Skip to main content

Advertisement

Log in

NK and cells with NK-like activities in cancer immunotherapy-clinical perspectives

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Natural killer (NK) cells are lymphoid cells of innate immunity that take important roles in immune surveillance. NK cells are considered as a bridge between innate and adaptive immunity, and their infiltration into tumor area is related positively with prolonged patient survival. They are defined as CD16+ CD56+ CD3 cells in clinic. NK cells promote cytolytic effects on target cells and induce their apoptosis. Loss of NK cell cytotoxic activity and reduction in the number of activating receptors are the current issues for application of such cells in cellular immunotherapy, which resulted in the diminished long-term effects. The focus of this review is to discuss about the activity of NK cells and cells with NK-like activity including natural killer T (NKT), cytokine-induced killer (CIK) and lymphokine-activated killer (LAK) cells in immunotherapy of human solid cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Narni-Mancinelli E, Vivier E, Kerdiles YM. The ‘T-cell-ness’ of NK cells: unexpected similarities between NK cells and T cells. Int Immunol. 2011;23(7):427–31.

    Article  CAS  PubMed  Google Scholar 

  2. Cózar B, et al. Tumor-infiltrating natural killer cells. Cancer Discov. 2021;11(1):34–44.

    Article  PubMed  Google Scholar 

  3. Abel AM, et al. Natural killer cells: development, maturation, and clinical utilization. Front Immunol. 2018;9:1869.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Stabile H, et al. Role of distinct natural killer cell subsets in anticancer response. Front Immunol. 2017;8:293.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Nagai K, et al. Highly activated ex vivo-expanded natural killer cells in patients with solid tumors in a phase I/IIa clinical study. Anticancer Res. 2020;40(10):5687–700.

    Article  CAS  PubMed  Google Scholar 

  6. Kärre K. Natural killer cell recognition of missing self. Nat Immunol. 2008;9(5):477–80.

    Article  PubMed  CAS  Google Scholar 

  7. Mortezaee K. Myeloid-derived suppressor cells in cancer immunotherapy-clinical perspectives. Life Sci. 2021;277: 119627.

    Article  CAS  PubMed  Google Scholar 

  8. Yang Y, et al. Safety and short-term efficacy of irreversible electroporation and allogenic natural killer cell immunotherapy combination in the treatment of patients with unresectable primary liver cancer. Cardiovasc Intervent Radiol. 2019;42(1):48–59.

    Article  PubMed  Google Scholar 

  9. Lee HS, et al. Peripheral natural killer cell activity is associated with poor clinical outcomes in pancreatic ductal adenocarcinoma. J Gastroenterol Hepatol. 2020. https://doi.org/10.1111/jgh.15265.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bähr I, et al. Obesity-associated alterations of natural killer cells and immunosurveillance of cancer. Front Immunol. 2020. https://doi.org/10.3389/fimmu.2020.00245.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kruse PH, et al. Natural cytotoxicity receptors and their ligands. Immunol Cell Biol. 2014;92(3):221–9.

    Article  CAS  PubMed  Google Scholar 

  12. Brillantes M, Beaulieu AM. Memory and memory-like NK cell responses to microbial pathogens. Front Cell Infect Microbiol. 2020;10:102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lonez C, et al. Study protocol for THINK: a multinational open-label phase I study to assess the safety and clinical activity of multiple administrations of NKR-2 in patients with different metastatic tumour types. BMJ Open. 2017. https://doi.org/10.1136/bmjopen-2017-017075.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Amin PJ, Shankar BS. Sulforaphane induces ROS mediated induction of NKG2D ligands in human cancer cell lines and enhances susceptibility to NK cell mediated lysis. Life Sci. 2015;126:19–27.

    Article  CAS  PubMed  Google Scholar 

  15. Fiuza-Luces C, et al. Effects of exercise on the immune function of pediatric patients with solid tumors: insights from the PAPEC randomized trial. Am J Phys Med Rehabil. 2017;96(11):831–7.

    Article  PubMed  Google Scholar 

  16. Bähr I, et al. Impaired natural killer cell subset phenotypes in human obesity. Immunol Res. 2018;66(2):234–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Izawa S, et al. H 2 O 2 production within tumor microenvironment inversely correlated with infiltration of CD56 dim NK cells in gastric and esophageal cancer: possible mechanisms of NK cell dysfunction. Cancer Immunol Immunother. 2011;60(12):1801–10.

    Article  CAS  PubMed  Google Scholar 

  18. Ishikawa T, et al. Phase I clinical trial of adoptive transfer of expanded natural killer cells in combination with IgG1 antibody in patients with gastric or colorectal cancer. Int J Cancer. 2018;142(12):2599–609.

    Article  CAS  PubMed  Google Scholar 

  19. Pockley AG, Vaupel P, Multhoff G. NK cell-based therapeutics for lung cancer. Expert Opin Biol Ther. 2020;20(1):23–33.

    Article  CAS  PubMed  Google Scholar 

  20. Demaria O, et al. Natural killer cell engagers in cancer immunotherapy: next generation of immuno-oncology treatments. Eur J Immunol. 2021. https://doi.org/10.1002/eji.202048953.

    Article  PubMed  Google Scholar 

  21. Gauthier L, et al. Multifunctional natural killer cell engagers targeting NKp46 trigger protective tumor immunity. Cell. 2019;177(7):1701.e16-1713.e16.

    Article  CAS  Google Scholar 

  22. Lim SH, et al. Effect of neoadjuvant chemoradiation on tumor-infiltrating/associated lymphocytes in locally advanced rectal cancers. Anticancer Res. 2014;34(11):6505–13.

    CAS  PubMed  Google Scholar 

  23. Sage EK, et al. Effects of definitive and salvage radiotherapy on the distribution of lymphocyte subpopulations in prostate cancer patients. Strahlenther Onkol. 2017;193(8):648–55.

    Article  PubMed  Google Scholar 

  24. Liang S, et al. Tumor cryoablation in combination with natural killer cells therapy and Herceptin in patients with HER2-overexpressing recurrent breast cancer. Mol Immunol. 2017;92:45–53.

    Article  CAS  PubMed  Google Scholar 

  25. Tarhini AA, et al. NCI 8628—a randomized phase II study of Ziv-aflibercept and high dose interleukin-2 (HD IL-2) or HD IL-2 alone for inoperable stage III or IV melanoma. Cancer. 2018;124(22):4332.

    Article  CAS  PubMed  Google Scholar 

  26. Majidpoor J, Mortezaee K. Interleukin-2 therapy of cancer-clinical perspectives. Int Immunopharmacol. 2021;98:107836.

    Article  CAS  PubMed  Google Scholar 

  27. Robertson MJ. Role of chemokines in the biology of natural killer cells. J Leukoc Biol. 2002;71(2):173–83.

    Article  CAS  PubMed  Google Scholar 

  28. Korbecki J, et al. CC chemokines in a tumor: a review of pro-cancer and anti-cancer properties of receptors CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 ligands. Int J Mol Sci. 2020;21(20):7619.

    Article  CAS  PubMed Central  Google Scholar 

  29. Malchiodi ZX, Weiner LM. Understanding and targeting natural killer cell-cancer-associated fibroblast interactions in pancreatic ductal adenocarcinoma. Cancers. 2021;13(3):405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jorgovanovic D, et al. Roles of IFN-γ in tumor progression and regression: a review. Biomarker Research. 2020;8(1):1–16.

    Article  Google Scholar 

  31. Böttcher JP, et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell. 2018;172(5):1022.e14-1037.e14.

    Article  CAS  Google Scholar 

  32. Mortezaee K, Majidpoor J. (Im) maturity in tumor ecosystem. Front Oncol. 2021;11:813897–813897.

    Article  PubMed  Google Scholar 

  33. Strauss J, et al. First-in-human phase I trial of a tumor-targeted cytokine (NHS-IL12) in subjects with metastatic solid tumors. Clin Cancer Res. 2019;25(1):99–109.

    Article  CAS  PubMed  Google Scholar 

  34. Margolin K, et al. Phase I trial of ALT-803, a novel recombinant IL15 complex, in patients with advanced solid tumors. Clin Cancer Res. 2018;24(22):5552–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Carrero RMS, et al. IL-15 is a component of the inflammatory milieu in the tumor microenvironment promoting antitumor responses. Proc Natl Acad Sci. 2019;116(2):599–608.

    Article  CAS  Google Scholar 

  36. Souza-Fonseca-Guimaraes F, et al. Interferon-γ and granulocyte/monocyte colony-stimulating factor production by natural killer cells involves different signaling pathways and the adaptor stimulator of interferon genes (STING). J Biol Chem. 2013;288(15):10715–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tarr PE. Granulocyte-macrophage colony-stimulating factor and the immune system. Med Oncol. 1996;13(3):133–40.

    Article  CAS  PubMed  Google Scholar 

  38. Nandagopal SA, et al. Dual roles of GM-CSF in modulating NK-cell migratory properties (CAM4P. 147). Am Assoc Immnol. 2015;35:585–99.

    Google Scholar 

  39. Hong I-S. Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types. Exp Mol Med. 2016;48(7):e242–e242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mortezaee K, Majidpoor J. Key promoters of tumor hallmarks. Int J Clin Oncol. 2021. https://doi.org/10.1007/s10147-021-02074-9.

    Article  PubMed  Google Scholar 

  41. Mortezaee K. Organ tropism in solid tumor metastasis: an updated review. Future Oncol. 2021;17(15):1943–61.

    Article  CAS  PubMed  Google Scholar 

  42. Najafi M, Mortezaee K, Majidpoor J. Stromal reprogramming: a target for tumor therapy. Life Sci. 2019;239: 117049.

    Article  CAS  PubMed  Google Scholar 

  43. Mortezaee K. Redox tolerance and metabolic reprogramming in solid tumors. Cell Biol Int. 2021;45(2):273–86.

    Article  CAS  PubMed  Google Scholar 

  44. Mortezaee K. Normalization in tumor ecosystem: opportunities and challenges. Cell Biol Int. 2021;45(10):2017–30.

    Article  CAS  PubMed  Google Scholar 

  45. Sarhan D, et al. Adaptive NK cells resist regulatory T-cell suppression driven by IL37. Cancer Immunol Res. 2018;6(7):766–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Abd Hamid M, et al. Enriched HLA-E and CD94/NKG2A interaction limits antitumor CD8+ tumor-infiltrating T lymphocyte responses. Cancer Immunol Res. 2019;7(8):1293–306.

    Article  PubMed  Google Scholar 

  47. Mortezaee K, Najafi M. Immune system in cancer radiotherapy: Resistance mechanisms and therapy perspectives. Crit Rev Oncol Hematol. 2020. https://doi.org/10.1016/j.critrevonc.2020.103180.

    Article  PubMed  Google Scholar 

  48. Farhood B, et al. Disruption of the redox balance with either oxidative or anti-oxidative overloading as a promising target for cancer therapy. J Cell Biochem. 2019;120(1):71–6.

    Article  CAS  PubMed  Google Scholar 

  49. Hagstrom AD, et al. The effect of resistance training on markers of immune function and inflammation in previously sedentary women recovering from breast cancer: a randomized controlled trial. Breast Cancer Res Treat. 2016;155(3):471–82.

    Article  CAS  PubMed  Google Scholar 

  50. Krijgsman D, Hokland M, Kuppen PJ. The role of natural killer T cells in cancer—a phenotypical and functional approach. Front Immunol. 2018;9:367.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Sebestyen Z, et al. Translating gammadelta (γδ) T cells and their receptors into cancer cell therapies. Nat Rev Drug Discovery. 2020;19(3):169–84.

    Article  CAS  PubMed  Google Scholar 

  52. Gütgemann S, et al. Cytokine-induced killer cells are type II natural killer T cells. GMS German Med Sci. 2007;5:7.

    Google Scholar 

  53. Wolf BJ, Choi JE, Exley MA. Novel approaches to exploiting invariant NKT cells in cancer immunotherapy. Front Immunol. 2018;9:384.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Shimizu K, et al. NK and NKT cell-mediated immune surveillance against hematological malignancies. Cancers. 2020;12(4):817.

    Article  CAS  PubMed Central  Google Scholar 

  55. Exley MA, et al. Adoptive transfer of invariant NKT cells as immunotherapy for advanced melanoma: a phase I clinical trial. Clin Cancer Res. 2017;23(14):3510–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Qin Y, et al. Invariant NKT cells facilitate cytotoxic T-cell activation via direct recognition of CD1d on T cells. Exp Mol Med. 2019;51(10):1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sangiolo D, et al. Alloreactivity and anti-tumor activity segregate within two distinct subsets of cytokine-induced killer (CIK) cells: implications for their infusion across major HLA barriers. Int Immunol. 2008;20(7):841–8.

    Article  CAS  PubMed  Google Scholar 

  58. Sangiolo D. Cytokine induced killer cells as promising immunotherapy for solid tumors. J Cancer. 2011;2:363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gao X, et al. Cytokine-induced killer cells as pharmacological tools for cancer immunotherapy. Front Immunol. 2017;8:774.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Lee JH, et al. Adjuvant immunotherapy with autologous cytokine-induced killer cells for hepatocellular carcinoma. Gastroenterology. 2015;148(7):1383.e6-1391.e6.

    Article  CAS  Google Scholar 

  61. Olioso P, et al. Immunotherapy with cytokine induced killer cells in solid and hematopoietic tumours: a pilot clinical trial. Hematol Oncol. 2009;27(3):130–9.

    Article  CAS  PubMed  Google Scholar 

  62. Introna M. CIK as therapeutic agents against tumors. J Autoimmun. 2017;85:32–44.

    Article  CAS  PubMed  Google Scholar 

  63. Introna M, Correnti F. Innovative clinical perspectives for CIK cells in cancer patients. Int J Mol Sci. 2018;19(2):358.

    Article  PubMed Central  CAS  Google Scholar 

  64. Cui J, et al. Combined cellular immunotherapy and chemotherapy improves clinical outcome in patients with gastric carcinoma. Cytotherapy. 2015;17(7):979–88.

    Article  CAS  PubMed  Google Scholar 

  65. Kuhn C, Weiner HL. Therapeutic anti-CD3 monoclonal antibodies: from bench to bedside. Immunotherapy. 2016;8(8):889–906.

    Article  CAS  PubMed  Google Scholar 

  66. Chen D, et al. Cytokine-induced killer cells as a feasible adoptive immunotherapy for the treatment of lung cancer. Cell Death Dis. 2018;9(3):1–12.

    Article  Google Scholar 

  67. Zhang Y, Schmidt-Wolf IG. Ten-year update of the international registry on cytokine-induced killer cells in cancer immunotherapy. J Cell Physiol. 2020;235(12):9291–303.

    Article  CAS  PubMed  Google Scholar 

  68. Schmidt-Wolf I, et al. Phenotypic characterization and identification of effector cells involved in tumor cell recognition of cytokine-induced killer cells. Exp Hematol. 1993;21(13):1673–9.

    CAS  PubMed  Google Scholar 

  69. Xia F, et al. Cytokine induced killer cells-assisted delivery of chlorin e6 mediated self-assembled gold nanoclusters to tumors for imaging and immuno-photodynamic therapy. Biomaterials. 2018;170:1–11.

    Article  CAS  PubMed  Google Scholar 

  70. Jiang J, Wu C, Lu B. Cytokine-induced killer cells promote antitumor immunity. J Transl Med. 2013;11(1):1–9.

    Article  Google Scholar 

  71. Saito H, et al. A combined lymphokine-activated killer (LAK) cell immunotherapy and adenovirus-p53 gene therapy for head and neck squamous cell carcinoma. Anticancer Res. 2014;34(7):3365–70.

    CAS  PubMed  Google Scholar 

  72. Pittari G, et al. Revving up natural killer cells and cytokine-induced killer cells against hematological malignancies. Front Immunol. 2015;6:230.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Yoshida Y, et al. Clinical study on the medical value of combination therapy involving adoptive immunotherapy and chemotherapy for stage IV colorectal cancer (COMVI Study). Anticancer Res. 2017;37(7):3941–6.

    CAS  PubMed  Google Scholar 

  74. Sabry M, Lowdell MW. Killers at the crossroads: The use of innate immune cells in adoptive cellular therapy of cancer. Stem Cells Transl Med. 2020;9(9):974–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li L, et al. Adoptive transfer of natural killer cells in combination with chemotherapy improves outcomes of patients with locally advanced colon carcinoma. Cytotherapy. 2018;20(1):134–48.

    Article  CAS  PubMed  Google Scholar 

  76. Lin M, et al. Prospective study of percutaneous cryoablation combined with allogenic NK cell immunotherapy for advanced renal cell cancer. Immunol Lett. 2017;184:98–104.

    Article  CAS  PubMed  Google Scholar 

  77. Pérez-Martínez A, et al. A phase I/II trial of interleukin-15–stimulated natural killer cell infusion after haplo-identical stem cell transplantation for pediatric refractory solid tumors. Cytotherapy. 2015;17(11):1594–603.

    Article  PubMed  CAS  Google Scholar 

  78. Yang Y, et al. Phase I study of random healthy donor–derived allogeneic natural killer cell therapy in patients with malignant lymphoma or advanced solid tumors. Cancer Immunol Res. 2016;4(3):215–24.

    Article  CAS  PubMed  Google Scholar 

  79. Hoogstad-van Evert J, et al. Intraperitoneal infusion of ex vivo-cultured allogeneic NK cells in recurrent ovarian carcinoma patients (a phase I study). Medicine. 2019. https://doi.org/10.1097/MD.0000000000014290.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Gasser O, et al. A phase I vaccination study with dendritic cells loaded with NY-ESO-1 and α-galactosylceramide: induction of polyfunctional T cells in high-risk melanoma patients. Cancer Immunol Immunother. 2018;67(2):285–98.

    Article  CAS  PubMed  Google Scholar 

  81. Yu X, et al. A randomized phase II study of autologous cytokine-induced killer cells in treatment of hepatocelluar carcinoma. J Clin Immunol. 2014;34(2):194–203.

    Article  CAS  PubMed  Google Scholar 

  82. Lee J-H, et al. Sustained efficacy of adjuvant immunotherapy with cytokine-induced killer cells for hepatocellular carcinoma: an extended 5-year follow-up. Cancer Immunol Immunother. 2019;68(1):23–32.

    Article  CAS  PubMed  Google Scholar 

  83. Chung MJ, et al. Phase II clinical trial of ex vivo-expanded cytokine-induced killer cells therapy in advanced pancreatic cancer. Cancer Immunol Immunother. 2014;63(9):939–46.

    Article  CAS  PubMed  Google Scholar 

  84. Savas B, Kerr PE, Pross HF. Lymphokine-activated killer cell susceptibility and adhesion molecule expression of multidrug resistant breast carcinoma. Cancer Cell Int. 2006;6(1):1–13.

    Article  CAS  Google Scholar 

  85. Sakamoto N, et al. Phase I clinical trial of autologous NK cell therapy using novel expansion method in patients with advanced digestive cancer. J Transl Med. 2015;13(1):277.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Esser R, et al. NK cells engineered to express a GD2-specific antigen receptor display built-in ADCC-like activity against tumour cells of neuroectodermal origin. J Cell Mol Med. 2012;16(3):569–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang C, et al. Cytokine-induced killer cells/natural killer cells combined with anti-GD2 monoclonal antibody increase cell death rate in neuroblastoma SK-N-SH cells. Oncol Lett. 2019;18(6):6525–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Federico SM, et al. A pilot trial of humanized anti-GD2 monoclonal antibody (hu14. 18K322A) with chemotherapy and natural killer cells in children with recurrent/refractory neuroblastoma. Clin Cancer Res. 2017;23(21):6441–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Xu Y-C, et al. Chemotherapy with or without autologous cytokine-induced killer cell transfusion as the first-line treatment for stage IV gastrointestinal cancer: a phase II clinical trial. J Cancer Res Clin Oncol. 2016;142(6):1315–23.

    Article  CAS  PubMed  Google Scholar 

  90. Zhao H, et al. Autologous cytokine-induced killer cells improves overall survival of metastatic colorectal cancer patients: results from a phase II clinical trial. Clin Colorectal Cancer. 2016;15(3):228–35.

    Article  PubMed  Google Scholar 

  91. Kong D-S, et al. Phase III randomized trial of autologous cytokine-induced killer cell immunotherapy for newly diagnosed glioblastoma in Korea. Oncotarget. 2017;8(4):7003.

    Article  PubMed  Google Scholar 

  92. Li N, et al. Combined treatment with autologous CIK cells, radiotherapy and chemotherapy in advanced cervical cancer. Pathol Oncol Res. 2019;25(2):691–6.

    Article  CAS  PubMed  Google Scholar 

  93. Li X, et al. Phase II/III study of radiofrequency ablation combined with cytokine-induced killer cells treating colorectal liver metastases. Cell Physiol Biochem. 2016;40(1–2):137–45.

    Article  CAS  PubMed  Google Scholar 

  94. Wang S, et al. DC-CIK as a widely applicable cancer immunotherapy. Expert Opin Biol Ther. 2020;20(6):601–7.

    Article  PubMed  CAS  Google Scholar 

  95. Märten A, et al. Interactions between dendritic cells and cytokine-induced killer cells lead to an activation of both populations. J Immunother. 2001;24(6):502–10.

    Article  PubMed  Google Scholar 

  96. Zhang Y, et al. Clinical studies applying cytokine-induced killer cells for the treatment of renal cell carcinoma. Cancers. 2020;12(9):2471.

    Article  CAS  PubMed Central  Google Scholar 

  97. Yang T, et al. Co-culture of dendritic cells and cytokine-induced killer cells effectively suppresses liver cancer stem cell growth by inhibiting pathways in the immune system. BMC Cancer. 2018;18(1):1–10.

    Article  CAS  Google Scholar 

  98. Du H, Yang J, Zhang Y. Cytokine-induced killer cell/dendritic cell combined with cytokine-induced killer cell immunotherapy for treating advanced gastrointestinal cancer. BMC Cancer. 2020;20:1–11.

    Article  CAS  Google Scholar 

  99. Mu Y, et al. Effectiveness and safety of chemotherapy combined with cytokine-induced killer cell/dendritic cell–cytokine-induced killer cell therapy for treatment of gastric cancer in China: a systematic review and meta-analysis. Cytotherapy. 2016;18(9):1162–77.

    Article  CAS  PubMed  Google Scholar 

  100. Hu J, et al. Effect and safety of cytokine-induced killer (CIK) cell immunotherapy in patients with breast cancer: a meta-analysis. Medicine. 2017. https://doi.org/10.1097/MD.0000000000008310).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Wang D, et al. Clinical research of genetically modified dendritic cells in combination with cytokine-induced killer cell treatment in advanced renal cancer. BMC Cancer. 2014;14(1):1–7.

    CAS  Google Scholar 

  102. Zhao X, et al. Cytokine induced killer cell-based immunotherapies in patients with different stages of renal cell carcinoma. Cancer Lett. 2015;362(2):192–8.

    Article  CAS  PubMed  Google Scholar 

  103. Jiang N, et al. Dendritic cell/cytokine-induced killer cell immunotherapy combined with S-1 in patients with advanced pancreatic cancer: a prospective study. Clin Cancer Res. 2017;23(17):5066–73.

    Article  CAS  PubMed  Google Scholar 

  104. Wang M, et al. S-1 plus CIK as second-line treatment for advanced pancreatic cancer. Med Oncol. 2013;30(4):747.

    Article  PubMed  CAS  Google Scholar 

  105. Zhao P, et al. Dendritic cell immunotherapy combined with cytokine-induced killer cells promotes skewing toward Th2 cytokine profile in patients with metastatic non-small cell lung cancer. Int Immunopharmacol. 2015;25(2):450–6.

    Article  CAS  PubMed  Google Scholar 

  106. Zhao Y, et al. Combination of DC/CIK adoptive T cell immunotherapy with chemotherapy in advanced non-small-cell lung cancer (NSCLC) patients: a prospective patients’ preference-based study (PPPS). Clin Transl Oncol. 2019;21(6):721–8.

    Article  CAS  PubMed  Google Scholar 

  107. Song H, et al. Increased cycles of DC/CIK immunotherapy decreases frequency of Tregs in patients with resected NSCLC. Int Immunopharmacol. 2017;52:197–202.

    Article  CAS  PubMed  Google Scholar 

  108. Szlasa W, et al. Oxidative effects during irreversible electroporation of melanoma cells—in vitro study. Molecules. 2021;26(1):154.

    Article  CAS  Google Scholar 

  109. Lin M, et al. Percutaneous irreversible electroporation combined with allogeneic natural killer cell immunotherapy for patients with unresectable (stage III/IV) pancreatic cancer: a promising treatment. J Cancer Res Clin Oncol. 2017;143(12):2607–18.

    Article  CAS  PubMed  Google Scholar 

  110. Lin M, et al. Clinical efficacy of percutaneous cryoablation combined with allogenic NK cell immunotherapy for advanced non-small cell lung cancer. Immunol Res. 2017;65(4):880–7.

    Article  PubMed  Google Scholar 

  111. Mortezaee, K., Immune escape: A critical hallmark in solid tumors. Life Sciences, 2020: 118110.

  112. Kirkin AF, et al. Adoptive cancer immunotherapy using DNA-demethylated T helper cells as antigen-presenting cells. Nat Commun. 2018;9(1):1–12.

    Article  CAS  Google Scholar 

  113. Rezvani K. Adoptive cell therapy using engineered natural killer cells. Bone Marrow Transplant. 2019;54(2):785–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Liu E, et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med. 2020;382(6):545–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Müller, N., et al., Engineering NK cells modified with an EGFRvIII-specific chimeric antigen receptor to overexpress CXCR4 improves immunotherapy of CXCL12/SDF-1α-secreting glioblastoma. Journal of immunotherapy (Hagerstown, Md.: 1997), 2015. 38(5): 197.

  116. Heczey A, et al. Anti-GD2 CAR-NKT cells in patients with relapsed or refractory neuroblastoma: an interim analysis. Nat Med. 2020;26(11):1686–90.

    Article  CAS  PubMed  Google Scholar 

  117. Zhou Y, et al. Effects of preemptive analgesia with flurbiprofen ester on lymphocytes and natural killer cells in patients undergoing esophagectomy: a randomized controlled pilot study. Thoracic cancer. 2017;8(6):649–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Shi L, et al. Laparoscopic surgery versus open surgery for colorectal cancer: impacts on natural killer cells. Cancer Control. 2020;27(1):1073274820906811.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Oh C-S, et al. Effect of equipotent doses of propofol versus sevoflurane anesthesia on regulatory T cells after breast cancer surgery. Anesthesiology. 2018;129(5):921–31.

    Article  CAS  PubMed  Google Scholar 

  120. Desmond F, et al. Effect of anaesthetic technique on immune cell infiltration in breast cancer: a follow-up pilot analysis of a prospective, randomised, investigator-masked study. Anticancer Res. 2015;35(3):1311–9.

    PubMed  Google Scholar 

  121. Cho JS, et al. The effects of perioperative anesthesia and analgesia on immune function in patients undergoing breast cancer resection: a prospective randomized study. Int J Med Sci. 2017;14(10):970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mortezaee K. Enriched cancer stem cells, dense stroma, and cold immunity: Interrelated events in pancreatic cancer. J Biochem Mol Toxicol. 2021. https://doi.org/10.1186/s12885-018-4064-8.

    Article  PubMed  Google Scholar 

  123. Lim J-A, et al. The effect of propofol and sevoflurane on cancer cell, natural killer cell, and cytotoxic T lymphocyte function in patients undergoing breast cancer surgery: an in vitro analysis. BMC Cancer. 2018;18(1):159.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Smyth MJ, et al. New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer. 2002;2(11):850–61.

    Article  CAS  PubMed  Google Scholar 

  125. Gallois A, et al. Reversal of natural killer cell exhaustion by TIM-3 blockade. Oncoimmunology. 2014;3(12): e946365.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Zheng Y, et al. TNF-α-induced Tim-3 expression marks the dysfunction of infiltrating natural killer cells in human esophageal cancer. J Transl Med. 2019;17(1):1–12.

    Article  Google Scholar 

  127. Silva IG, et al. The Tim-3-galectin-9 secretory pathway is involved in the immune escape of human acute myeloid leukemia cells. EBioMedicine. 2017;22:44–57.

    Article  Google Scholar 

  128. Majidpoor, J. and K. Mortezaee, Interleukin-6 in SARS-CoV-2 induced disease: Interactions and therapeutic applications. Biomedicine & Pharmacotherapy, 2021: 112419.

  129. Mortezaee K. Hypoxia induces core-to-edge transition of progressive tumoral cells: A critical review on differential yet corroborative roles for HIF-1α and HIF-2α. Life Sci. 2020;242:117145.

    Article  CAS  PubMed  Google Scholar 

  130. Mortezaee K, Majidpoor J. The impact of hypoxia on immune state in cancer. Life Sci. 2021;286: 120057.

    Article  CAS  PubMed  Google Scholar 

  131. Mortezaee K, et al. Metformin as a radiation modifier; implications to normal tissue protection and tumor sensitization. Curr Clin Pharmacol. 2019;14(1):41–53.

    Article  CAS  PubMed  Google Scholar 

  132. Yuen VW-H, Wong CC-L. Hypoxia-inducible factors and innate immunity in liver cancer. J Clin Investig. 2020;130(10):5052–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. You L, et al. The role of hypoxia-inducible factor 1 in tumor immune evasion. Med Res Rev. 2020. https://doi.org/10.1002/med.21771.

    Article  PubMed  Google Scholar 

  134. Mortezaee K, et al. Post-treatment of melatonin with CCl4 better reduces fibrogenic and oxidative changes in liver than melatonin co-treatment. J Cell Biochem. 2018;119(2):1716–25.

    Article  CAS  PubMed  Google Scholar 

  135. Mortezaee K. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) and liver fibrosis: a review. Cell Biochem Funct. 2018;36(6):292–302.

    Article  CAS  PubMed  Google Scholar 

  136. Mortezaee K, et al. Resveratrol as an adjuvant for normal tissues protection and tumor sensitization. Curr Cancer Drug Targets. 2020;20(2):130–45.

    Article  CAS  PubMed  Google Scholar 

  137. Foulds GA, et al. Immune-phenotyping and transcriptomic profiling of peripheral blood mononuclear cells from patients with breast cancer: identification of a 3 gene signature which predicts relapse of triple negative breast cancer. Front Immunol. 2018;9:2028.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Temam S, et al. An exploratory, open-label, randomized, multicenter study to investigate the pharmacodynamics of a glycoengineered antibody (imgatuzumab) and cetuximab in patients with operable head and neck squamous cell carcinoma. Ann Oncol. 2017;28(11):2827–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Fossati M, et al. Immunological changes in the ascites of cancer patients after intraperitoneal administration of the bispecific antibody catumaxomab (anti-EpCAM× anti-CD3). Gynecol Oncol. 2015;138(2):343–51.

    Article  CAS  PubMed  Google Scholar 

  140. Jahn J, et al. Decreased NK cell functions in obesity can be reactivated by fat mass reduction. Obesity. 2015;23(11):2233–41.

    Article  CAS  PubMed  Google Scholar 

  141. Mortezaee K, Majidpoor J. Checkpoint inhibitor/interleukin-based combination therapy of cancer. Cancer Med. 2022. https://doi.org/10.1002/cam4.4659.

    Article  PubMed  Google Scholar 

  142. O’Shea D, Hogan AE. Dysregulation of natural killer cells in obesity. Cancers. 2019;11(4):573.

    Article  PubMed Central  CAS  Google Scholar 

  143. Majidpoor J, Mortezaee K. Steps in metastasis: an updated review. Med Oncol. 2021;38(1):1–17.

    Article  Google Scholar 

  144. Messaoudene M, et al. Characterization of the microenvironment in positive and negative sentinel lymph nodes from melanoma patients. PLoS ONE. 2015;10(7):e0133363.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Nakamura K, Smyth MJ. Immunoediting of cancer metastasis by NK cells. Nature Cancer. 2020;1(7):670–1.

    Article  CAS  PubMed  Google Scholar 

  146. Wu S-Y, et al. Natural killer cells in cancer biology and therapy. Mol Cancer. 2020;19(1):1–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Muraro E, et al. Improved natural killer cell activity and retained anti-tumor CD8+ T cell responses contribute to the induction of a pathological complete response in HER2-positive breast cancer patients undergoing neoadjuvant chemotherapy. J Transl Med. 2015;13(1):1–14.

    Article  CAS  Google Scholar 

  148. Wang F, et al. TIGIT expression levels on human NK cells correlate with functional heterogeneity among healthy individuals. Eur J Immunol. 2015;45(10):2886–97.

    Article  CAS  PubMed  Google Scholar 

  149. Najafi M, et al. The current knowledge concerning solid cancer and therapy. J Biochem Mol Toxicol. 2021;35(11):e22900.

    Article  CAS  PubMed  Google Scholar 

  150. Chan E, et al. Open-label phase 1b study of FOLFIRI plus cetuximab plus IMO-2055 in patients with colorectal cancer who have progressed following chemotherapy for advanced or metastatic disease. Cancer Chemother Pharmacol. 2015;75(4):701–9.

    Article  CAS  PubMed  Google Scholar 

  151. van den Hout MF, et al. Local delivery of CpG-B and GM-CSF induces concerted activation of effector and regulatory T cells in the human melanoma sentinel lymph node. Cancer Immunol Immunother. 2016;65(4):405–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Samanta D, et al. BIRC2 expression impairs anti-cancer immunity and immunotherapy efficacy. Cell Rep. 2020;32(8): 108073.

    Article  CAS  PubMed  Google Scholar 

  153. Mortezaee K, et al. Melatonin pretreatment enhances the homing of bone marrow-derived mesenchymal stem cells following transplantation in a rat model of liver fibrosis. Iran Biomed J. 2016;20(4):207.

    PubMed  PubMed Central  Google Scholar 

  154. Ding Q, et al. CXCL9: evidence and contradictions for its role in tumor progression. Cancer Med. 2016;5(11):3246–59.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work received ethical approval (Ethical code: IR.MUK.REC.1400.013) from Kurdistan University of Medical Sciences.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

K.M gave the conceptualization. K.M and J.M wrote the initial manuscript. Final revisions were made by K.M. Articles was selected by K.M. Both authors approved the final draft.

Corresponding author

Correspondence to Keywan Mortezaee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mortezaee, K., Majidpoor, J. NK and cells with NK-like activities in cancer immunotherapy-clinical perspectives. Med Oncol 39, 131 (2022). https://doi.org/10.1007/s12032-022-01735-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01735-7

Keywords

Navigation