Skip to main content

Advertisement

Log in

EGFR and KRAS mutations do not enrich for the activation of IL-6, JAK1 or phosphorylated STAT3 in resected lung adenocarcinoma

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) against EGFR mutant lung adenocarcinoma develops after a median of nine to thirteen months. Upregulation of the interleukin-6 (IL-6)/Janus kinase (JAK)/signal transducers and activators of transcription (STAT) pathway may be a potential source of resistance to EGFR TKIs. We undertook a detailed assessment of the IL-6/JAK1/phosphorylated STAT3 (pSTAT3) pathway in resected lung adenocarcinoma specimens, with special interest in whether the presence of an EGFR mutation enriched for pSTAT3 positivity. Tumours from 143 patients with resected lung adenocarcinoma were assessed. EGFR and KRAS mutation status were scanned for with high-resolution melting and confirmed by polymerase chain reaction. Immunohistochemisty (IHC) was performed for IL-6, gp130, JAK1 and pSTAT3. Two methods for assigning IHC positivity were assessed (the presence of any positivity, and the presence of positivity at an H score >40). We found statistically significant associations between IL-6, JAK1 and pSTAT3 measured by IHC, consistent with the activation of the pathway in clinical specimens. No relationship was demonstrated between members of this pathway and oncogenic mutations in EGFR or KRAS. However, a proportion of tumours with EGFR mutations showed staining for IL-6, JAK1 and pSTAT3. No correlations with clinicopathologic features or survival outcomes were found for IL-6, JAK1 or pSTAT3 staining. The presence of EGFR or KRAS mutations did not enrich for the activation of IL-6, JAK1 or pSTAT3. pSTAT3 may still play a role in resistance to EGFR TKIs in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fukuoka M, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected]. J Clin Oncol. 2003;21(12):2237–46.

    Article  CAS  PubMed  Google Scholar 

  2. Thatcher N, et al. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet. 2005;366(9496):1527–37.

    Article  CAS  PubMed  Google Scholar 

  3. Pao W, et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA. 2004;101(36):13306–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lynch TJ, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350(21):2129–39.

    Article  CAS  PubMed  Google Scholar 

  5. Mitsudomi T, et al. Mutations of the epidermal growth factor receptor gene predict prolonged survival after gefitinib treatment in patients with non-small-cell lung cancer with postoperative recurrence. J Clin Oncol. 2005;23(11):2513–20.

    Article  CAS  PubMed  Google Scholar 

  6. Mok TS, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361(10):947–57.

    Article  CAS  PubMed  Google Scholar 

  7. Sequist LV, et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol. 2013;31(27):3327–34.

    Article  CAS  PubMed  Google Scholar 

  8. Wu YL, et al. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): an open-label, randomised phase 3 trial. Lancet Oncol. 2014;15(2):213–22.

    Article  CAS  PubMed  Google Scholar 

  9. Rosell R, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012;13(3):239–46.

    Article  CAS  PubMed  Google Scholar 

  10. Maemondo M, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2010;362(25):2380–8.

    Article  CAS  PubMed  Google Scholar 

  11. Zhou C, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2011;12(8):735–42.

    Article  CAS  PubMed  Google Scholar 

  12. Mitsudomi T, et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol. 2010;11(2):121–8.

    Article  CAS  PubMed  Google Scholar 

  13. Long GV, et al. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N Engl J Med. 2014;371(20):1877–88.

    Article  PubMed  Google Scholar 

  14. Flaherty K, et al. Genomic analysis and 3-y efficacy and safety update of COMBI-d: A phase 3 study of dabrafenib (D) + trametinib (T) vs D monotherapy in patients (pts) with unresectable or metastatic BRAF V600E/K-mutant cutaneous melanoma. In: ASCO annual meeting. 2016. Chicago.

  15. Wu JY, et al. Lung cancer with epidermal growth factor receptor exon 20 mutations is associated with poor gefitinib treatment response. Clin Cancer Res. 2008;14(15):4877–82.

    Article  CAS  PubMed  Google Scholar 

  16. Shih JY, Gow CH, Yang PC. EGFR mutation conferring primary resistance to gefitinib in non-small-cell lung cancer. N Engl J Med. 2005;353(2):207–8.

    Article  CAS  PubMed  Google Scholar 

  17. Lee JK, et al. Primary resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in patients with non-small-cell lung cancer harboring TKI-sensitive EGFR mutations: an exploratory study. Ann Oncol. 2013;24(8):2080–7.

    Article  CAS  PubMed  Google Scholar 

  18. Pao W, et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2005;2(3):e3.

    Article  Google Scholar 

  19. Arcila ME, et al. Rebiopsy of lung cancer patients with acquired resistance to EGFR inhibitors and enhanced detection of the T790M mutation using a locked nucleic acid-based assay. Clin Cancer Res. 2011;17(5):1169–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Uramoto H, et al. Expression of selected gene for acquired drug resistance to EGFR-TKI in lung adenocarcinoma. Lung Cancer. 2011;73(3):361–5.

    Article  PubMed  Google Scholar 

  21. Mok TS, et al. Osimertinib or platinum–pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med. 2017;376(7):629–40.

    Article  CAS  PubMed  Google Scholar 

  22. Engelman JA, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316(5827):1039–43.

    Article  CAS  PubMed  Google Scholar 

  23. Yano S, et al. Hepatocyte growth factor induces gefitinib resistance of lung adenocarcinoma with epidermal growth factor receptor-activating mutations. Cancer Res. 2008;68(22):9479–87.

    Article  CAS  PubMed  Google Scholar 

  24. Sequist LV, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 2011;3(75):75ra26.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chung JH, et al. Clinical and molecular evidences of epithelial to mesenchymal transition in acquired resistance to EGFR-TKIs. Lung Cancer. 2011;73(2):176–82.

    Article  PubMed  Google Scholar 

  26. Akira S, Kishimoto T. The evidence for interleukin-6 as an autocrine growth factor in malignancy. Semin Cancer Biol. 1992;3(1):17–26.

    CAS  PubMed  Google Scholar 

  27. Hong DS, Angelo LS, Kurzrock R. Interleukin-6 and its receptor in cancer: implications for translational therapeutics. Cancer. 2007;110(9):1911–28.

    Article  CAS  PubMed  Google Scholar 

  28. Hodge DR, Hurt EM, Farrar WL. The role of IL-6 and STAT3 in inflammation and cancer. Eur J Cancer. 2005;41(16):2502–12.

    Article  CAS  PubMed  Google Scholar 

  29. Lutticken C, et al. Association of transcription factor APRF and protein kinase Jak1 with the interleukin-6 signal transducer gp130. Science. 1994;263(5143):89–92.

    Article  CAS  PubMed  Google Scholar 

  30. Stahl N, et al. Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 beta receptor components. Science. 1994;263(5143):92–5.

    Article  CAS  PubMed  Google Scholar 

  31. Frank DA. STAT signaling in the pathogenesis and treatment of cancer. Mol Med. 1999;5(7):432–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu H, Jove R. The STATs of cancer–new molecular targets come of age. Nat Rev Cancer. 2004;4(2):97–105.

    Article  CAS  PubMed  Google Scholar 

  33. Schindler C, Darnell JE Jr. Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu Rev Biochem. 1995;64:621–51.

    Article  CAS  PubMed  Google Scholar 

  34. Darnell JE Jr. STATs and gene regulation. Science. 1997;277(5332):1630–5.

    Article  CAS  PubMed  Google Scholar 

  35. Yu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol. 2007;7(1):41–51.

    Article  CAS  PubMed  Google Scholar 

  36. Gao S, et al. Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J Clin Investig. 2007;117:3846–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Alvarez JV, et al. Signal transducer and activator of transcription 3 is required for the oncogenic effects of non-small-cell lung cancer-associated mutations of the epidermal growth factor receptor. Cancer Res. 2006;66(6):3162–8.

    Article  CAS  PubMed  Google Scholar 

  38. Song L, et al. Dasatinib (BMS-354825) selectively induces apoptosis in lung cancer cells dependent on epidermal growth factor receptor signaling for survival. Cancer Res. 2006;66(11):5542–8.

    Article  CAS  PubMed  Google Scholar 

  39. Song L, et al. JAK1 activates STAT3 activity in non-small–cell lung cancer cells and IL-6 neutralizing antibodies can suppress JAK1-STAT3 signaling. Mol Cancer Ther. 2011;10(3):481–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Haura EB, et al. Activated epidermal growth factor receptor-Stat-3 signaling promotes tumor survival in vivo in non-small cell lung cancer. Clin Cancer Res. 2005;11(23):8288–94.

    Article  CAS  PubMed  Google Scholar 

  41. Yeh HH, et al. Autocrine IL-6-induced Stat3 activation contributes to the pathogenesis of lung adenocarcinoma and malignant pleural effusion. Oncogene. 2006;25(31):4300–9.

    Article  CAS  PubMed  Google Scholar 

  42. Song L, et al. Activation of Stat3 by receptor tyrosine kinases and cytokines regulates survival in human non-small cell carcinoma cells. Oncogene. 2003;22(27):4150–65.

    Article  CAS  PubMed  Google Scholar 

  43. Clay TD, et al. Associations between the IASLC/ATS/ERS lung adenocarcinoma classification and EGFR and KRAS mutations. Pathology. 2016;48(1):17–24.

    Article  CAS  PubMed  Google Scholar 

  44. Travis WD, et al. WHO classification of tumours of the lung, pleura, thymus and heart. 4th ed. Lyon: IARC Press; 2015.

    Google Scholar 

  45. Russell P, et al. Does lung adenocarcinoma subtype predict patient survival?: a clinicopathologic study based on the new International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society international multidisciplinary lung adenocarcinoma classification. J Thorac Oncol. 2011;6(9):1496–504.

    Article  PubMed  Google Scholar 

  46. Russell PA. Personal communication. 2017.

  47. Ilyas M, et al. Guidelines and considerations for conducting experiments using tissue microarrays. Histopathology. 2013;62(6):827–39.

    Article  PubMed  Google Scholar 

  48. Looyenga BD, et al. STAT3 is activated by JAK2 independent of key oncogenic driver mutations in non-small cell lung carcinoma. PLoS ONE. 2012;7(2):e30820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu L, et al. Extraction and amplification of DNA from formalin-fixed, paraffin-embedded tissues. Appl Immunohistochem Mol Morphol. 2002;10(3):269–74.

    CAS  PubMed  Google Scholar 

  50. Do H, et al. High resolution melting analysis for rapid and sensitive EGFR and KRAS mutation detection in formalin fixed paraffin embedded biopsies. BMC Cancer. 2008;8:142.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Krypuy M, et al. High resolution melting analysis for the rapid and sensitive detection of mutations in clinical samples: KRAS codon 12 and 13 mutations in non-small cell lung cancer. BMC Cancer. 2006;6:295.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Do H, Dobrovic A. Dramatic reduction of sequence artefacts from DNA isolated from formalin-fixed cancer biopsies by treatment with uracil-DNA glycosylase. Oncotarget. 2012;3(5):546–58.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Koh E, et al. Significance of the correlation between the expression of interleukin 6 and clinical features in patients with non-small cell lung cancer. Int J Surg Pathol. 2012;20(3):233–9.

    Article  CAS  PubMed  Google Scholar 

  54. Haura EB, Livingston S, Coppola D. Autocrine interleukin-6/interleukin-6 receptor stimulation in non-small-cell lung cancer. Clin Lung Cancer. 2006;7(4):273–5.

    Article  CAS  PubMed  Google Scholar 

  55. Hibi M, et al. Molecular cloning and expression of an IL-6 signal transducer, gp130. Cell. 1990;63(6):1149–57.

    Article  CAS  PubMed  Google Scholar 

  56. Saito M, et al. Molecular cloning of a murine IL-6 receptor-associated signal transducer, gp130, and its regulated expression in vivo. J Immunol. 1992;148(12):4066–71.

    CAS  PubMed  Google Scholar 

  57. Liu D, et al. Down-regulation of JAK1 by RNA interference inhibits growth of the lung cancer cell line A549 and interferes with the PI3 K/mTOR pathway. J Cancer Res Clin Oncol. 2011;137(11):1629–40.

    Article  CAS  PubMed  Google Scholar 

  58. Cortas T, et al. Activation state EGFR and STAT-3 as prognostic markers in resected non-small cell lung cancer. Lung Cancer. 2007;55(3):349–55.

    Article  PubMed  Google Scholar 

  59. Kim HS, et al. Clinical impact of phosphorylated signal transducer and activator of transcription 3, epidermal growth factor receptor, p53, and vascular endothelial growth factor receptor 1 expression in resected adenocarcinoma of lung by using tissue microarray. Cancer. 2010;116(3):676–85.

    Article  CAS  PubMed  Google Scholar 

  60. Zimmer S, et al. Epidermal growth factor receptor mutations in non-small cell lung cancer influence downstream Akt, MAPK and Stat3 signaling. J Cancer Res Clin Oncol. 2009;135(5):723–30.

    Article  CAS  PubMed  Google Scholar 

  61. Zhao M, et al. JAK2/STAT3 signaling pathway activation mediates tumor angiogenesis by upregulation of VEGF and bFGF in non-small-cell lung cancer. Lung Cancer. 2011;73(3):366–74.

    Article  PubMed  Google Scholar 

  62. Mukohara T, et al. Expression of epidermal growth factor receptor (EGFR) and downstream-activated peptides in surgically excised non-small-cell lung cancer (NSCLC). Lung Cancer. 2003;41(2):123–30.

    Article  PubMed  Google Scholar 

  63. Jiang R, et al. Correlation of activated STAT3 expression with clinicopathologic features in lung adenocarcinoma and squamous cell carcinoma. Mol Diagn Ther. 2011;15(6):347–52.

    Article  CAS  PubMed  Google Scholar 

  64. Takata S, et al. STAT3 expression in activating EGFR-driven adenocarcinoma of the lung. Lung Cancer. 2012;75(1):24–9.

    Article  PubMed  Google Scholar 

  65. Wang M, et al. Significance of CXCR4, phosphorylated STAT3 and VEGF-A expression in resected non-small cell lung cancer. Exp Ther Med. 2011;2(3):517–22.

    Article  PubMed  PubMed Central  Google Scholar 

  66. van Cruijsen H, et al. Tissue micro array analysis of ganglioside N-glycolyl GM3 expression and signal transducer and activator of transcription (STAT)-3 activation in relation to dendritic cell infiltration and microvessel density in non-small cell lung cancer. BMC Cancer. 2009;9:180.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Albanell J, et al. Pharmacodynamic studies of the epidermal growth factor receptor inhibitor ZD1839 in skin from cancer patients: histopathologic and molecular consequences of receptor inhibition. J Clin Oncol. 2002;20(1):110–24.

    Article  CAS  PubMed  Google Scholar 

  68. Haura EB, et al. A pilot study of preoperative gefitinib for early-stage lung cancer to assess intratumor drug concentration and pathways mediating primary resistance. J Thorac Oncol. 2010;5(11):1806–14.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Rosell R, et al. YAP-NOTCH and STAT3 signaling rebound as a compensatory response to gefitinib or osimertinib treatment in EGFR mutant lung cancer. J Thorac Oncol. 2016;12(1S):S281.

    Google Scholar 

  70. Wong AL, et al. Phase I and biomarker study of OPB-51602, a novel signal transducer and activator of transcription (STAT) 3 inhibitor, in patients with refractory solid malignancies. Ann Oncol. 2015;26(5):998–1005.

    Article  CAS  PubMed  Google Scholar 

  71. Hong D, et al. AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer. Sci Transl Med. 2015;7(314):314ra185.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding for this study was provided by St. Vincent’s Hospital research endowment fund. Dr Clay was supported by Australian Postgraduate Award from the University of Melbourne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy D. Clay.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1 (a–d)

Examples of Immunohistochemistry Staining for gp130 (gp130 antibody: Santa Cruz Biotechnology, Dallas TX, USA). Even Cytoplasmic Staining was observed. a: no staining; b: 1+ staining; c: 2+ staining; d: 3+ staining (JPEG 182 kb)

Supplementary material 2 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clay, T.D., Russell, P.A., Do, H. et al. EGFR and KRAS mutations do not enrich for the activation of IL-6, JAK1 or phosphorylated STAT3 in resected lung adenocarcinoma. Med Oncol 34, 175 (2017). https://doi.org/10.1007/s12032-017-1031-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-017-1031-1

Keywords

Navigation