Skip to main content

Advertisement

Log in

Clozapine-Induced ERK1 and ERK2 Signaling in Prefrontal Cortex Is Mediated by the EGF Receptor

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The atypical antipsychotic drug clozapine is effective in treatment-refractory schizophrenia. The intracellular signaling pathways that mediate clozapine action remain unknown. A potential candidate is the mitogen-activated protein kinase extracellular signal-regulated kinase (MAPK-ERK) cascade that links G-protein-coupled receptor and ErbB growth factor signaling systems, thereby regulating synaptic plasticity and connectivity, processes impaired in schizophrenia. Here, we examined how clozapine differentially modulated phosphorylation of the MAPK isoforms, ERK1/ERK2 in primary murine prefrontal cortical neurons compared to the typical antipsychotic drug haloperidol. While clozapine and haloperidol acutely decreased cortical pERK1 activation, only clozapine but not haloperidol stimulated pERK1 and pERK2 with continued drug exposure. This delayed ERK increase however, did not occur via the canonical dopamine D2-Gi/o-PKA or serotonin 5HT2A-Gq-phospholipase-C-linked signaling pathways. Rather, epidermal growth factor (EGF) receptor signaling mediated clozapine-induced ERK activation, given dose-dependent reduction of pERK1 and pERK2 stimulation with the EGF receptor inhibitor, AG1478. Immunocytochemical studies indicated that clozapine treatment increased EGF receptor (Tyr1068) phosphorylation. In vivo mouse treatment studies supported the in vitro findings with initial blockade, subsequent activation, and normalization of the cortical ERK response over 24 h. Furthermore, in vivo clozapine-induced ERK activation was significantly reduced by AG1478. This is the first report that clozapine action on prefrontal cortical neurons involves the EGF signaling system. Since EGF receptor signaling has not been previously linked to antipsychotic drug action, our findings may implicate the EGF system as a molecular substrate in treatment-resistant schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

DOI:

dimethoxy-4-iodoamphetamine

DMSO:

dimethyl sulfoxide

dH2O:

distilled water

D2R:

dopamine D2 receptors

EGF:

epidermal growth factor

ERK1:

total ERK1

ERK2:

total ERK2

pERK1:

phosphorylated ERK1

pERK2:

phosphorylated ERK2

GPCR:

G-protein coupled receptor

HRP:

horseradish peroxidase

8-OH-DPAT:

8-hydroxy-2-(dipropylamino)-tetralin

MAPK-ERK:

mitogen-activated protein kinase extracellular signal-regulated kinase

MEK:

MAPK-ERK kinase

NGF:

nerve growth factor

PBS:

phosphate-buffered saline

PDGF:

platelet-derived growth factor

PKA:

protein kinase A

RTKs:

receptor tyrosine kinases

5-HT:

serotonin

SDS-PAGE:

sodium dodecyl sulfate polyacrylamide gel electrophoresis

TBS:

Tris-buffered saline

TBST:

Tris-buffered saline Tween

References

  • Ahmed, M. R., Gurevich, V. V., Dalby, K. N., Benovic, J. L., & Gurevich, E. V. (2008). Haloperidol and clozapine differentially affect the expression of arrestins, receptor kinases, and extracellular signal-regulated kinase activation. The Journal of Pharmacology and Experimental Therapeutics, 325, 276–283. doi:10.1124/jpet.107.131987.

    Article  PubMed  CAS  Google Scholar 

  • Anttila, S., Illi, A., Kampman, O., Mattila, K. M., Lehtimaki, T., & Leinonen, E. (2004). Association of EGF polymorphism with schizophrenia in Finnish men. Neuroreport, 15, 1215–1218. doi:10.1097/00001756-200405190-00027.

    Article  PubMed  CAS  Google Scholar 

  • Bespalov, A., Jongen-Relo, A. L., van Gaalen, M., Harich, S., Schoemaker, H., & Gross, G. (2007). Habituation deficits induced by metabotropic glutamate receptors 2/3 receptor blockade in mice: reversal by antipsychotic drugs. The Journal of Pharmacology and Experimental Therapeutics, 32, 944–950.

    Google Scholar 

  • Britsch, S. (2007). The neuregulin-I/ErbB signaling system in development and disease. Advances in Anatomy, Embryology, and Cell Biology, 190, 1–65. doi:10.1007/978-3-540-37107-6_1.

    Article  PubMed  Google Scholar 

  • Browning, J. L., Patel, T., Brandt, P. C., Young, K. A., Holcomb, L. A., & Hicks, P. B. (2005). Clozapine and the mitogen-activated protein kinase signal transduction pathway: implications for antipsychotic actions. Biological Psychiatry, 57, 617–623. doi:10.1016/j.biopsych.2004.12.002.

    Article  PubMed  CAS  Google Scholar 

  • Bruins Slot, L. A., De Vries, L., Newman-Tancredi, A., & Cussac, D. (2006). Differential profile of antipsychotics at serotonin 5-HT1A and dopamine D2S receptors coupled to extracellular signal-regulated kinase. European Journal of Pharmacology, 534, 63–70. doi:10.1016/j.ejphar.2006.01.027.

    Article  PubMed  CAS  Google Scholar 

  • Buxbaum, J. D., Georgieva, L., Young, J. J., Plescia, C., Kajiwara, Y., Jiang, Y., et al. (2008). Molecular dissection of NRG1-ERBB4 signaling implicates PTPRZ1 as a potential schizophrenia susceptibility gene. Molecular Psychiatry, 13, 162–172. doi:10.1038/sj.mp.4001991.

    Article  PubMed  CAS  Google Scholar 

  • Bymaster, F., Perry, K. W., Nelson, D. L., Wong, D. T., Rasmussen, K., Moore, N. A., et al. (1999). Olanzapine: a basic science update. The British Journal of Psychiatry Supplement, 36–40.

  • Cussac, D., Duqueyroix, D., Newman-Tancredi, A., & Millan, M. J. (2002). Stimulation by antipsychotic agents of mitogen-activated protein kinase (MAPK) coupled to cloned, human (h)serotonin (5-HT)(1A) receptors. Psychopharmacology, 162, 168–177. doi:10.1007/s00213-002-1043-0.

    Article  PubMed  CAS  Google Scholar 

  • Dwivedi, Y., Rizavi, H. S., & Pandey, G. N. (2002). Differential effects of haloperidol and clozapine on [(3)H]cAMP binding, protein kinase A (PKA) activity, and mRNA and protein expression of selective regulatory and catalytic subunit isoforms of PKA in rat brain. The Journal of Pharmacology and Experimental Therapeutics, 301, 197–209. doi:10.1124/jpet.301.1.197.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, A. G., Doherty, M. M., Walker, F., Weinstock, J., Nerrie, M., Vitali, A., et al. (2006). Preclinical analysis of the analinoquinazoline AG1478, a specific small molecule inhibitor of EGF receptor tyrosine kinase. Biochemical Pharmacology, 71, 1422–1434. doi:10.1016/j.bcp.2006.01.020.

    Article  PubMed  CAS  Google Scholar 

  • Fumagalli, F., Frasca, A., Sparta, M., Drago, F., Racagni, G., & Riva, M. A. (2006). Long-term exposure to the atypical antipsychotic olanzapine differently up-regulates extracellular signal-regulated kinases 1 and 2 phosphorylation in subcellular compartments of rat prefrontal cortex. Molecular Pharmacology, 69, 1366–1372. doi:10.1124/mol.105.019828.

    Article  PubMed  CAS  Google Scholar 

  • Futamura, T., Toyooka, K., Iritani, S., Niizato, K., Nakamura, R., Tsuchiya, K., et al. (2002). Abnormal expression of epidermal growth factor and its receptor in the forebrain and serum of schizophrenic patients. Molecular Psychiatry, 7, 673–682. doi:10.1038/sj.mp.4001081.

    Article  PubMed  CAS  Google Scholar 

  • Hahn, C. G., Wang, H. Y., Cho, D. S., Talbot, K., Gur, R. E., Berrettini, W. H., et al. (2006). Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia. Nature Medicine, 12, 824–828. doi:10.1038/nm1418.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, P. J., & Law, A. J. (2006). Neuregulin 1 and schizophrenia: genetics, gene expression, and neurobiology. Biological Psychiatry, 60, 32–140. doi:10.1016/j.biopsych.2005.11.002.

    Article  Google Scholar 

  • Harrison, P. J., & Weinberger, D. R. (2005). Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Molecular Psychiatry, 10, 40–68. doi:10.1038/sj.mp.4001558.

    Article  PubMed  CAS  Google Scholar 

  • Kamei, H., Nagai, T., Nakano, H., Togan, Y., Takayanagi, M., Takahashi, K., et al. (2006). Repeated methamphetamine treatment impairs recognition memory through a failure of novelty-induced ERK1/2 activation in the prefrontal cortex of mice. Biological Psychiatry, 59, 75–84. doi:10.1016/j.biopsych.2005.06.006.

    Article  PubMed  CAS  Google Scholar 

  • Kane, J., Honigfeld, G., Singer, J., & Meltzer, H. (1988). Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Archives of General Psychiatry, 45, 789–796.

    PubMed  CAS  Google Scholar 

  • Kapur, S., & Seeman, P. (2001). Does fast dissociation from the dopamine D(2) receptor explain the action of atypical antipsychotics?: A new hypothesis. The American Journal of Psychiatry, 158, 360–369. doi:10.1176/appi.ajp.158.3.360.

    Article  PubMed  CAS  Google Scholar 

  • Kornhuber, J., Schultz, A., Wiltfang, J., Meineke, I., Gleiter, C. H., Zochling, R., et al. (1999). Persistence of haloperidol in human brain tissue. The American Journal of Psychiatry, 156, 885–890.

    PubMed  CAS  Google Scholar 

  • Lewis, S. W., Barnes, T. R., Davies, L., Murray, R. M., Dunn, G., Hayhurst, K. P., et al. (2006). Randomized controlled trial of effect of prescription of clozapine versus other second-generation antipsychotic drugs in resistant schizophrenia. Schizophrenia Bulletin, 32, 715–723. doi:10.1093/schbul/sbj067.

    Article  PubMed  Google Scholar 

  • Lieberman, J. A., Stroup, T. S., McEvoy, J. P., Swartz, M. S., Rosenheck, R. A., Perkins, D. O., et al. (2005). Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. The New England Journal of Medicine, 353, 1209–1223. doi:10.1056/NEJMoa051688.

    Article  PubMed  CAS  Google Scholar 

  • Lu, X. H., & Dwyer, D. S. (2005). Second-generation antipsychotic drugs, olanzapine, quetiapine, and clozapine enhance neurite outgrowth in PC12 cells via PI3K/AKT, ERK, and pertussis toxin-sensitive pathways. Journal of Molecular Neuroscience, 27, 43–64. doi:10.1385/JMN:27:1:043.

    Article  PubMed  CAS  Google Scholar 

  • Lu, X. H., Bradley, R. J., & Dwyer, D. S. (2004). Olanzapine produces trophic effects in vitro and stimulates phosphorylation of Akt/PKB, ERK1/2, and the mitogen-activated protein kinase p38. Brain Research, 1011, 58–68. doi:10.1016/j.brainres.2004.03.018.

    Article  PubMed  CAS  Google Scholar 

  • McEvoy, J. P., Lieberman, J. A., Stroup, T. S., Davis, S. M., Meltzer, H. Y., Rosenheck, R. A., et al. (2006). Effectiveness of clozapine versus olanzapine, quetiapine, and risperidone in patients with chronic schizophrenia who did not respond to prior atypical antipsychotic treatment. The American Journal of Psychiatry, 163, 600–610. doi:10.1176/appi.ajp.163.4.600.

    Article  PubMed  Google Scholar 

  • Meltzer, H. Y. (2004). What’s atypical about atypical antipsychotic drugs? Current Opinion in Pharmacology, 4, 53–57. doi:10.1016/j.coph.2003.09.010.

    Article  PubMed  CAS  Google Scholar 

  • Pozzi, L., Hakansson, K., Usiello, A., Borgkvist, A., Lindskog, M., Greengard, P., et al. (2003). Opposite regulation by typical and atypical anti-psychotics of ERK1/2, CREB and Elk-1 phosphorylation in mouse dorsal striatum. Journal of Neurochemistry, 86, 451–459. doi:10.1046/j.1471-4159.2003.01851.x.

    Article  PubMed  CAS  Google Scholar 

  • Prenzel, N., Zwick, E., Daub, H., Leserer, M., Abraham, R., Wallasch, C., et al. (1999). EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature, 402, 884–888.

    PubMed  CAS  Google Scholar 

  • Stefansson, H., Sigurdsson, E., Steinthorsdottir, V., Bjornsdottir, S., Sigmundsson, T., Ghosh, S., et al. (2002). Neuregulin 1 and susceptibility to schizophrenia. American Journal of Human Genetics, 71, 877–892. doi:10.1086/342734.

    Article  PubMed  Google Scholar 

  • Sundram, S., Joyce, P. R., & Kennedy, M. A. (2003). Schizophrenia and bipolar affective disorder: perspectives for the development of therapeutics. Current Molecular Medicine, 3, 393–407. doi:10.2174/1566524033479708.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, G. M., & Huganir, R. L. (2004). MAPK cascade signaling and synaptic plasticity. Nature Reviews. Neuroscience, 5, 173–183. doi:10.1038/nrn1346.

    Article  PubMed  CAS  Google Scholar 

  • Turalba, A. V., Leite-Morris, K. A., & Kaplan, G. B. (2004). Antipsychotics regulate cyclic AMP-dependent protein kinase and phosphorylated cyclic AMP response element-binding protein in striatal and cortical brain regions in mice. Neuroscience Letters, 357, 53–57. doi:10.1016/j.neulet.2003.11.059.

    Article  PubMed  CAS  Google Scholar 

  • Urban, J. D., Clarke, W. P., von Zastrow, M., Nichols, D. E., Kobilka, B. K., Weinstein, H., et al. (2007). Functional selectivity and classical concepts of quantitative pharmacology. The Journal of Pharmacology and Experimental Therapeutics, 320, 1–13. doi:10.1124/jpet.106.104463.

    Article  PubMed  CAS  Google Scholar 

  • Vanhoose, A. M., Emery, M., Jimenez, L., & Winder, D. G. (2002). ERK activation by G-protein-coupled receptors in mouse brain is receptor identity-specific. The Journal of Biological Chemistry, 277, 9049–9053. doi:10.1074/jbc.M108309200.

    Article  PubMed  CAS  Google Scholar 

  • Waters, C., Pyne, S., & Pyne, N. J. (2004). The role of G-protein coupled receptors and associated proteins in receptor tyrosine kinase signal transduction.. Seminars in Cell & Developmental Biology, 15, 309–323. doi:10.1016/j.semcdb.2003.12.020.

    Article  CAS  Google Scholar 

  • Weigmann, H., Hartter, S., Fischer, V., Dahmen, N., & Hiemke, C. (1999). Distribution of clozapine and desmethylclozapine between blood and brain in rats. European Neuropsychopharmacology, 9, 253–256. doi:10.1016/S0924-977X(98)00036-4.

    Article  PubMed  CAS  Google Scholar 

  • White, A. R., Zheng, H., Galatis, D., Maher, F., Hesse, L., Multhaup, G., et al. (1998). Survival of cultured neurons from amyloid precursor protein knock-out mice against Alzheimer’s amyloid-beta toxicity and oxidative stress. The Journal of Neuroscience, 18, 6207–6217.

    PubMed  CAS  Google Scholar 

  • Wong, R. W., & Guillaud, L. (2004). The role of epidermal growth factor and its receptors in mammalian CNS. Cytokine & Growth Factor Reviews, 15, 147–156. doi:10.1016/j.cytogfr.2004.01.004.

    Article  CAS  Google Scholar 

  • Yan, B., He, J., Xu, H., Zhang, Y., Bi, X., Thakur, S., et al. (2007). Quetiapine attenuates the depressive and anxiolytic-like behavioural changes induced by global cerebral ischemia in mice. Behavioural Brain Research, 182, 36–41. doi:10.1016/j.bbr.2007.05.002.

    Article  PubMed  CAS  Google Scholar 

  • Zocchi, A., Fabbri, D., & Heidbreder, C. A. (2005). Aripiprazole increases dopamine but not noradrenaline and serotonin levels in the mouse prefrontal cortex. Neuroscience Letters, 387, 157–161.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank One-in-Five Assoc. Inc. and the Woods Family Research Program for funding support.

Disclosure/conflict of interest

No conflict of interest arises from this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avril Pereira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, A., Fink, G. & Sundram, S. Clozapine-Induced ERK1 and ERK2 Signaling in Prefrontal Cortex Is Mediated by the EGF Receptor. J Mol Neurosci 39, 185–198 (2009). https://doi.org/10.1007/s12031-009-9188-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-009-9188-5

Keywords

Navigation