Skip to main content

Advertisement

Log in

Software Pipeline for Midsagittal Corpus Callosum Thickness Profile Processing

Automated Segmentation, Manual Editor, Thickness Profile Generator, Group-Wise Statistical Comparison and Results Display

  • Software Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

This paper presents a fully automated pipeline for thickness profile evaluation and analysis of the human corpus callosum (CC) in 3D structural T 1-weighted magnetic resonance images. The pipeline performs the following sequence of steps: midsagittal plane extraction, CC segmentation algorithm, quality control tool, thickness profile generation, statistical analysis and results figure generator. The CC segmentation algorithm is a novel technique that is based on a template-based initialisation with refinement using mathematical morphology operations. The algorithm is demonstrated to have high segmentation accuracy when compared to manual segmentations on two large, publicly available datasets. Additionally, the resultant thickness profiles generated from the automated segmentations are shown to be highly correlated to those generated from the ground truth segmentations. The manual editing tool provides a user-friendly environment for correction of errors and quality control. Statistical analysis and a novel figure generator are provided to facilitate group-wise morphological analysis of the CC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Adamson, C., Wood, A., Chen, J., Barton, S., Reutens, D., Pantelis, C., Velakoulis, D., Walterfang, M. (2011). Thickness profile generation for the corpus callosum using Laplace’s equation. Human Brain Mapping, 32, 2131–2140.

    Article  PubMed  Google Scholar 

  • Ardekani, B. (2013). NITRC: Automatic Registration Toolbox. http://www.nitrc.org/projects/art.

  • Ardekani, B., Guckemus, S., Bachman, A., Hoptman, M., Wojtasze, M., Nierenberg, J. (2005). Quantitative comparison of algorithms for inter-subject registration of 3D volumetric brain MRI scans. Journal of Neuroscience Methods, 142, 67–76.

    Article  PubMed  Google Scholar 

  • Ardekani, B.A., & Bachman, A.H. (2009). Model-based automatic detection of the anterior and posterior commissures on MRI scans. NeuroImage, 46, 677–682.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bachmann, S., Pantel, J., Flender, A., Bottmer, C., Essig, M., Schrder, J. (2003). Corpus callosum in first-episode patients with schizophrenia - a magnetic resonance imaging study. Psychological Medicine, 33, 1019–1027.

    Article  PubMed  CAS  Google Scholar 

  • Baker, S., & Matthews, I. (2002). Lucas-kanade 20 years on: A unifying framework: Part 1 Technical report CMU-RI-TR-02-16, Robotics Institute.

  • Brambilla, P., Nicoletti, M., Sassi, R., Mallinger, A., Frank, E., Keshavan, M., Soares, J. (2004). Corpus callosum signal intensity in patients with bipolar and unipolar disorder. Journal of Neurology Neurosurgery, and Psychiatry, 75, 221–225.

    CAS  Google Scholar 

  • Downhill, J.E., Buchsbaum, M.S., Wei, T., S.-Cohen, J., Hazlett, E.A., Haznedar, M.M., Silverman, J., Siever, L.J. (2000). Shape and size of the corpus callosum in schizophrenia and schizotypal personality disorder. Schizophrenia Research, 42, 193–208.

    Article  PubMed  Google Scholar 

  • Grabner, G., Janke, A.L., Budge, M.M., Smith, D., Pruessner, J., Collins, D.L. (2006). Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults. Medical Image Computing and Computer-Assisted Intervention (Vol. 9, pp. 58–66).

  • Guo, H., Rangarajan, A., Joshi, S., Younes. L. (2004). Non-rigid registration of shapes via diffeomorphic point matching. IEEE International Symposium on Biomedical Imaging: Nano to Macro (Vol. 1, pp. 924–927).

  • Haralick R., & Shapiro L. (1992). Computer and Robot Vision, Vol. 1: Addison-Wesley.

  • Hofer, S., & Frahm, J. (2006). Topography of the human corpus callosum revisited – comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. NeuroImage, 32, 989–994.

    Article  PubMed  Google Scholar 

  • Hynd, G.W., Semrud-Clikeman, M., Lorys, A.R., Novey, E.S., Eliopulos, D., Lyytinen, H. (1991). Corpus callosum morphology in attention deficit-hyperactivity disorder: Morphometric analysis of mri. Journal of Learning Disabilities, 24.

  • Jenkinson, M., Bannister, P.R., Brady, M., Smith. S.M (2002). Improved optimisation for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17, 825–841.

    Article  PubMed  Google Scholar 

  • Joshi, S.H., Narr, K.L., Philips, O.R., Nuechterlein, K.H., Asarnow, R.F., Toga, A.W., Woods, R.P. (2013). Statistical shape analysis of the corpus callosum in schizophrenia. NeuroImage, 64, 547–559.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klein, A., & Tourville, J. (2012). 101 labeled brain images and a consistent human cortical labeling protocol. Frontiers in Neuroscience, 6. http://journal.frontiersin.org/Journal/10.3389/fnins.2012.00171/full

  • Lacerda, A.L., Brambilla, P., Sassi, R.B., Nicoletti, M.A., Mallinger, A.G., Frank, E., Kupfer, D.J., Keshavan, M.S., Soares, J.C. (2005). Anatomical MRI study of corpus callosum in unipolar depression. Journal of Psychiatric Research, 39, 347–354.

    Article  PubMed  Google Scholar 

  • Lee, S.H., Yu, D., Bachman, A.H., Lim, J., Ardekani, B.A. (2014). Application of fused lasso logistic regression to the study of corpus callosum thickness in early alzheimer’s disease. Journal of Neuroscience Methods, 221, 78–84.

    Article  PubMed  Google Scholar 

  • Lewis J.P. (1995). Fast normalized cross-correlation. http://scribblethink.org/Work/nvisionInterface/nip.pdf. Accessed 27 July 2013.

  • Lucas, B.D., & Kanade, T. (1981). An iterative image registration technique with an application to stereo vision.. Proceedings of Imaging Understanding Workshop, (pp. 121–130).

  • Luders, E., Narr, K., Bilder, R., Thompson, P., Szeszko, P., Hamilton, L., Toga, A. (2007). Positive correlations between corpus callosum thickness and intelligence. NeuroImage, 37, 1457–1464.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyoo, I.K., Kwon, J.S., Lee, S.J., Han, M.H., Chang, C.-G., Seo, C.S., Lee, S.I., Renshaw, P.F. (2002). Decrease in genu of the corpus callosum in medication-nave, early-onset dysthymia and depressive personality disorderr. Biological Psychiatry, 52, 1134– 1143.

    Article  PubMed  Google Scholar 

  • Marcus, D.S., Wang, T.H., Parker, J., Csernansky, J.G., Morris, J.C., Buckner, R.L. (2007). Open access series of imaging studies (OASIS): Cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. Journal of Cognitive Neuroscience, 19, 1498–1507.

    Article  PubMed  Google Scholar 

  • McInerney, T., Hamarneh, G., Shenton, M., Terzopoulos, D. (2002). Deformable organisms for automatic medical image analysis. Medical Image Analysis, 6, 251–266.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitchell, T.N., Free, S.L., Merschhemke, M., Lemieux, L., Sisodiya, S.M., Shorvon, S.D. (2003). Reliable callosal measurement: population normative data confirm sex-related differences. American Journal of Neuroradiology, 24, 410–418.

    PubMed  Google Scholar 

  • Otsu, N. (1979). A threshold selection method from gray-level histograms. Image Processing, Systems Man and Cybernetics, 9, 62–66.

    Google Scholar 

  • Peters, M., Oeltze, S., Seminowicz, D., Steinmetz, H., Koeneke, S., Jäncke, L. (2002). Division of the corpus callosum into subregions. Brain and Cognition, 50, 62–72.

    Article  PubMed  CAS  Google Scholar 

  • Riise, J., & Pakkenberg, B. (2011). Stereological estimation of the total number of myelinated callosal fibers in human subjects. Journal of Anatomy, 218, 277–284.

    Article  PubMed  PubMed Central  Google Scholar 

  • The MathWorks (2013). MATLAB.

  • Vachet, C., Yvernault, B., Bhatt, K., Smithm, R.G., Gerig, G., Hazlett, H.C., Styner, M. (2012). Automatic corpus callosum segmentation using a deformable active fourier contour model. Proceedings of SPIE (Vol. 8317, pp. 831707–831707–7).

  • van Ginneken, B., Frangi, A.F., Staal, J.J., ter Haar Romeny, B.M., Viergever, M.A. (2002). Active shape model segmentation with optimal features. IEEE Transactions on Medical Imaging, 21, 924–933.

    Article  PubMed  Google Scholar 

  • Vidal, C.N., Nicolson, R., DeVito, T.J., Hayashi, K.M., Geaga, J.A., Drost, D.J., Williamson, P.C., Rajakumar, N., Sui, Y., Dutton, R.A., Toga, A.W., Thompson, P.M. (2006). Mapping corpus callosum deficits in autism: An index of aberrant cortical connectivity. Biological Psychiatry, 60, 218–225.

    Article  PubMed  Google Scholar 

  • Vincent, L. (1993). Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Transactions on Image Processing, 2, 176–201.

    Article  PubMed  CAS  Google Scholar 

  • Walterfang, M., Yücel, M., amd D.C. Reutens, S.B., Wood A.G., Chen, J., Lorenzetti, V., Velakoulis, D., Pantelis, C., Allen, N.B. (2009). Corpus callosum size and shape in individuals with current and past depression. Journal of Affective Disorders, 115, 411–420.

  • Westfall, P.H., & Young, S.S. (1993). Resampling-based multiple testing: Examples and methods for p-value adjustment, Wiley Series in Probability and Statistics, 1st edn.: Wiley-Interscience.

  • Witelson, S.F. (1989). Hand and sex differences in the isthmus and genu of the human corpus callosum: a postmortem morphological study. Brain, 112, 799–835.

    Article  PubMed  Google Scholar 

  • Wu, J.C., Bchsbaum, M.S., Johnson, J.C., Hershey, T.G., Wagner, E.A., Tung, C., Lottenberg, S. (1993). Magnetic resonance and positron emission tomography imaging of the corpus callosum: size, shape and metabolic rate in unipolar depression. Journal of Affective Disorders, 28, 15–25.

    Article  PubMed  CAS  Google Scholar 

  • Yushkevich, P.A., Piven, J., Hazlett, C., Smith, H., Smith, G., Ho, R., Ho, S., Gee, J.C., Gerig, G. (2006). User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage, 31, 1116–1128.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was conducted within the Developmental Imaging research group, Murdoch Childrens Research Institute at the Children’s MRI Centre, Royal Children’s Hospital, Melbourne Victoria. It was supported by the Murdoch Childrens Research Institute, Royal Children’s Hospital, The University of Melbourne Department of Paediatrics and the Victorian Government’s Operational Infrastructure Support Program.

Conflict of interests

No authors report any conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Adamson.

Additional information

Information Sharing Statement

The Corpus Callosum Thickness Profile Analysis Pipeline (RRID:nlx 157716) software is available at the following URL: https://www.nitrc.org/projects/ccsegthickness. There is a downloadable user guide in PDF format on the website.

Appendix

Appendix

This appendix defines the morphological operations of dilation, erosion, opening, closing. All of these are greyscale with the binary image being a special case of pixels with greyscale values of 0 or 1. Greyscale dilation and erosion for each image pixel x and structuring element SE are defined as:

$$ (I \ensuremath{\oplus} \ensuremath{\text{SE}})(x) = \underset{b \in \ensuremath{\text{SE}}}{\max}I(x + b)$$
(1)
$$ (I \ensuremath{\ominus} \ensuremath{\text{SE}})(x) = \underset{b \in \ensuremath{\text{SE}}}{\min}I(x + b) $$
(2)

for brevity the pixel indices will be dropped, i.e. I ⊕ SE and I ⊖ SE will be used for (1) and (2) respectively.

Morphological opening and closing are defined as follows:

$$ I \ensuremath{\circ} \ensuremath{\text{SE}} = (I \ensuremath{\ominus} \ensuremath{\text{SE}}) \ensuremath{\oplus} \ensuremath{\text{SE}}$$
(3)
$$ I \ensuremath{\bullet} \ensuremath{\text{SE}} = (I \ensuremath{\oplus} \ensuremath{\text{SE}}) \ensuremath{\ominus} \ensuremath{\text{SE}} $$
(4)

The standard structuring elements used in this paper are as follows: disk D r , box B r , where r denotes the radius or size. Let the structuring element Z ϕ be a thin ellipse whose major axis forms the angle ϕ with the x axis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adamson, C., Beare, R., Walterfang, M. et al. Software Pipeline for Midsagittal Corpus Callosum Thickness Profile Processing. Neuroinform 12, 595–614 (2014). https://doi.org/10.1007/s12021-014-9236-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-014-9236-3

Keywords

Navigation