article  CAS  PubMed  Google Scholar 

Download references

Author contributions

Study design: M.G., J.D.Z. Study conduct: M.N.T.F., M.G. Data collection: M.G., M.N.T.F., M.V.C. Data analysis: M.G., M.N.T.F., T.N., R.A.D. Data interpretation: M.G., M.N.T.F., R.D., A.S.C., J.D.Z., R.A.D. Drafting paper: M.G., M.N.T.F., R.A.D. Approving final version of the paper: all authors.

Funding

Bayer Pharma AG (Berlin, Germany) provided testosterone, placebo and financial support to conduct investigations, but had no role in trial design, data analysis or writing the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel A. Davey.

Ethics declarations

Conflict of interest

M.G. has received research funding from Bayer, Novartis, Weight Watchers, Lilly and speaker’s honoraria from Besins Health Care. M.N.T.F. has received research funding from Bayer Pharma. T.N., R.H., J.D.Z. and R.D. have nothing to disclose.

Consent to participate

All participants in the fat biopsy sub-study were required to sign an additional Participant Information and Consent Form (PICF) specifically dedicated to the fat biopsy sub-study explaining the purpose and risks of taking subcutaneous fat biopsies.

Ethics approval

Human Research Ethics Committee, Austin Health (HREC 2012/04495).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grossmann, M., Fui, M.N.T., Nie, T. et al. Changes in white adipose tissue gene expression in a randomized control trial of dieting obese men with lowered serum testosterone alone or in combination with testosterone treatment. Endocrine 73, 463–471 (2021). https://doi.org/10.1007/s12020-021-02722-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-021-02722-0

Keywords

Navigation