Skip to main content
Log in

Synthesis of high-surface-area spinel-type MgAl 2 O 4 nanoparticles by [Al(sal) 2 (H 2 O) 2 ] 2 [Mg(dipic) 2 ] and [Mg(H 2 O) 6 ][Al(ox) 2 (H 2 O) 2 ] 2 ⋅5H 2 O: influence of inorganic precursor type

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Spinel-type MgAl 2 O 4 nanoparticles with high surface area were synthesized by thermal decomposition of three different ion-pair complexes precursors, including [Mg(H 2 O) 6 ][Al(dipic) 2 ] 2 6H 2 O, [Al(sal) 2 (H 2 O) 2 ] 2 [Mg(dipic) 2 ] and [Mg(H 2 O) 6 ][Al(ox) 2 (H 2 O) 2 ] 2 5H 2 O. Influence of the inorganic precursor was investigated on synthesis and textural properties of magnesium aluminate nanopowders. The precursors [Mg(H 2 O) 6 ] [Al(dipic) 2 ] 2 6H 2 O and [Al(sal) 2 (H 2 O) 2 ] 2 [Mg(dipic) 2 ] displayed pure spinel-type MgAl 2 O 4 , while the sample synthesized by [Mg(H 2 O) 6 ][Al(ox) 2 (H 2 O) 2 ] 2 5H 2 O precursor consisted of MgAl 2 O 4 and MgO. The MgAl 2 O 4 synthesized via [Al(sal) 2 (H 2 O) 2 ] 2 [Mg(dipic) 2 ] precursor exhibited higher BET specific surface area (226.7 m2 g−1) and smaller particle size than those of the samples obtained from the two other precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Jeong N, Yeo J and Song K 2013 Mater. Lett. 109 34

    Article  Google Scholar 

  2. Hashimoto S, Honda S, Hiramatsu T and Iwamoto Y 2013 Ceram. Int. 39 2077

    Article  Google Scholar 

  3. Ganesh I, Reddy G J, Sundararajan G, Olhero S M, Torres P M C and Ferreira J M F 2010 Ceram. Int. 36 473

    Article  Google Scholar 

  4. Salomao R, Villas Bôas M O C and Pandolfelli V C 2011 Ceram. Int. 37 1393

    Article  Google Scholar 

  5. Lavat A E, Grasselli M C and Lovecchio E G 2010 Ceram. Int. 36 15

    Article  Google Scholar 

  6. Padmaraj O, Venkateswarlu M and Satyanarayan N 2015 Ceram. Int. 41 3178

    Article  Google Scholar 

  7. Raj S S, Gupta S K, Grover V, Muthe K P, Natarajan V and Tyagi A K 2015 J. Mol. Struct. 1089 81

    Article  Google Scholar 

  8. Esposito L, Piancastelli A, Miceli P and Martelli S 2015 J. Eur. Ceram. Soc. 35 651

    Article  Google Scholar 

  9. Abdi M S, Ebadzadeh T, Ghaffari A and Feli M 2015 Adv. Powder Technol. 26 175

    Article  Google Scholar 

  10. Fua P, Lua W, Leia W, Xu Y, Wang X and Wu J 2013 Ceram. Int. 39 2481

    Article  Google Scholar 

  11. Zhang D, Li B, Hu Y, Li J and Guo Y 2015 Ceram. Int. 41 5881

    Article  Google Scholar 

  12. Hadian N and Mehran Rezaei 2013, Fuel 113 571

    Article  Google Scholar 

  13. Nuernberg G B, Foletto E L, Probst L F D, Carreño N L V and Moreira M A 2013 J. Mol. Catal. A Chem. 370 22

    Article  Google Scholar 

  14. Lia F, Zhaoa Y, Liua Y, Haoa Y, Liua R and Zhao D 2011 Chem. Eng. J. 173 750

    Article  Google Scholar 

  15. Nassar M Y, Ahmed I S and Samir I 2014 Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 131 329

    Article  Google Scholar 

  16. Liua W, Yang J, Xu H, Wang Y, Hu S and Xue C 2013 Adv. Powder Technol. 24 436

    Article  Google Scholar 

  17. Troia A, Pavese M and Geobaldo F 2009 Ultrason. Sonochem. 16 136

    Article  Google Scholar 

  18. Ganesha I, Johnson R, Rao G V N, Mahajan Y R, Madavendra S S and Reddy B M 2005 Ceram. Int. 31 67

    Article  Google Scholar 

  19. Salem S 2015 Mater. Chem. Phys. 155 59

    Article  Google Scholar 

  20. Sarkar R and Sahoo S 2014 Ceram. Int. 40 16719

    Article  Google Scholar 

  21. Miroliaee A, Salehirad A and Rezvani A R 2015 Mater. Chem. Phys. 151 312

    Article  Google Scholar 

  22. Nakamoto K 2009 Infrared and Raman spectra of inorganic and coordination compounds, 6th ed (New York: John Wiley)

    Google Scholar 

  23. Zhang Y, Ma M, Zhang X, Wang B and Liu R 2014 J. Alloys Compd. 590 373

    Article  Google Scholar 

  24. Mageshwari K, Mali S S, Sathyamoorthy R and Patil P S 2013 Powder Technol. 249 456

    Article  Google Scholar 

  25. Zimmermann L M, Almerindo G I, Mora J R, Bechtold I H, Fiedler H D and Nome F 2013 J. Phys. Chem. 117 26097

    Google Scholar 

Download references

Acknowledgement

We are grateful to the Iran National Science Foundation and the Iranian Research Organization for Science and Technology for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ALIREZA SALEHIRAD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MIROLIAEE, A., SALEHIRAD, A. & REZVANI, A.R. Synthesis of high-surface-area spinel-type MgAl 2 O 4 nanoparticles by [Al(sal) 2 (H 2 O) 2 ] 2 [Mg(dipic) 2 ] and [Mg(H 2 O) 6 ][Al(ox) 2 (H 2 O) 2 ] 2 ⋅5H 2 O: influence of inorganic precursor type. Bull Mater Sci 40, 45–53 (2017). https://doi.org/10.1007/s12034-016-1353-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1353-1

Keywords

Navigation