Skip to main content

Advertisement

Log in

Metals in Alzheimer’s and Parkinson’s Disease: Relevance to Dementia with Lewy Bodies

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Despite being a common form of dementia, dementia with Lewy bodies is relatively under-researched when compared with Parkinson’s disease and Alzheimer’s disease. This has arisen from the fact that dementia with Lewy bodies has been historically difficult to diagnose resulting in a lack of well-defined clinical cohorts and post-mortem tissue available for scientific research. Dementia with Lewy bodies shares clinical and pathological features with both Parkinson’s disease and Alzheimer’s disease so it is therefore likely that it also has similar pathogenic mechanisms leading to disease. This review will discuss the role of biological metals in Parkinson’s disease and Alzheimer’s disease and whether there are indications that metals may also be involved in dementia with Lewy bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aarsland D, Ballard CG, Halliday G (2004) Are Parkinson’s disease with dementia and dementia with Lewy bodies the same entity? J Geriatr Psychiatry Neurol 17:137–145

    Article  PubMed  Google Scholar 

  • Abou-Sleiman PM, Muqit MM, Wood NW (2006) Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci 7:207–219

    Article  CAS  PubMed  Google Scholar 

  • Acosta-Cabronero J, Betts MJ, Cardenas-Blanco A, Yang S, Nestor PJ (2016) In vivo MRI mapping of brain iron deposition across the adult lifespan. J Neurosci 36:364–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adlard PA et al. (2008) Rapid restoration of cognition in Alzheimer’s transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Aβ. Neuron 59:43–55

    Article  CAS  PubMed  Google Scholar 

  • Adlard PA, Parncutt JM, Finkelstein DI, Bush AI (2010) Cognitive loss in zinc transporter-3 knock-out mice: a phenocopy for the synaptic and memory deficits of Alzheimer’s disease? J Neurosci 30:1631–1636

    Article  CAS  PubMed  Google Scholar 

  • Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10(Suppl):S18–S25

    Article  PubMed  Google Scholar 

  • Anderson JP et al. (2006) Phosphorylation of Ser-129 is the dominant pathological modification of α-synuclein in familial and sporadic Lewy body disease. J Biol Chem 281:29739–29752

    Article  CAS  PubMed  Google Scholar 

  • Andreini C, Banci L, Bertini I, Rosato A (2008) Occurrence of copper proteins through the three domains of life: a bioinformatic approach. J Proteome Res 7:209–216

    Article  CAS  PubMed  Google Scholar 

  • Annesi G et al. (2005) DJ-1 mutations and parkinsonism-dementia-amyotrophic lateral sclerosis complex. Ann Neurol 58:803–807

    Article  CAS  PubMed  Google Scholar 

  • Atwood CS et al. (1998) Dramatic aggregation of Alzheimer Aβ by Cu (II) is induced by conditions representing physiological acidosis. J Biol Chem 273:12817–12826

    Article  CAS  PubMed  Google Scholar 

  • Ayton S, Lei P (2014) Nigral iron elevation is an invariable feature of Parkinson’s disease and is a sufficient cause of neurodegeneration. Biomed Res Int 2014:581256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ayton S, Lei P, Bush AI (2013a) Metallostasis in Alzheimer’s disease. Free Radic Biol Med 62:76–89

    Article  CAS  PubMed  Google Scholar 

  • Ayton S et al. (2013b) Ceruloplasmin dysfunction and therapeutic potential for parkinson disease. Ann Neurol 73:554–559

    Article  CAS  PubMed  Google Scholar 

  • Ballard CG et al. (2004) Neuropathological substrates of psychiatric symptoms in prospectively studied patients with autopsy-confirmed dementia with Lewy bodies. Am J Psychiatr 161:843–849

    Article  PubMed  Google Scholar 

  • Banci L, Bertini I, Cantini F, Ciofi-Baffoni S (2010a) Cellular copper distribution: a mechanistic systems biology approach. Cell Mol Life Sci 67:2563–2589

    Article  CAS  PubMed  Google Scholar 

  • Banci L, Bertini I, Ciofi-Baffoni S, Kozyreva T, Zovo K, Palumaa P (2010b) Affinity gradients drive copper to cellular destinations. Nature 465:645–648

    Article  CAS  PubMed  Google Scholar 

  • Barnham KJ, Bush AI (2008) Metals in Alzheimer’s and Parkinson’s diseases. Curr Opin Chem Biol 12:222–228

    Article  CAS  PubMed  Google Scholar 

  • Barnham KJ, Bush AI (2014) Biological metals and metal-targeting compounds in major neurodegenerative diseases. Chem Soc Rev 43:6727–6749

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shachar D, Riederer P, Youdim M (1991) Iron-melanin interaction and lipid peroxidation: implications for Parkinson’s disease. J Neurochem 57:1609–1614

    Article  CAS  PubMed  Google Scholar 

  • Berg D, Gerlach M, Youdim MBH, Double KL, Zecca L, Riederer P, Becker G (2001) Brain iron pathways and their relevance to Parkinson’s disease. J Neurochem 79:225–236

    Article  CAS  PubMed  Google Scholar 

  • Beyer N, Coulson D, Heggarty S, Ravid R, Irvine GB, Hellemans J, Johnston JA (2009) ZnT3 mRNA levels are reduced in Alzheimer’s disease post-mortem brain. Mol Neurodegener 4:53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Billings JL et al. (2015) Effects of neonatal iron feeding and chronic clioquinol administration on the parkinsonian human A53 T transgenic mouse. ACS Chem Neurosci 7(3):360–366

  • Binolfi A et al. (2008) Site-specific interactions of Cu (II) with α and β-synuclein: bridging the molecular gap between metal binding and aggregation. J Am Chem Soc 130:11801–11812

    Article  CAS  PubMed  Google Scholar 

  • Bjorkblom B et al. (2013) Parkinson disease protein DJ-1 binds metals and protects against metal-induced cytotoxicity. J Biol Chem 288:22809–22820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR (2015) Oxidative stress and Parkinson’s disease. Front Neuroanat 9:91

    PubMed  PubMed Central  Google Scholar 

  • Bonifati V et al. (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299:256–259

    Article  CAS  PubMed  Google Scholar 

  • Boström F et al. (2009) CSF Mg and Ca as diagnostic markers for dementia with Lewy bodies. Neurobiol Aging 30:1265–1271

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Del Tredici K, Rüb U, de Vos RA, Steur ENJ, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  • Bras J et al. (2014) Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies. Hum Mol Genet:ddu334

  • Burn J, Chinnery PF (2006) Neuroferritinopathy. Semin Pediatr Neurol 13:176–181

    Article  PubMed  Google Scholar 

  • Burton EJ, McKeith IG, Burn DJ, Williams ED, O’Brien JT (2004) Cerebral atrophy in Parkinson’s disease with and without dementia: a comparison with Alzheimer’s disease, dementia with Lewy bodies and controls. Brain 127:791–800

    Article  PubMed  Google Scholar 

  • Bush AI, Pettingell WH Jr, Paradis MD, Tanzi RE (1994a) Modulation of Aβ adhesiveness and secretase site cleavage by zinc. J Biol Chem 269:12152–12158

    CAS  PubMed  Google Scholar 

  • Bush AI et al. (1994b) Rapid induction of Alzheimer A(beta) amyloid formation by zinc. Science 265:1464–1467

    Article  CAS  PubMed  Google Scholar 

  • Canet-Avilés RM et al. (2004) The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci 101:9103–9108

    Article  PubMed  PubMed Central  Google Scholar 

  • Cannon JR, Greenamyre JT (2011) The role of environmental exposures in neurodegeneration and neurodegenerative diseases. Toxicological Sciences:kfr239

  • Carboni E, Lingor P (2015) Insights on the interaction of alpha-synuclein and metals in the pathophysiology of Parkinson’s disease. Metallomics 7:395–404

    Article  CAS  PubMed  Google Scholar 

  • Castellani RJ, Siedlak SL, Perry G, Smith MA (2000) Sequestration of iron by Lewy bodies in Parkinson’s disease. Acta Neuropathol 100:111–114

    Article  CAS  PubMed  Google Scholar 

  • Cherny R et al. (2011) The Alzheimer’s therapeutic PBT2 achieves cognitive benefit by combining neuroprotection with neurorestoration: studies in animal models of Alzheimer’s disease and Huntington’s disease. Alzheimers Dement 7:S457

    Article  Google Scholar 

  • Cherny RA et al. (2001) Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30:665–676

    Article  CAS  PubMed  Google Scholar 

  • Compta Y et al. (2011) Lewy- and Alzheimer-type pathologies in Parkinson’s disease dementia: which is more important? Brain 134:1493–1505

    Article  PubMed  PubMed Central  Google Scholar 

  • Connor J, Menzies S, St Martin S, Mufson E (1992a) A histochemical study of iron, transferrin, and ferritin in Alzheimer’s diseased brains. J Neurosci Res 31:75–83

    Article  CAS  PubMed  Google Scholar 

  • Connor J, Snyder B, Beard J, Fine R, Mufson E (1992b) Regional distribution of iron and iron-regulatory proteins in the brain in aging and Alzheimer’s disease. J Neurosci Res 31:327–335

    Article  CAS  PubMed  Google Scholar 

  • Connor JR, Tucker P, Johnson M, Snyder B (1993) Ceruloplasmin levels in the human superior temporal gyrus in aging and Alzheimer’s disease. Neurosci Lett 159:88–90

    Article  CAS  PubMed  Google Scholar 

  • Crouch PJ et al. (2011) The Alzheimer’s therapeutic PBT2 promotes amyloid-β degradation and GSK3 phosphorylation via a metal chaperone activity. J Neurochem 119:220–230

    Article  CAS  PubMed  Google Scholar 

  • Crouch PJ et al. (2009) Restored degradation of the Alzheimer’s amyloid-beta peptide by targeting amyloid formation. J Neurochem 108:1198–1207

    Article  CAS  PubMed  Google Scholar 

  • Curtain CC et al. (2001) Alzheimer’s disease amyloid-β binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits. J Biol Chem 276:20466–20473

    Article  CAS  PubMed  Google Scholar 

  • Danscher G et al. (1997) Increased amount of zinc in the hippocampus and amygdala of Alzheimer’s diseased brains: a proton-induced X-ray emission spectroscopic analysis of cryostat sections from autopsy material. J Neurosci Methods 76:53–59

    Article  CAS  PubMed  Google Scholar 

  • Davies KM et al. (2014) Copper pathology in vulnerable brain regions in Parkinson’s disease. Neurobiol Aging 35:858–866

    Article  CAS  PubMed  Google Scholar 

  • Deibel M, Ehmann W, Markesbery W (1996) Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer’s disease: possible relation to oxidative stress. J Neurol Sci 143:137–142

    Article  CAS  PubMed  Google Scholar 

  • Deisseroth A, Dounce AL (1970) Catalase: physical and chemical properties, mechanism of catalysis, and physiological role. Physiol Rev 50:319–375

    CAS  PubMed  Google Scholar 

  • Del Ser T, Hachinski V, Merskey H, Munoz DG (2001) Clinical and pathologic features of two groups of patients with dementia with Lewy bodies: effect of coexisting Alzheimer-type lesion load. Alzheimer Dis Assoc Disord 15:31–44

    Article  CAS  PubMed  Google Scholar 

  • DelleDonne A et al. (2008) Incidental Lewy body disease and preclinical Parkinson disease. Arch Neurol 65:1074–1080

    Article  PubMed  Google Scholar 

  • Devos D et al. (2014) Targeting chelatable iron as a therapeutic modality in Parkinson’s disease. Antioxid Redox Signal 21:195–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dexter D et al. (1994) Indices of oxidative stress and mitochondrial function in individuals with incidental Lewy body disease. Ann Neurol 35:38–44

    Article  CAS  PubMed  Google Scholar 

  • Dexter D, Wells F, Lee A, Agid F, Agid Y, Jenner P, Marsden C (1989) Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 52:1830–1836

    Article  CAS  PubMed  Google Scholar 

  • Dexter DT et al. (1991) Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114:1953–1975

    Article  PubMed  Google Scholar 

  • Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. Journal of Parkinson’s disease 3:461–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dickson DW et al. (2008) Evidence that incidental Lewy body disease is pre-symptomatic Parkinson’s disease. Acta Neuropathol 115:437–444

    Article  PubMed  Google Scholar 

  • Dodson MW, Guo M (2007) Pink1, parkin, DJ-1 and mitochondrial dysfunction in Parkinson’s disease. Curr Opin Neurobiol 17:331–337

    Article  CAS  PubMed  Google Scholar 

  • Double KL et al. (2003) Iron-binding characteristics of neuromelanin of the human substantia nigra. Biochem Pharmacol 66:489–494

    Article  CAS  PubMed  Google Scholar 

  • Dusek P, Roos PM, Litwin T, Schneider SA, Flaten TP, Aaseth J (2015) The neurotoxicity of iron, copper and manganese in Parkinson’s and Wilson’s diseases. J Trace Elem Med Bio 31:193-203

  • Emre M (2003) Dementia associated with Parkinson’s disease. Lancet Neurol 2:229–237

    Article  CAS  PubMed  Google Scholar 

  • Emre M et al. (2007) Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord 22:1689–1707

    Article  PubMed  Google Scholar 

  • Exner N, Lutz AK, Haass C, Winklhofer KF (2012) Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences. EMBO J 31:3038–3062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faux NG et al. (2010) PBT2 rapidly improves cognition in Alzheimer’s disease: additional phase II analyses. J Alzheimers Dis 20:509–516

    CAS  PubMed  Google Scholar 

  • Federico A, Cardaioli E, Da Pozzo P, Formichi P, Gallus GN, Radi E (2012) Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci 322:254–262

    Article  CAS  PubMed  Google Scholar 

  • Fedorow H, Tribl F, Halliday G, Gerlach M, Riederer P, Double KL (2005) Neuromelanin in human dopamine neurons: comparison with peripheral melanins and relevance to Parkinson’s disease. Prog Neurobiol 75:109–124

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein DI et al. (2015) Clioquinol improves cognitive, motor function, and microanatomy of the α-synuclein hA53T transgenic mice. ACS Chem Neurosci 7:119–129

    Article  PubMed  CAS  Google Scholar 

  • Friedlich A, Tanzi R, Rogers J (2007) The 5′-untranslated region of Parkinson’s disease α-synuclein messengerRNA contains a predicted iron responsive element. Mol Psychiatry 12:222–223

    Article  CAS  PubMed  Google Scholar 

  • Frigerio R et al. (2011) Incidental Lewy body disease: do some cases represent a preclinical stage of dementia with Lewy bodies? Neurobiol Aging 32:857–863

    Article  CAS  PubMed  Google Scholar 

  • Geser F, Wenning GK, Poewe W, McKeith I (2005) How to diagnose dementia with Lewy bodies: state of the art. Movement Disord 20(Suppl 12):S11–S20

    Article  PubMed  Google Scholar 

  • Girotto S, Cendron L, Bisaglia M, Tessari I, Mammi S, Zanotti G, Bubacco L (2014) DJ-1 is a copper chaperone acting on SOD1 activation. J Biol Chem 289:10887–10899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorell J, Johnson C, Rybicki B, Peterson E, Kortsha G, Brown G, Richardson R (1997) Occupational exposures to metals as risk factors for Parkinson’s disease. Neurology 48:650–658

    Article  CAS  PubMed  Google Scholar 

  • Graham SF et al. (2014) Age-associated changes of brain copper, iron, and zinc in Alzheimer’s disease and dementia with Lewy bodies. J Alzheimers Dis 42:1407–1413

    CAS  PubMed  Google Scholar 

  • Greenfield J, Bosanquet FD (1953) The brain-stem lesions in parkinsonism. J Neurol Neurosurg Psychiatry 16:213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu M et al. (1998) Mitochondrial function, GSH and iron in neurodegeneration and Lewy body diseases. J Neurol Sci 158:24–29

    Article  CAS  PubMed  Google Scholar 

  • Guo C, Wang P, Zhong M-L, Wang T, Huang X-S, Li J-Y, Wang Z-Y (2013a) Deferoxamine inhibits iron induced hippocampal tau phosphorylation in the Alzheimer transgenic mouse brain. Neurochem Int 62:165–172

    Article  CAS  PubMed  Google Scholar 

  • Guo C, Wang T, Zheng W, Shan Z-Y, Teng W-P, Wang Z-Y (2013b) Intranasal deferoxamine reverses iron-induced memory deficits and inhibits amyloidogenic APP processing in a transgenic mouse model of Alzheimer’s disease. Neurobiol Aging 34:562–575

    Article  CAS  PubMed  Google Scholar 

  • Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51

    Article  CAS  PubMed  Google Scholar 

  • Halliday GM et al. (2005) Alpha-synuclein redistributes to neuromelanin lipid in the substantia nigra early in Parkinson’s disease. Brain 128:2654–2664

    Article  PubMed  Google Scholar 

  • Hare DJ, Arora M, Jenkins NL, Finkelstein DI, Doble PA, Bush AI (2015) Is early-life iron exposure critical in neurodegeneration? Nat Rev Neurol 11:536–544

    Article  CAS  PubMed  Google Scholar 

  • Hellman NE, Gitlin JD (2002) Ceruloplasmin metabolism and function. Annu Rev Nutr 22:439–458

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo J, Aschner M, Zatta P, Vašák M (2001) Roles of the metallothionein family of proteins in the central nervous system. Brain Res Bull 55:133–145

    Article  CAS  PubMed  Google Scholar 

  • Hochstrasser H et al. (2005) Functional relevance of ceruloplasmin mutations in Parkinson’s disease. FASEB J 19:1851–1853

    CAS  PubMed  Google Scholar 

  • Hozumi I, Asanuma M, Yamada M, Uchida Y (2004) Metallothioneins and neurodegenerative diseases. J Health Sci 50:323–331

    Article  CAS  Google Scholar 

  • Huang Y, Halliday G (2013) Can we clinically diagnose dementia with Lewy bodies yet. Transl Neurodegener 2:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Hung LW et al. (2012) The hypoxia imaging agent CuII(atsm) is neuroprotective and improves motor and cognitive functions in multiple animal models of Parkinson’s disease. J Exp Med 209:837–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irrcher I et al. (2010) Loss of the Parkinson’s disease-linked gene DJ-1 perturbs mitochondrial dynamics. Hum Mol Genet 19:3734–3746

    Article  CAS  PubMed  Google Scholar 

  • Irwin DJ, Lee VM, Trojanowski JQ (2013) Parkinson’s disease dementia: convergence of alpha-synuclein, tau and amyloid-beta pathologies. Nat Rev Neurosci 14:626–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ischiropoulos H, Beckman JS (2003) Oxidative stress and nitration in neurodegeneration: cause, effect, or association? J Clin Investig 111:163–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson MS, Lee JC (2009) Identification of the minimal copper (II)-binding α-synuclein sequence. Inorg Chem 48:9303–9307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinsmaa Y, Sullivan P, Gross D, Cooney A, Sharabi Y, Goldstein DS (2014) Divalent metal ions enhance DOPAL-induced oligomerization of alpha-synuclein. Neurosci Lett 569:27–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junn E, Jang WH, Zhao X, Jeong BS, Mouradian MM (2009) Mitochondrial localization of DJ-1 leads to enhanced neuroprotection. J Neurosci Res 87:123–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur D et al. (2003) Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson’s disease. Neuron 37:899–909

    Article  CAS  PubMed  Google Scholar 

  • Kozlowski H, Luczkowski M, Remelli M, Valensin D (2012) Copper, zinc and iron in neurodegenerative diseases (Alzheimer’s, Parkinson’s and prion diseases). Coord Chem Rev 256:2129–2141

    Article  CAS  Google Scholar 

  • Lannfelt L et al. (2008) Safety, efficacy, and biomarker findings of PBT2 in targeting Abeta as a modifying therapy for Alzheimer’s disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol 7:779–786

    Article  CAS  PubMed  Google Scholar 

  • Lopiano L, Chiesa M, Digilio G, Giraudo S, Bergamasco B, Torre E, Fasano M (2000) Q-band EPR investigations of neuromelanin in control and Parkinson’s disease patients. Biochim Biophys Acta 1500:306–312

    Article  CAS  PubMed  Google Scholar 

  • Lovell M, Robertson J, Teesdale W, Campbell J, Markesbery W (1998) Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 158:47–52

    Article  CAS  PubMed  Google Scholar 

  • Lovell MA, Smith JL, Xiong S, Markesbery WR (2005) Alterations in zinc transporter protein-1 (ZnT-1) in the brain of subjects with mild cognitive impairment, early, and late-stage Alzheimer’s disease. Neurotox Res 7:265–271

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Prudent M, Fauvet B, Lashuel HA, Girault HH (2011) Phosphorylation of α-synuclein at Y125 and S129 alters its metal binding properties: implications for understanding the role of α-synuclein in the pathogenesis of Parkinson’s disease and related disorders. ACS Chem Neurosci 2:667–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magaki S, Raghavan R, Mueller C, Oberg KC, Vinters HV, Kirsch WM (2007) Iron, copper, and iron regulatory protein 2 in Alzheimer’s disease and related dementias. Neurosci Lett 418:72–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin LJ et al. (2006) Parkinson’s disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci 26:41–50

    Article  CAS  PubMed  Google Scholar 

  • Mattila P, Rinne J, Helenius H, Dickson DW, Röyttä M (2000) Alpha-synuclein-immunoreactive cortical Lewy bodies are associated with cognitive impairment in Parkinson’s disease. Acta Neuropathol 100:285–290

    Article  CAS  PubMed  Google Scholar 

  • McAllum EJ et al. (2013) Therapeutic effects of Cu(II)(atsm) in the SOD1-G37R mouse model of amyotrophic lateral sclerosis. Amyotrophic lateral sclerosis & frontotemporal degeneration 14:586–590

    Article  CAS  Google Scholar 

  • McAllum EJ et al. (2015) Zn (atsm) is protective in amyotrophic lateral sclerosis model mice via a copper delivery mechanism. Neurobiol Dis 81:20–24

  • McDowall JS, Brown DR (2016) Alpha-synuclein: relating metals to structure, function and inhibition. Metallomics 8:385–397

  • McKeith I et al. (2005) Diagnosis and management of dementia with Lewy bodies third report of the DLB consortium. Neurology 65:1863–1872

    Article  CAS  PubMed  Google Scholar 

  • McKeith I et al. (2004) Dementia with Lewy bodies. Lancet Neurol 3:19–28.

  • McKeith IG et al. (1996) Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB) report of the consortium on DLB international workshop. Neurology 47:1113–1124

    Article  CAS  PubMed  Google Scholar 

  • McLachlan DC, Kruck T, Kalow W, Andrews D, Dalton A, Bell M, Smith W (1991) Intramuscular desferrioxamine in patients with Alzheimer’s disease. Lancet 337:1304–1308

    Article  Google Scholar 

  • Meeus B et al. (2012) DLB and PDD: a role for mutations in dementia and Parkinson disease genes? Neurobiol Aging 33:629 e625-629. e618

    Article  PubMed  CAS  Google Scholar 

  • Merdes A et al. (2003) Influence of Alzheimer pathology on clinical diagnostic accuracy in dementia with Lewy bodies. Neurology 60:1586–1590

    Article  CAS  PubMed  Google Scholar 

  • Migliore L, Coppedè F (2009) Environmental-induced oxidative stress in neurodegenerative disorders and aging. Mutat Res-Gen Tox En 674:73–84

    Article  CAS  Google Scholar 

  • Miotto MC et al. (2014) Site-specific copper-catalyzed oxidation of alpha-synuclein: tightening the link between metal binding and protein oxidative damage in Parkinson’s disease. Inorg Chem 53:4350–4358

    Article  CAS  PubMed  Google Scholar 

  • Mo Z-Y, Zhu Y-Z, Zhu H-L, Fan J-B, Chen J, Liang Y (2009) Low micromolar zinc accelerates the fibrillization of human tau via bridging of Cys-291 and Cys-322. J Biol Chem 284:34648–34657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann M, Adler S, Schlüter O, Kremmer E, Benecke R, Kretzschmar HA (2000) α-synuclein accumulation in a case of neurodegeneration with brain iron accumulation type 1 (NBIA-1, formerly Hallervorden-Spatz syndrome) with widespread cortical and brainstem-type Lewy bodies. Acta Neuropathol 100:568–574

    Article  CAS  PubMed  Google Scholar 

  • Olivares D, Huang X, Branden L, Greig NH, Rogers JT (2009) Physiological and pathological role of alpha-synuclein in Parkinson’s disease through iron mediated oxidative stress; the role of a putative iron-responsive element. Int J Mol Sci 10:1226–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostermeier C, Iwata S, Michel H (1996) Cytochrome c oxidase. Curr Opin Struct Biol 6:460–466

    Article  CAS  PubMed  Google Scholar 

  • Paik S, Shin H, Lee J, Chang C, Kim J (1999) Copper (II)-induced self-oligomerization of α-synuclein. Biochem J 340:821–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paik SR, Shin H-J, Lee J-H (2000) Metal-catalyzed oxidation of α-synuclein in the presence of copper (II) and hydrogen peroxide. Arch Biochem Biophys 378:269–277

    Article  CAS  PubMed  Google Scholar 

  • Panayi AE, Spyrou NM, Iversen BS, White MA, Part P (2002) Determination of cadmium and zinc in Alzheimer’s brain tissue using inductively coupled plasma mass spectrometry. J Neurol Sci 195:1–10

    Article  CAS  PubMed  Google Scholar 

  • Perry JJ, Shin DS, Getzoff ED, Tainer JA (2010) The structural biochemistry of the superoxide dismutases. Biochim Biophys Acta 1804:245–262

    Article  CAS  PubMed  Google Scholar 

  • Perry RH, Irving D, Blessed G, Fairbairn A, Perry EK (1990) Senile dementia of Lewy body type: a clinically and neuropathologically distinct form of Lewy body dementia in the elderly. J Neurol Sci 95:119–139

    Article  CAS  PubMed  Google Scholar 

  • Pirpamer L et al. (2016) Determinants of iron accumulation in the normal aging brain. Neurobiol Aging 43:149–155

    Article  CAS  PubMed  Google Scholar 

  • Rae T, Schmidt P, Pufahl R, Culotta V, O’halloran T (1999) Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284:805–808

    Article  CAS  PubMed  Google Scholar 

  • Ramos P, Santos A, Pinto NR, Mendes R, Magalhães T, Almeida A (2014) Iron levels in the human brain: a post-mortem study of anatomical region differences and age-related changes. J Trace Elem Med Biol 28:13–17

    Article  CAS  PubMed  Google Scholar 

  • Rasia RM et al. (2005) Structural characterization of copper(II) binding to alpha-synuclein: insights into the bioinorganic chemistry of Parkinson’s disease. Proc Natl Acad Sci U S A 102:4294–4299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raven EP, Lu PH, Tishler TA, Heydari P, Bartzokis G (2013) Increased iron levels and decreased tissue integrity in hippocampus of Alzheimer’s disease detected in vivo with magnetic resonance imaging. J Alzheimers Dis 37:127–136

    CAS  PubMed  Google Scholar 

  • Religa D et al. (2006) Elevated cortical zinc in Alzheimer disease. Neurology 67:69–75

    Article  CAS  PubMed  Google Scholar 

  • Rembach A et al. (2013) Decreased copper in Alzheimer’s disease brain is predominantly in the soluble extractable fraction. Int J Alzheimers Dis 2013:623241

    PubMed  PubMed Central  Google Scholar 

  • Ritchie CW et al. (2003) Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Aβ amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch Neurol 60:1685–1691

    Article  PubMed  Google Scholar 

  • Roberts BR et al. (2014) Oral treatment with CuII(atsm) increases mutant SOD1 in vivo but protects motor neurons and improves the phenotype of a transgenic mouse model of amyotrophic lateral sclerosis. J Neurosci 34:8021–8031

    Article  CAS  PubMed  Google Scholar 

  • Rossi L, Lombardo MF, Ciriolo MR, Rotilio G (2004) Mitochondrial dysfunction in neurodegenerative diseases associated with copper imbalance. Neurochem Res 29:493–504

    Article  CAS  PubMed  Google Scholar 

  • Sayre LM, Perry G, Harris PL, Liu Y, Schubert KA, Smith MA (2000) In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease. J Neurochem 74:270–279

    Article  CAS  PubMed  Google Scholar 

  • Schildknecht S et al. (2013) Oxidative and nitrative alpha-synuclein modifications and proteostatic stress: implications for disease mechanisms and interventions in synucleinopathies. J Neurochem 125:491–511

    Article  CAS  PubMed  Google Scholar 

  • Schulz-Schaeffer WJ (2010) The synaptic pathology of alpha-synuclein aggregation in dementia with Lewy bodies, Parkinson’s disease and Parkinson’s disease dementia. Acta Neuropathol 120:131–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith MA, Harris PL, Sayre LM, Perry G (1997) Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc Natl Acad Sci 94:9866–9868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) α-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci 95:6469–6473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spillantini MG, Goedert M (2000) The α-synucleinopathies: Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. Ann NY Acad Sci 920:16–27

    Article  CAS  PubMed  Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VMY, Trojanowski JQ, Jakes R, Goedert M (1997) [alpha]-synuclein in Lewy bodies. Nature 388:839–840

    Article  CAS  PubMed  Google Scholar 

  • Spira PJ, Sharpe DM, Halliday G, Cavanagh J, Nicholson GA (2001) Clinical and pathological features of a parkinsonian syndrome in a family with an Ala53Thr α-synuclein mutation. Ann Neurol 49:313–319

    Article  CAS  PubMed  Google Scholar 

  • Subramaniam SR, Chesselet MF (2013) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol 106-107:17–32

    Article  CAS  PubMed  Google Scholar 

  • Suh SW, Jensen KB, Jensen MS, Silva DS, Kesslak PJ, Danscher G, Frederickson CJ (2000) Histochemically-reactive zinc in amyloid plaques, angiopathy, and degenerating neurons of Alzheimer’s diseased brains. Brain Res 852:274–278

    Article  CAS  PubMed  Google Scholar 

  • Talmard C, Guilloreau L, Coppel Y, Mazarguil H, Faller P (2007) Amyloid-Beta peptide forms monomeric complexes with CuII and ZnII prior to aggregation. Chembiochem 8:163–165

    Article  CAS  PubMed  Google Scholar 

  • Thomas KJ et al. (2011) DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy. Hum Mol Genet 20:40–50

    Article  CAS  PubMed  Google Scholar 

  • Torsdottir G, Sveinbjornsdottir S, Kristinsson J, Snaedal J, Johannesson T (2006) Ceruloplasmin and superoxide dismutase (SOD1) in Parkinson’s disease: a follow-up study. J Neurol Sci 241:53–58

    Article  CAS  PubMed  Google Scholar 

  • Tottey S et al. (2012) Cyanobacterial metallochaperone inhibits deleterious side reactions of copper. Proc Natl Acad Sci 109:95–100

    Article  CAS  PubMed  Google Scholar 

  • Tougu V, Karafin A, Palumaa P (2008) Binding of zinc (II) and copper (II) to the full-length Alzheimer’s amyloid-β peptide. J Neurochem 104:1249–1259

    Article  CAS  PubMed  Google Scholar 

  • Treiber C, Simons A, Strauss M, Hafner M, Cappai R, Bayer TA, Multhaup G (2004) Clioquinol mediates copper uptake and counteracts copper efflux activities of the amyloid precursor protein of Alzheimer’s disease. J Biol Chem 279:51958–51964

    Article  CAS  PubMed  Google Scholar 

  • Uchida Y, Takio K, Titani K, Ihara Y, Tomonaga M (1991) The growth inhibitory factor that is deficient in the Alzheimer’s disease brain is a 68 amino acid metallothionein-like protein. Neuron 7:337–347

    Article  CAS  PubMed  Google Scholar 

  • Vann Jones SA, O’Brien JT (2014) The prevalence and incidence of dementia with Lewy bodies: a systematic review of population and clinical studies. Psychol Med 44:673–683

    Article  CAS  PubMed  Google Scholar 

  • Walker Z, Possin KL, Boeve BF, Aarsland D (2016) Lewy body dementias. Lancet 386:1683–1697

    Article  Google Scholar 

  • Wang C, Liu L, Zhang L, Peng Y, Zhou F (2010) Redox reactions of the alpha-synuclein-Cu(2+) complex and their effects on neuronal cell viability. Biochemistry 49:8134–8142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams JR et al. (2016) Copper delivery to the CNS by CuATSM effectively treats motor neuron disease in SOD(G93 A) mice co-expressing the copper-chaperone-for-SOD. Neurobiol Dis 89:1–9

    Article  CAS  PubMed  Google Scholar 

  • Wright JA, Wang X, Brown DR (2009) Unique copper-induced oligomers mediate alpha-synuclein toxicity. FASEB J 23:2384–2393

    Article  CAS  PubMed  Google Scholar 

  • Xu XM, Lin H, Maple J, Björkblom B, Alves G, Larsen JP, Møller SG (2010) The Arabidopsis DJ-1a protein confers stress protection through cytosolic SOD activation. J Cell Sci 123:1644–1651

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto A, Shin RW, Hasegawa K, Naiki H, Sato H, Yoshimasu F, Kitamoto T (2002) Iron (III) induces aggregation of hyperphosphorylated τ and its reduction to iron (II) reverses the aggregation: implications in the formation of neurofibrillary tangles of Alzheimer’s disease. J Neurochem 82:1137–1147

    Article  CAS  PubMed  Google Scholar 

  • Yokota T, Sugawara K, Ito K, Takahashi R, Ariga H, Mizusawa H (2003) Down regulation of DJ-1 enhances cell death by oxidative stress, ER stress, and proteasome inhibition. Biochem Biophys Res Commun 312:1342–1348

    Article  CAS  PubMed  Google Scholar 

  • Yu WH, Lukiw WJ, Bergeron C, Niznik HB, Fraser PE (2001) Metallothionein III is reduced in Alzheimer’s disease. Brain Res 894:37–45

    Article  CAS  PubMed  Google Scholar 

  • Zarranz JJ et al. (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164–173

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

E.J.M. and D.I.F. are supported by funds from the National Health and Medical Research Council and the Australian Research Council. The Florey Institute of Neuroscience and Mental Health acknowledges the strong support from the Victorian Government and in particular the funding from the Operational Infrastructure Support Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin J. McAllum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McAllum, E.J., Finkelstein, D.I. Metals in Alzheimer’s and Parkinson’s Disease: Relevance to Dementia with Lewy Bodies. J Mol Neurosci 60, 279–288 (2016). https://doi.org/10.1007/s12031-016-0809-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-016-0809-5

Keywords

Navigation