Skip to main content

Advertisement

Log in

Strategies for Optimal Expression of Vaccine Antigens from Taeniid Cestode Parasites in Escherichia coli

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Investigations were undertaken into optimizing the expression of Cestode parasite vaccine antigens in the bacterium, Escherichia coli to levels sufficient for mass production. A strategy to genetically engineer the antigens and improve their expression in E. coli was investigated. Plasmid constructs encoding truncated parasite antigens were prepared, leading to removal of N and C-terminal hydrophobic domains of the antigens. This approach was found to be an effective strategy for improving expression of the TSOL18 recombinant antigen of Taenia solium in E. coli. Clear demonstration that plasmid construct modification can be used to significantly improve heterologous expression in E. coli was shown for the EG95 antigen of Echinococcus granulosus. Removal of hydrophobic stretches of amino acids from the N and C termini of EG95 by genetic manipulation led to a substantial change in expression of the protein from an insoluble to a soluble form. The data demonstrate that the occurrence of hydrophobic regions in the antigens are a major feature that hindered their expression in E. coli. It was also shown that retaining a minimal protein domain (a single fibronectin type III domain) led to high level expression of functional protein that is antigenic and host protective. Two truncated antigens were combined from two species of parasite (EG95NC from E. granulosus and Tm18N from Taenia multiceps) and expressed as a single hybrid antigen in E. coli. The hybrid antigens were expressed at a high level and retained antigenicity of their respective components, thereby simplifying production of a multi-antigen vaccine. The findings are expected to have an impact on the preparation of recombinant Cestode vaccine antigens using E. coli, by increasing their utility and making them more amenable to large-scale production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GST:

Glutathione S-transferase

FnIII:

Fibronectin type III

IPTG:

Isopropyl-β-d-thiogalactosidase

MBP:

Maltose binding protein

PBS:

Phosphate buffered saline

SDS-PAGE:

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis

BSA:

Bovine serum albumin

OD:

Optical density

References

  1. Harrison, G. B., Heath, D. D., Dempster, R. P., Gauci, C., Newton, S. E., Cameron, W. G., et al. (1996). Identification and cDNA cloning of two novel low molecular weight host-protective antigens from Taenia ovis oncospheres. International Journal for Parasitology, 26, 195–204.

    Article  CAS  Google Scholar 

  2. Johnson, K. S., Harrison, G. B., Lightowlers, M. W., O’Hoy, K. L., Cougle, W. G., Dempster, R. P., et al. (1989). Vaccination against ovine cysticercosis using a defined recombinant antigen. Nature, 338, 585–587.

    Article  CAS  Google Scholar 

  3. Lightowlers, M. W., Rolfe, R., & Gauci, C. G. (1996). Taenia saginata: Vaccination against cysticercosis in cattle with recombinant oncosphere antigens. Experimental Parasitology, 84, 330–338.

    Article  CAS  Google Scholar 

  4. Flisser, A., Gauci, C. G., Zoli, A., Martinez-Ocana, J., Garza-Rodriguez, A., Dominguez-Alpizar, J. L., et al. (2004). Induction of protection against porcine cysticercosis by vaccination with recombinant oncosphere antigens. Infection and Immunity, 72, 5292–5297.

    Article  CAS  Google Scholar 

  5. Gonzalez, A. E., Gauci, C. G., Barber, D., Gilman, R. H., Tsang, V. C., Garcia, H. H., et al. (2005). Vaccination of pigs to control human neurocysticercosis. American Journal of Tropical Medicine and Hygiene, 72, 837–839.

    Google Scholar 

  6. Gauci, C., Vural, G., Oncel, T., Varcasia, A., Damian, V., Kyngdon, C. T., et al. (2008). Vaccination with recombinant oncosphere antigens reduces the susceptibility of sheep to infection with Taenia multiceps. International Journal for Parasitology, 38, 1041–1050.

    Article  CAS  Google Scholar 

  7. Lightowlers, M. W., Lawrence, S. B., Gauci, C. G., Young, J., Ralston, M. J., Maas, D., et al. (1996). Vaccination against hydatidosis using a defined recombinant antigen. Parasite Immunology, 18, 457–462.

    Article  CAS  Google Scholar 

  8. Geldhof, P., De Maere, V., Vercruysse, J., & Claerebout, E. (2007). Recombinant expression systems: The obstacle to helminth vaccines? Trends in Parasitology, 23, 527–532.

    Article  CAS  Google Scholar 

  9. Smith, D. B., & Johnson, K. (1988). Single-step purification of polypeptides expressed in Escherichia coli as fusion proteins with glutathione S-transferase. Gene, 67, 31–40.

    Article  CAS  Google Scholar 

  10. Lightowlers, M. W., Waterkeyn, J. G., Rothel, J. S., Gauci, C. G., & Harrison, G. B. (1996). Host-protective fragments and antibody binding epitopes of the Taenia ovis 45W recombinant antigen. Parasite Immunology, 18, 507–513.

    Article  CAS  Google Scholar 

  11. Dempster, R. P., Robinson, C. M., & Harrison, G. B. (1996). Parasite vaccine development: Large-scale recovery of immunogenic Taenia ovis fusion protein GST-45W(B/X) from Escherichia coli inclusion bodies. Parasitology Research, 82, 291–296.

    Article  CAS  Google Scholar 

  12. Manderson, D., Dempster, R., & Chisti, Y. (2006). A recombinant vaccine against hydatidosis: Production of the antigen in Escherichia coli. Journal of Industrial Microbiology and Biotechnology, 33, 173–182.

    Article  CAS  Google Scholar 

  13. Cabrita, L. D., & Bottomley, S. P. (2004). Protein expression and refolding—A practical guide to getting the most out of inclusion bodies. Biotechnology Annual Review, 10, 31–50.

    Article  CAS  Google Scholar 

  14. Gauci, C. G., Flisser, A., & Lightowlers, M. W. (1998). A Taenia solium oncosphere protein homologous to host-protective Taenia ovis and Taenia saginata 18 kDa antigens. International Journal for Parasitology, 28, 757–760.

    Article  CAS  Google Scholar 

  15. Chow, C., Gauci, C. G., Cowman, A. F., & Lightowlers, M. W. (2001). A gene family expressing a host-protective antigen of Echinococcus granulosus. Molecular and Biochemical Parasitology, 118, 83–88.

    Article  CAS  Google Scholar 

  16. Lilius, G., Persson, M., Bulow, L., & Mosbach, K. (1991). Metal affinity precipitation of proteins carrying genetically attached polyhistidine affinity tails. European Journal of Biochemistry, 198, 499–504.

    Article  CAS  Google Scholar 

  17. Stuber, D., Matile, H., & Garotta, G. (1990). System for high-level production in Escherichia coli and rapid purification of recombinant proteins: Application to epitope mapping, preparation of antibodies and structure-function analysis. In I. Lefkovits & B. Pernis (Eds.), Immunological methods (Vol. 4, pp. 121–152). New York: Academic Press.

    Google Scholar 

  18. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  19. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  20. Bendtsen, J. D., Nielsen, H., von Heijne, G., & Brunak, S. (2004). Improved prediction of signal peptides: SignalP 3.0. Journal of Molecular Biology, 340, 783–795.

    Article  Google Scholar 

  21. Ponting, C. P., Schultz, J., Milpetz, F., & Bork, P. (1999). SMART: Identification and annotation of domains from signalling and extracellular protein sequences. Nucleic Acids Research, 27, 229–232.

    Article  CAS  Google Scholar 

  22. Hofmann, K., & Stoffel, W. (1993). TMbase—A database of membrane spanning proteins segments. Biological Chemistry, 374, 166.

    Google Scholar 

  23. Krogh, A., Larsson, B., von Heijne, G., & Sonnhammer, E. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology, 305, 567–580.

    Article  CAS  Google Scholar 

  24. Grossman, T. H., Kawasaki, E. S., Punreddy, S. R., & Osburne, M. S. (1998). Spontaneous cAMP-dependent derepression of gene expression in stationary phase plays a role in recombinant expression instability. Gene, 209, 95–103.

    Article  CAS  Google Scholar 

  25. Pan, S. H., & Malcolm, B. A. (2000). Reduced background expression and improved plasmid stability with pET vectors in BL21 (DE3). BioTechniques, 29, 1234–1238.

    CAS  Google Scholar 

  26. Lee, S. Y. (1996). High cell-density culture of Escherichia coli. Trends in Biotechnology, 14, 98–105.

    Article  CAS  Google Scholar 

  27. Schein, C. H., & Noteborn, M. H. (1988). Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature. Biotechnology, 6, 291–294.

    Article  CAS  Google Scholar 

  28. Vera, A., Gonzalez-Montalban, N., Aris, A., & Villaverde, A. (2007). The conformational quality of insoluble recombinant proteins is enhanced at low growth temperatures. Biotechnology and Bioengineering, 96, 1101–1106.

    Article  CAS  Google Scholar 

  29. Sorensen, H. P., & Mortensen, K. K. (2005). Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microbial Cell Factories, 4, 1.

    Article  Google Scholar 

  30. Woollard, D. J., Gauci, C. G., Heath, D. D., & Lightowlers, M. W. (2001). Protection against hydatid disease induced with the EG95 vaccine is associated with conformational epitopes. Vaccine, 19, 498–507.

    Article  Google Scholar 

  31. Lightowlers, M. W. (2006). Cestode vaccines: Origins, current status and future prospects. Parasitology, 133 Suppl, S27–S42.

    Article  CAS  Google Scholar 

  32. Puigbo, P., Guzman, E., Romeu, A., & Garcia-Vallve, S. (2007). OPTIMIZER: A web server for optimizing the codon usage of DNA sequences. Nucleic Acids Research, 35, W126–W131.

    Article  Google Scholar 

  33. Gustafsson, C., Govindarajan, S., & Minshull, J. (2004). Codon bias and heterologous protein expression. Trends in Biotechnology, 22, 346–353.

    Article  CAS  Google Scholar 

  34. Mehlin, C., Boni, E., Buckner, F. S., Engel, L., Feist, T., Gelb, M. H., et al. (2006). Heterologous expression of proteins from Plasmodium falciparum: Results from 1000 genes. Molecular and Biochemical Parasitology, 148, 144–160.

    Article  CAS  Google Scholar 

  35. Griswold, K. E., Mahmood, N. A., Iverson, B. L., & Georgiou, G. (2003). Effects of codon usage versus putative 5′-mRNA structure on the expression of Fusarium solani cutinase in the Escherichia coli cytoplasm. Protein Expression and Purification, 27, 134–142.

    Article  CAS  Google Scholar 

  36. Wu, X., Jornvall, H., Berndt, K. D., & Oppermann, U. (2004). Codon optimization reveals critical factors for high level expression of two rare codon genes in Escherichia coli: RNA stability and secondary structure but not tRNA abundance. Biochemical and Biophysical Research Communication, 313, 89–96.

    Article  CAS  Google Scholar 

  37. Varcasia, A., Tosciri, G., Coccone, G. N., Pipia, A. P., Garippa, G., Scala, A., et al. (2009). Preliminary field trial of a vaccine against coenurosis caused by Taenia multiceps. Veterinary Parasitology, 162, 285–289.

    Article  CAS  Google Scholar 

  38. Scala, A., & Varcasia, A. (2006). Updates on morphobiology, epidemiology and molecular characterization of coenurosis in sheep. Parassitologia, 48, 61–63.

    CAS  Google Scholar 

  39. Sharma, D. K., & Chauhan, P. P. S. (2006). Coenurosis status in Afro-Asian region: A review. Small Ruminant Research, 64, 197.

    Article  Google Scholar 

  40. Lightowlers, M. (2010). Eradication of Taenia solium cysticercosis: A role for vaccination of pigs. International Journal for Parasitology, 40, 1183–1192.

    Article  Google Scholar 

Download references

Acknowledgments

Funding is acknowledged from The Wellcome Trust, Animal Health in the Developing World Grant 075818 and the Australian National Health and Medical Research Council, grants 350279, 400109, 628320.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Gauci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gauci, C., Jenkins, D. & Lightowlers, M.W. Strategies for Optimal Expression of Vaccine Antigens from Taeniid Cestode Parasites in Escherichia coli . Mol Biotechnol 48, 277–289 (2011). https://doi.org/10.1007/s12033-010-9368-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-010-9368-0

Keywords

Navigation