Skip to main content

Advertisement

Log in

Functional Characterization and Low-Resolution Structure of an Endoglucanase Cel45A from the Filamentous Fungus Neurospora crassa OR74A: Thermostable Enzyme with High Activity Toward Lichenan and β-Glucan

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Biomass is the most abundant and short-term renewable natural resource on Earth whose recalcitrance toward enzymatic degradation represents significant challenge for a number of biotechnological applications. The not so abundant but critically necessary class of GH45 endoglucanases constitutes an essential component of tailored industrial enzyme cocktails because they randomly and internally cleave cellulose molecules. Moreover, GH45 glucanases are core constituents of major-brand detergent formulations as well as enzymatic aid components in the cotton processing industry, clipping unwanted cellulosic fibers from cotton (cellulosic)-based tissues. Here we report on a recombinant high-yield Neurospora crassa OR74A NcCel45A production system, a single-band GH45 endoglucanase purification, and a complete enzyme functional characterization. NcCel45A is a bimodular endoglucanase showing maximum activity at pH 6.0 and 60 °C, while most active against lichenan and β-glucans and lesser active toward filter paper, carboxymethylcellulose, and phosphoric acid-swollen cellulose. Gluco-oligosaccharide degradation fingerprinting experiments suggest cellopentaose as the minimal length substrate and ThermalFluor studies indicate that NcCel45A displays excellent stability at elevated temperatures up to 70 °C and pHs ranging from 5 to 9. Remarkably, we show that NcCel45A is uniquely resistant to a wide-range of organic solvents and small-angle X-ray scattering show a monkey-wrench molecular shape structure in solution, which indicates, unlike to other known cellulases, a non-fully extended conformation, thus conferring solvent protection. These NcCel45A unique enzymatic properties maybe key for specific industrial applications such as cotton fiber processing and detergent formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CBM:

Carbohydrate-binding module

CMC:

Carboxymethyl cellulose

DAM:

Dummy atom models

DNS:

Dinitrosalycylic acid

D max :

Maximum particle size

EDTA:

Ethylenediaminetetraacetic acid

GH:

Glycoside hydrolase

HCCA:

Alpha-cyano-4-hydroxy cinnamic acid

PASC:

Phosphoric acid-swollen cellulose

PDB:

Protein Data Bank

R g :

Radius of gyration

pNPG:

p-Nitrophenyl-β-d-glucoside

Rpm:

Rotations per minute

SAXS:

Small-angle X-ray scattering

T m :

Melting temperature

References

  1. Jarvis, M. (2003). Chemistry—Cellulose stacks up. Nature, 426, 611–612.

    Article  CAS  Google Scholar 

  2. Cosgrove, D. J. (2005). Growth of the plant cell wall. Nature Reviews Molecular Cell Biology, 6, 850–861.

    Article  CAS  Google Scholar 

  3. Henrissat, B. (1994). Cellulases and their interaction with cellulose. Cellulose, 1, 169–196.

    Article  CAS  Google Scholar 

  4. Zhang, Y. H., & Lynd, L. R. (2004). Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnology and Bioengineering, 88, 797–824.

    Article  CAS  Google Scholar 

  5. Horn, S. J., Vaaje-Kolstad, G., Westereng, B., & Eijsink, V. G. (2012). Novel enzymes for the degradation of cellulose. Biotechnology for Biofuels, 5, 45.

    Article  CAS  Google Scholar 

  6. Himmel, M. E., Ding, S. Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., & Foust, T. D. (2007). Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science, 315, 804–807.

    Article  CAS  Google Scholar 

  7. Margeot, A., Hahn-Hagerdal, B., Edlund, M., Slade, R., & Monot, F. (2009). New improvements for lignocellulosic ethanol. Current Opinion in Biotechnology, 20, 372–380.

    Article  CAS  Google Scholar 

  8. Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., & Henrissat, B. (2009). The Carbohydrate-Active EnZymes database (CAZy): An expert resource for Glycogenomics. Nucleic Acids Research, 37, D233–D238.

    Article  CAS  Google Scholar 

  9. Hirvonen, M., & Papageorgiou, A. C. (2003). Crystal structure of a family 45 endoglucanase from Melanocarpus albomyces: Mechanistic implications based on the free and cellobiose-bound forms. Journal of Molecular Biology, 329, 403–410.

    Article  CAS  Google Scholar 

  10. Nakamura, Y., Moriya, T., Baba, Y., Yanai, K., Sumida, N., Nishimura, T., Murashima, K., Nakane, A., Yaguchi, T., Koga, J., Murakami, T. and Kono, T. (2000) Endoglucanases and cellulase preparations containing the same. WO patent 2000024879.

  11. Jakobsen, T. S., Lindegaard, P., & Chan, M. (1998). Color-care cellulases: Fabric color shield. Inform, 9, 788–792.

    Google Scholar 

  12. Davies, G. J., Dodson, G. G., Hubbard, R. E., Tolley, S. P., Dauter, Z., Wilson, K. S., et al. (1993). Structure and function of endoglucanase V. Nature, 365, 362–364.

    Article  CAS  Google Scholar 

  13. Couturier, M., Feliu, J., Haon, M., Navarro, D., Lesage-Meessen, L., Coutinho, P. M., & Berrin, J. G. (2011). A thermostable GH45 endoglucanase from yeast: Impact of its atypical multimodularity on activity. Microbial Cell Factories, 10, 103.

    Article  CAS  Google Scholar 

  14. Igarashi, K., Ishida, T., Hori, C., & Samejima, M. (2008). Characterization of an endoglucanase belonging to a new subfamily of glycoside hydrolase family 45 of the basidiomycete Phanerochaete chrysosporium. Applied and Environment Microbiology, 74, 5628–5634.

    Article  CAS  Google Scholar 

  15. Eyun, S. I., Wang, H., Pauchet, Y., Ffrench-Constant, R. H., Benson, A. K., Valencia-Jiménez, A., et al. (2014). Molecular evolution of glycoside hydrolase genes in the western corn rootworm (Diabrotica virgifera virgifera). PLoS ONE, 9, e94052.

    Article  Google Scholar 

  16. Palomares-Rius, J. E., Hirooka, Y., Tsai, I. J., Masuya, H., Hino, A., Kanzaki, N., et al. (2014). Distribution and evolution of glycoside hydrolase family 45 cellulases in nematodes and fungi. BMC Evolutionary Biology, 14, 69.

    Article  Google Scholar 

  17. Davies, G. J., Tolley, S. P., Henrissat, B., Hjort, C., & Schülein, M. (1995). Structures of oligosaccharide-bound forms of the endoglucanase V from Humicola insolens at 1.9 A resolution. Biochemistry, 34, 16210–16220.

    Article  CAS  Google Scholar 

  18. Valjakka, J., & Rouvinen, J. (2003). Structure of 20 K endoglucanase from Melanocarpus albomyces at 1.8 angstrom resolution. Acta Crystallographica D, 59, 765–768.

    Article  Google Scholar 

  19. Davis, R. H., & Perkins, D. D. (2002). Timeline: Neurospora: A model of model microbes. Nature Reviews Genetics, 3, 397–403.

    Article  CAS  Google Scholar 

  20. Galagan, J. E., Calvo, S. E., Borkovich, K. A., Selker, E. U., Read, N. D., Jaffe, D., et al. (2003). The genome sequence of the filamentous fungus Neurospora crassa. Nature, 422, 859–868.

    Article  CAS  Google Scholar 

  21. Romero, M. D., Aguado, J., González, L., & Ladero, M. (1999). Cellulase production by Neurospora crassa on wheat straw. Enzyme and Microbial Technology, 25, 244–250.

    Article  CAS  Google Scholar 

  22. Eberhart, B. M., Beck, R. S., & Goolsby, K. M. (1977). Cellulase of Neurospora crassa. Journal of Bacteriology, 130, 181–186.

    CAS  Google Scholar 

  23. Yazdi, M. T., Woodward, J. R., & Radford, A. (1990). The cellulase complex of Neurospora crassa: Activity, stability and release. Journal of General Microbiology, 136, 1313–1319.

    Article  CAS  Google Scholar 

  24. Nakamura, A., Ishida, T., Fushinobu, S., Kusaka, K., Tanaka, I., Inaka, K., et al. (2013). Phase-diagram-guided method for growth of a large crystal of glycoside hydrolase family 45 inverting cellulase suitable for neutron structural analysis. Journal of Synchrotron Radiat., 20, 859–863.

    Article  CAS  Google Scholar 

  25. Liu, G., Wei, X., Qin, Y., & Qu, Y. (2010). Characterization of the endoglucanase and glucomannanase activities of a glycoside hydrolase family 45 protein from Penicillium decumbens 114-2. Journal of General and Applied Microbiology, 56, 223–229.

    Article  CAS  Google Scholar 

  26. Sakamoto, K., & Toyohara, H. (2009). Molecular cloning of glycoside hydrolase family 45 cellulase genes from brackish water clam Corbicula japonica. Comparative Biochemistry and Physiology, 152, 390–396.

    Article  Google Scholar 

  27. Koga, J., Baba, Y., Shimonaka, A., Nishimura, T., Hanamura, S., & Kono, T. (2008). Purification and characterization of a new family 45 endoglucanase, STCE1, from Staphylotrichum coccosporum and its overproduction in Humicola insolens. Applied and Environment Microbiology, 74, 4210–4217.

    Article  CAS  Google Scholar 

  28. Shimonaka, A., Koga, J., Baba, Y., Nishimura, T., Murashima, K., Kubota, H., & Kono, T. (2006). Specific characteristics of family 45 endoglucanases from Mucorales in the use of textiles and laundry. Bioscience, Biotechnology, and Biochemistry, 70, 1013–1016.

    Article  CAS  Google Scholar 

  29. Bukhtojarov, F. E., Ustinov, B. B., Salanovich, T. N., Antonov, A. I., Gusakov, A. V., Okunev, O. N., & Sinitsyn, A. P. (2004). Cellulase complex of the fungus Chrysosporium lucknowense: Isolation and characterization of endoglucanases and cellobiohydrolases. Biochemistry (Biokhimiia), 69, 542–551.

    Article  CAS  Google Scholar 

  30. Baba, Y., Shimonaka, A., Koga, J., Kubota, H., & Kono, T. (2005). Alternative splicing produces two endoglucanases with one or two carbohydrate-binding modules in Mucor circinelloides. Journal of Bacteriology, 187, 3045–3051.

    Article  CAS  Google Scholar 

  31. Takashima, S., Iikura, H., Nakamura, A., Hidaka, M., Masaki, H., & Uozumi, T. (1999). Comparison of gene structures and enzymatic properties between two endoglucanases from Humicola grisea. Journal of Biotechnology, 67, 85–97.

    Article  CAS  Google Scholar 

  32. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.

    Article  CAS  Google Scholar 

  33. Notredame, C., Higgins, D. G., & Heringa, J. (2000). T-Coffee: A novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology, 302, 205–217.

    Article  CAS  Google Scholar 

  34. Gouet, P., Robert, X., & Courcelle, E. (2003). ESPript/ENDscript: Extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Research, 31, 3320–3323.

    Article  CAS  Google Scholar 

  35. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D. and Bairoch, A. (2005) Protein identification and analysis tools on the ExPASy server. Totowa: Humana Press.

  36. Petersen, T. N., Brunak, S., von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods, 8, 785–786.

    Article  CAS  Google Scholar 

  37. Steentoft, C., Vakhrushev, S. Y., Joshi, H. J., Kong, Y., Vester-Christensen, M. B., Schjoldager, K. T., et al. (2013). Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO Journal, 32, 1478–1488.

    Article  CAS  Google Scholar 

  38. Artimo, P., Jonnalagedda, M., Arnold, K., Baratin, D., Csardi, G., de Castro, E., et al. (2012). ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research, 40, W597–W603.

    Article  CAS  Google Scholar 

  39. Wood, T. M. (1988). Preparation of crystalline, amorphous, and dyed cellulase substrates. In S. T. K. Willis & A. Wood (Eds.), Methods Enzymol (pp. 19–25). New York: Academic Press.

    Google Scholar 

  40. Segato, F., Damásio, A. R., Gonçalves, T. A., de Lucas, R. C., Squina, F. M., Decker, S. R., & Prade, R. A. (2012). High-yield secretion of multiple client proteins in Aspergillus. Enyzme and Microbial Technology, 51, 100–106.

    Article  CAS  Google Scholar 

  41. Vogel, H. J. (1956). A convenient growth medium for Neurospora (Medium N). Microbial Genetics Bulletin, 13, 42–43.

    Google Scholar 

  42. Aslanidis, C., & de Jong, P. J. (1990). Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Research, 18, 6069–6074.

    Article  CAS  Google Scholar 

  43. Camilo, C. M., & Polikarpov, I. (2014). High-throughput cloning, expression and purification of glycoside hydrolases using Ligation-Independent Cloning (LIC). Protein Expression and Purification, 99, 35–42.

    Article  CAS  Google Scholar 

  44. Bradford, M. M. (1976). Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  45. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  46. Westermeier, R., & Naven, T. (2002). Proteomics in practice: A laboratory manual of proteome analysis. Weinheim: Weiley.

    Book  Google Scholar 

  47. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chem, 31, 426–428.

    Article  CAS  Google Scholar 

  48. Hammersley, A. P. (1997) FIT2D: An introduction and overview. ESRF Internal Report.

  49. Svergun, D. I. (1992). Determination of the regularization parameter in indirect-transform methods using perceptual criteria. Journal of Applied Crystallography, 25, 495–503.

    Article  Google Scholar 

  50. Fischer, H., Oliveira Neto, M. D., Napolitano, H. B., Polikarpov, I., & Craievich, A. F. (2009). Determination of the molecular weight of proteins in solution from a single small-angle X-ray scattering measurement on a relative scale. Journal of Applied Crystallography, 43, 101–109.

    Article  Google Scholar 

  51. Svergun, D. I. (1999). Restoring low resolution structure of biological macromolecules from solution. Biophysical Journal, 76, 2879–2886.

    Article  CAS  Google Scholar 

  52. Volkov, V. V., & Svergun, D. I. (2003). Uniqueness of ab initio shape determination in small-angle scattering. Journal of Applied Crystallography, 36, 860–864.

    Article  CAS  Google Scholar 

  53. Kozin, M. B., & Svergun, D. I. (2001). Automated matching of high- and low-resolution structural models. Journal of Applied Crystallography, 34, 33–41.

    Article  CAS  Google Scholar 

  54. Schneidman-Duhovny, D., Hammel, M., & Sali, A. (2010). FoXS: A web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Research, 38, W540–W544.

    Article  CAS  Google Scholar 

  55. Arnold, K., Bordoli, L., Kopp, J., & Schwede, T. (2006). The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics, 22, 195–201.

    Article  CAS  Google Scholar 

  56. Bernadó, P., Mylonas, E., Petoukhov, M. V., Blackledge, M., & Svergun, D. I. (2007). Structural characterization of flexible proteins using small-angle X-ray scattering. Journal of the American Chemical Society, 129, 5656–5664.

    Article  Google Scholar 

  57. Otagiri, M., Lopez, C. M., Kitamoto, K., Arioka, M., Kudo, T., & Moriya, S. (2013). Heterologous expression and characterization of a glycoside hydrolase family 45 endo-beta-1,4-glucanase from a symbiotic protist of the lower termite, Reticulitermes speratus. Biotechnology and Applied Biochemistry, 169, 1910–1918.

    Article  CAS  Google Scholar 

  58. Receveur, V., Czjzek, M., Schulein, M., Panine, P., & Henrissat, B. (2002). Dimension, shape, and conformational flexibility of a two domain fungal cellulase in solution probed by small angle X-ray scattering. Journal of Biological Chemistry, 277, 40887–40892.

    Article  CAS  Google Scholar 

  59. Guttman, M., Weinkam, P., Sali, A., & Lee, K. K. (2013). All-atom ensemble modeling to analyze small-angle X-ray scattering of glycosylated proteins. Structure, 21, 321–331.

    Article  CAS  Google Scholar 

  60. Karlsson, J., Siika-aho, M., Tenkanen, M., & Tjerneld, F. (2002). Enzymatic properties of the low molecular mass endoglucanases Cel12A (EG III) and Cel45A (EG V) of Trichoderma reesei. Journal of Biotechnology, 99, 63–78.

    Article  CAS  Google Scholar 

  61. Murashima, K., Shimonaka, A., Nishimura, T., Baba, Y., Koga, J., Kubota, H., & Kono, T. (2006). Exploring amino acids responsible for the temperature profile of glycoside hydrolase family 45 endoglucanase EGL3 from Humicola grisea. Bioscience, Biotechnology, and Biochemistry, 70, 2205–2212.

    Article  CAS  Google Scholar 

  62. Vlasenko, E., Schulein, M., Cherry, J., & Xu, F. (2010). Substrate specificity of family 5, 6, 7, 9, 12, and 45 endoglucanases. Bioresource Technology, 101, 2405–2411.

    Article  CAS  Google Scholar 

  63. Saloheimo, A., Henrissat, B., Hoffren, A. M., Teleman, O., & Penttila, M. (1994). A novel, small endoglucanase gene, egl5, from Trichoderma reesei isolated by expression in yeast. Molecular Microbiology, 13, 219–228.

    Article  CAS  Google Scholar 

  64. Shimonaka, A., Murashima, K., Koga, J., Baba, Y., Nishimura, T., Kubota, H., & Kono, T. (2006). Amino acid regions of family 45 endoglucanases involved in cotton defibrillation and in resistance to anionic surfactants and oxidizing agents. Bioscience, Biotechnology, and Biochemistry, 70, 2460–2466.

    Article  CAS  Google Scholar 

  65. Davies, G., & Henrissat, B. (1995). Structures and mechanisms of glycosyl hydrolases. Structure, 3, 853–859.

    Article  CAS  Google Scholar 

  66. Goto, M., Furukawa, K., & Hayashida, S. (1992). An Avicel-affinity site in an Avicel-digesting exocellulase from a Trichoderma viride mutant. Bioscience, Biotechnology, and Biochemistry, 56, 1523–1528.

    Article  CAS  Google Scholar 

  67. Zverlov, V. V., Velikodvorskaya, G. A., & Schwarz, W. H. (2002). A newly described cellulosomal cellobiohydrolase, CelO, from Clostridium thermocellum: Investigation of the exo-mode of hydrolysis, and binding capacity to crystalline cellulose. Microbiology, 148, 247–255.

    CAS  Google Scholar 

  68. Davies, G. J., Dodson, G., Moore, M. H., Tolley, S. P., Dauter, Z., Wilson, K. S., et al. (1996). Structure determination and refinement of the Humicola insolens endoglucanase V at 1.5 angstrom resolution. Acta Crystallographica D, 52, 7–17.

    Article  CAS  Google Scholar 

  69. Yennamalli, R. M., Rader, A. J., Kenny, A. J., Wolt, J. D., & Sen, T. Z. (2013). Endoglucanases: insights into thermostability for biofuel applications. Biotechnology for Biofuels, 6, 136.

    Article  CAS  Google Scholar 

  70. Vehmaanperä, J., Alapuranen, M., Puranen, T., Siika-aho, M., Kallio, J., Hooman, S., Voutilainen, S., Halonen, T. and Viikari, L. (2013) Treatment of cellulosic material and enzymes useful therein. US patent 20130224801.

  71. Yennamalli, R. M., Rader, A. J., Wolt, J. D., & Sen, T. Z. (2011). Thermostability in endoglucanases is fold-specific. BMC Structural Biology, 11, 10.

    Article  CAS  Google Scholar 

  72. Betz, S. F. (1993). Disulfide bonds and the stability of globular proteins. Protein Science, 2, 1551–1558.

    Article  CAS  Google Scholar 

  73. Beeby, M., O’Connor, B. D., Ryttersgaard, C., Boutz, D. R., Perry, L. J., & Yeates, T. O. (2005). The genomics of disulfide bonding and protein stabilization in thermophiles. PLoS Biology, 3, e309.

    Article  Google Scholar 

  74. Jorda, J., & Yeates, T. O. (2011). Widespread disulfide bonding in proteins from thermophilic archaea. Archaea. doi:10.1155/2011/409156.

    Article  Google Scholar 

  75. Wu, Z., & Lee, Y. Y. (1997). Inhibition of the enzymatic hydrolysis of cellulose by ethanol. Biotechnology Letters, 19, 977–979.

    Article  CAS  Google Scholar 

  76. Karnaouri, A., Topakas, E., Paschos, T., Taouki, I., & Christakopoulos, P. (2013). Cloning, expression and characterization of an ethanol tolerant GH3 beta-glucosidase from Myceliophthora thermophila. PeerJ, 1, e46.

    Article  Google Scholar 

  77. von Ossowski, I., Eaton, J. T., Czjzek, M., Perkins, S. J., Frandsen, T. P., Schulein, M., et al. (2005). Protein disorder: conformational distribution of the flexible linker in a chimeric double cellulase. Biophysical Journal, 88, 2823–2832.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) via grants 2008/56255-9, 2009/54035-4, 2009/11536-3, 2010/08680-2, 11/20505-4 and 09/11536-3; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) via grants 490022/2009-0, and 301981/2011-6; and the University of São Paulo (USP) via NAP de Bioenergia & Sustentabilidade (NAPBS) e NAP de Instrumentação (CIEA_MNB). We would like to thank Livia Manzine, Alexandre Antoniazzi, Maria Auxiliadora Morim Santos and Mariana Ortiz de Godoy for technical support and the Brazilian Synchrotron Light Laboratory (LNLS, Campinas) for access to the SAXS beam line.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Polikarpov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 57 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadowaki, M.A.S., Camilo, C.M., Muniz, A.B. et al. Functional Characterization and Low-Resolution Structure of an Endoglucanase Cel45A from the Filamentous Fungus Neurospora crassa OR74A: Thermostable Enzyme with High Activity Toward Lichenan and β-Glucan. Mol Biotechnol 57, 574–588 (2015). https://doi.org/10.1007/s12033-015-9851-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-015-9851-8

Keywords

Navigation