Skip to main content
Log in

Milling effect on the photo-activated properties of \(\hbox {TiO}_{2}\) nanoparticles: electronic and structural investigations

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Commercial PC105 titanium dioxide nanoparticles were studied under mechanical milling process. The effect of milling time and speed on the structural and electronic properties of \(\hbox {TiO}_{2}\) powder was then investigated using X-ray powder diffraction (XRD), dynamic light scattering (DLS), transmission electronic microscopy (TEM), electron paramagnetic resonance (EPR) and UV–visible spectroscopy. The related photo-catalytic properties of the milled nanoparticles were probed following the degradation rate of methylene orange (MO) under UV-light irradiation and through EPR spin-scavenging approach. Comparison with pristine powder shows that milled nanoparticles are significantly less reactive upon illumination, despite decreased radius and hence, higher specific area. Such low yield of reactive species is attributed to the apparition of the amorphous \(\hbox {TiO}_{2}\) and brookite phase upon milling, as well as increased charge carrier recombination as pointed out by the presence of sacrificial electron donor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mozafari M R 2007 Nanomaterials and nanosystems for biomedical applications (Dordrecht, the Netherlands: Springer)

  2. Zhang L, Gu F, Chan J, Wang A, Langer R and Farokhzad O 2008 Clin. Pharmacol. 83 761

    Google Scholar 

  3. Mu L and Sprando R L 2010 Pharm. Res. 27 1746

    Article  Google Scholar 

  4. Lee S, Cho I S, Lee J H, Kim D H, Kim D W, Kim J Y et al 2010 Chem. Mater. 22 1958

    Article  Google Scholar 

  5. Zhong P and Que W X 2010 Nano-Micro Lett. 2 1

    Article  Google Scholar 

  6. Jiang J, Oberdörster G and Biswas P 2009 J. Nanoparticle Res. 11 77

    Article  Google Scholar 

  7. Yadav V 2013 AEEE 3 771

    Google Scholar 

  8. Pera-Titus M, García-Molina V, Baños M A, Giménez J and Esplugas S 2004 Appl. Catal. B Environ. 47 219

    Article  Google Scholar 

  9. Singh R P, Singh P K and Singh R L 2014 Toxicol. Int. 21 160

    Article  Google Scholar 

  10. Mazurkova N A, Spitsyna Y E, Shikina N V, Ismagilov Z R, Zagrebel’nyi S N and Ryabchikova E I 2010 Nanotechnol. Russ. 5 417

    Article  Google Scholar 

  11. Franciscon E, Grossman M J, Paschoal J A R, Reyes F G R and Durrant L R 2012 SpringerPlus 1 37

    Article  Google Scholar 

  12. Malato S, Fernández-Ibáñez P, Maldonado M I, Blanco J and Gernjak W 2009 Catal. Today 147 1

    Article  Google Scholar 

  13. Tunç S, Gürkan T and Duman O 2012 Chem. Eng. J. 181 431

    Article  Google Scholar 

  14. Du J, Lai X, Yang N, Zhai J, Kisailus D, Su F et al 2011 ACS Nano 5 590

    Article  Google Scholar 

  15. Mo S D and Ching W Y 1995 Phys. Rev. B 51 13023

    Article  Google Scholar 

  16. Djerdj I and Tonejc A M 2006 J. Alloys Compd. 413 159

    Article  Google Scholar 

  17. Zhang J, Zhou P, Liu J and Yu J 2014 Phys. Chem. Chem. Phys. 16 20382

    Article  Google Scholar 

  18. Kesselman J M, Shreve G A, Hoffmann M R and Lewis N S 1994 J. Phys. Chem. 98 13385

    Article  Google Scholar 

  19. Xu M, Gao Y, Moreno E M, Kunst M, Muhler M, Wang Y et al 2011 Phys. Rev. Lett. 106 138302

    Article  Google Scholar 

  20. Ozawa K, Emori M, Yamamoto S, Yukawa R, Yamamoto S, Hobara R et al 2014 J. Phys. Chem. Lett. 5 1953

    Article  Google Scholar 

  21. Umezawa N, Shuxin O and Ye J 2011 Phys. Rev. B 83 035202

    Article  Google Scholar 

  22. Yu J, Zhou P and Li Q 2013 Phys. Chem. Chem. Phys. 15 12040

    Article  Google Scholar 

  23. Yu J C, Yu J, Ho W and Zhao J 2002 J. Photochem. Photobiol. Chem. 148 331

    Article  Google Scholar 

  24. Chawengkijwanich C and Hayata Y 2008 Int. J. Food Microbiol. 123 288

    Article  Google Scholar 

  25. Kim C, Park H, Cha S and Yoon J 2013 Chemosphere 93 2011

    Article  Google Scholar 

  26. You D G, Deepagan V G, Um W, Jeon S, Son S, Chang H et al 2016 Sci. Rep. 6 23200

  27. Sugimoto T, Zhou X and Muramatsu A 2003 J. Colloid Interf. Sci. 259 43

    Article  Google Scholar 

  28. Zori M H 2010 J. Inorg. Organomet. Polym. Mater. 21 81

    Article  Google Scholar 

  29. Shen X, Tian B and Zhang J 2013 Catal. Today 201 151

    Article  Google Scholar 

  30. Kim S J, Park S D, Jeong Y H and Park S 1999 J. Am. Ceram. Soc. 82 927

    Article  Google Scholar 

  31. McHale A E and Roth R S 1986 J. Am. Ceram. Soc. 69 827

    Article  Google Scholar 

  32. Koch C C 2007 Nanostructured materials: processing, properties, and applications (Norwich, NY: William Andrew Pub) 2nd edn

  33. Shokrollahi H 2009 Mater. Des. 30 3374

    Article  Google Scholar 

  34. Bensebaa Z, Bouzabata B, Otmani A, Djekoun A, Kihal A and Greneche J M 2009 Phys. Procedia 2 649

    Article  Google Scholar 

  35. Prieto-Mahaney O O, Murakami N, Abe R and Ohtani B 2009 Chem. Lett. 38 238

    Article  Google Scholar 

  36. Kominami H, Murakami S, Kato J, Kera Y and Ohtani B 2002 J. Phys. Chem. B 106 10501

    Article  Google Scholar 

  37. Kočí K, Obalová L, Matějová L, Plachá D, Lacný Z, Jirkovský J et al 2009 Appl. Catal. B Environ. 89 494

    Article  Google Scholar 

  38. Xu N, Shi Z, Fan Y, Dong J, Shi J and Hu M Z C 1999 Ind. Eng. Chem. Res. 38 373

    Article  Google Scholar 

  39. Zhang X, Huo K, Wang H, Zhang W and Chu P K 2011 J. Nanosci. Nanotechnol. 11 11200

    Article  Google Scholar 

  40. Yan J, Wu G, Guan N, Li L, Li Z and Cao X 2013 Phys. Chem. Chem. Phys. 15 10978

    Article  Google Scholar 

  41. Vargeese A A and Muralidharan K 2011 J. Hazard. Mater. 192 1314

    Article  Google Scholar 

  42. Liu B, Zhao X, Yu J, Fujishima A and Nakata K 2016 Phys. Chem. Chem. Phys. 18 31914

    Article  Google Scholar 

  43. de Carvalho J F, de Medeiros S N, Morales M A, Dantas A L and Carriço A S 2013 Appl. Surf. Sci. 275 84

    Article  Google Scholar 

  44. Rezaee M and Mousavi Khoie S M 2010 J. Alloys Compd. 507 484

    Article  Google Scholar 

  45. Bégin-Colin S, Gadalla A, Le Caër G, Humbert O, Thomas F, Barres O et al 2009 J. Phys. Chem. C 113 16589

    Article  Google Scholar 

  46. Saitow K and Wakamiya T 2013 Appl. Phys. Lett. 103 031916

    Article  Google Scholar 

  47. Ohtani B, Ogawa Y and Nishimoto S 1997 J. Phys. Chem. B 101 3746

    Article  Google Scholar 

  48. Aggelopoulos C A, Dimitropoulos M, Govatsi A, Sygellou L, Tsakiroglou C D and Yannopoulos S N 2017 Appl. Catal. B: Environ. 205 292

    Article  Google Scholar 

  49. Yamato M, Kawano K, Yamanaka Y, Saiga M and Yamada K 2016 Redox Biol. 8 316

    Article  Google Scholar 

  50. Martel D, Guerra A, Turek P, Weiss J and Vileno B 2016 J. Colloid Interf. Sci. 467 300

    Article  Google Scholar 

  51. Vileno B, Turek P, Weiss J and Martel D 2013 ChemPlusChem 78 1330

    Article  Google Scholar 

  52. Sugapriya S, Sriram R and Lakshmi S 2013 Opt. Int. J. Light Electron Opt. 124 4971

  53. Langford J I and Wilson A J C 1978 J. Appl. Crystallogr. 11 102

    Article  Google Scholar 

  54. Kim S H, Lee Y J, Lee B H, Lee K H, Narasimhan K and Kim Y D 2006 J. Alloys Compd. 424 204

    Article  Google Scholar 

  55. Suryanarayana C 2001Prog. Mater. Sci. 46 1

    Article  Google Scholar 

  56. Reyes-Coronado D, Rodríguez-Gattorno G, Espinosa-Pesqueira M E, Cab C, de Coss R and Oskam G 2008 Nanotechnology 19 145605

    Article  Google Scholar 

  57. Zhao H, Liu L, Andino J M and Li Y 2013 J. Mater. Chem. A 1 8209

    Article  Google Scholar 

  58. Jassby D, Farner Budarz J and Wiesner M 2012 Environ. Sci. Technol. 46 6934

    Article  Google Scholar 

  59. Melcher J, Barth N, Schilde C, Kwade A and Bahnemann D 2017 J. Mater. Sci. 52 1047

    Article  Google Scholar 

  60. Choudhury B, Dey M and Choudhury A 2013 Int. Nano Lett. 3 25

    Article  Google Scholar 

  61. Burgeth G and Kisch H 2002 Coord. Chem. Rev. 230 41

    Article  Google Scholar 

  62. Simmons E L 1975 Appl. Opt. 14 1380

    Article  Google Scholar 

  63. Kortüm G 2012 Reflectance spectroscopy: principles, methods, applications (Berlin: Springer)

  64. Grundmann M 2010 The physics of semiconductors—an introduction including (Heidelberg, Berlin: Springer)

    Google Scholar 

  65. Indris S, Amade R, Heitjans P, Finger M, Haeger A, Hesse D et al 2005 J. Phys. Chem. B 109 23274

    Article  Google Scholar 

  66. Paul S and Choudhury A 2014 Appl. Nanosci. 4 839

    Article  Google Scholar 

  67. Hidalgo M C, Colón G and Navío J A 2002 J. Photochem. Photobiol. Chem. 148 341

    Article  Google Scholar 

  68. Zhang Y, Chen J and Li X 2010 Catal. Lett. 139 129

    Article  Google Scholar 

  69. Vileno B, Lekka M, Sienkiewicz A, Jeney S, Stoessel G and Lekki J 2007 Environ. Sci. Technol. 41 5149

    Article  Google Scholar 

  70. Moon G, Kim W, Bokare A D, Sung N and Choi W 2014 Energy Environ. Sci. 7 4023

    Article  Google Scholar 

  71. Chen W and Zhang J 2006 J. Nanosci. Nanotechnol. 6 1159

    Article  Google Scholar 

  72. Vileno B, Marcoux P R, Lekka M, Sienkiewicz A, Fehér T and Forró L 2006 Adv. Funct. Mater. 16 120

    Article  Google Scholar 

  73. Ide Y, Inami N, Hattori H, Saito K, Sohmiya M, Tsunoji N et al 2016 Angew. Chem. Int. Ed. Engl. 55 3600

    Article  Google Scholar 

  74. Gao L and Zhang Q 2001 Scr. Mater. 44 1195

    Article  Google Scholar 

  75. Fenoglio I, Greco G, Livraghi S and Fubini B 2009 Chem. Weinh. Bergstr. Ger. 15 4614

    Google Scholar 

  76. Kumar C P, Gopal N O, Wang T C, Wong M S and Ke S C 2006 J. Phys. Chem. B 110 5223

    Article  Google Scholar 

  77. Attwood A L, Murphy D M, Edwards J L, Egerton T A and Harrison R W 2003 Res. Chem. Intermed. 29 449

    Article  Google Scholar 

  78. Graetzel M and Howe R F 1990 J. Phys. Chem. 94 2566

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the CNRS (Centre National de la Recherche Scientifique) and Université de Strasbourg. We gratefully acknowledge Dr Marc Schmutz for his kind help in the TEM experiments. The authors thank the French Ministry of Research and the REseauNAtional de RpeinterDisciplinaire (RENARD, Fédération IR-RPE CNRS #3443).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djamel Eddine Mekki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Materials:

Supplementary material pertaining to this article is available on the Bulletin of Materials Science website (www.ias.ac.in/matersci). (docx 426KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Messai, Y., Vileno, B., Martel, D. et al. Milling effect on the photo-activated properties of \(\hbox {TiO}_{2}\) nanoparticles: electronic and structural investigations. Bull Mater Sci 41, 57 (2018). https://doi.org/10.1007/s12034-018-1572-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1572-8

Keywords

Navigation