Skip to main content

Advertisement

Log in

Ultra-high Seebeck coefficient of nanostructured Sb-substituted PbTe and fabrication of a thermoelectric generator module

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Compounds belonging to the series PbSbxTe1−x and Pb1−xSbxTe (x = 0.1, 0.3, 0.5) were prepared in the nanostructured form by employing high-energy ball-milling and subsequent hot-pressing. The amphoteric property of antimony was utilized to substitute lead and tellurium in the compounds having the formula PbSbxTe1−x and Pb1−xSbxTe to make them p and n. All the compositions were evaluated for their figure of merit (ZT) and power factor after ascertaining their Seebeck coefficient, electrical and thermal conductivities. These compositions exhibited very high Seebeck coefficient both in low- and room-temperature regimes. Thermoelectric generator modules were constructed using combinations of n- and p-type PbSbTe and the voltage developed was measured and compared with the calculated values, and they are found to be in good agreement. Different combinations of p- and n-types from the series were tested, and the best among them were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Alam H and Ramakrishna S 2013 Nano Energy 2 190

    Article  CAS  Google Scholar 

  2. Tan G, Zhao L D and Kanatzidis M G 2016 Chem. Rev. 116 12123

    Article  CAS  Google Scholar 

  3. Su X, Wei P, Li H, Liu W, Yan Y, Li P et al 2017 Adv. Mater. 29 1602013

  4. Wang H, Su W, Liu J and Wang C 2016 J. Materiomics 2 225

    Article  Google Scholar 

  5. Bell L E 2008 Science 321 1457

    Article  CAS  Google Scholar 

  6. Mahan G D and Sofo J O 1996 Proc. Natl. Acad. Sci. 93 7436

    Article  CAS  Google Scholar 

  7. Liu W, Yan X, Chen G and Ren Z 2012 Nano Energy 1 42

    Article  CAS  Google Scholar 

  8. Pei Y, Wang H, Gibbs Z, LaLonde A D and Jeffrey Snyder G 2012 NPG Asia Mater. 4 66

  9. Venkatasubramanian R, Siivola E, Colpitts T and O’Quinn B 2001 Nature 413 597

    Article  CAS  Google Scholar 

  10. Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C et al 2004 Science 303 818

    Article  CAS  Google Scholar 

  11. Khan A U, Kobayashi K, Tang D M, Yamauchi Y, Hasegawa K, Mitome M et al 2017 Nano Energy 31 152

    Article  CAS  Google Scholar 

  12. Wang H, Bahk J H, Kang C, Hwang J, Kim K, Kim J et al 2014 Proc. Natl. Acad. Sci. 111 10949

    Article  CAS  Google Scholar 

  13. Wang H, Hwang J, Snedaker M L, Kim I H, Kang C, Kim J et al 2015 Chem. Mater. 27 944

    Article  CAS  Google Scholar 

  14. Pei Y, Shi X, LaLonde A, Wang H, Chen L and Jeffrey Snyder G 2011 Nature 473 66

    Article  CAS  Google Scholar 

  15. Khasimsaheb B, Neeleshwar S, Srikanth M, Bathula S, Gahtori B, Srivsatava A K et al 2015 J. Mater. Res. 30 26382648

    Article  Google Scholar 

  16. Jaworski C M and Heremans J 2012 Phys. Rev. B 85 033204

  17. Chen G 1998 Phys. Rev. B 57 14958

    Article  CAS  Google Scholar 

  18. Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N et al 2012 Nature 489 414 EP

  19. Jaworski C M, Nielsen M, Wang H, Girard S, Cai W, Porter W et al 2013 Phys. Rev. B 87 045203

  20. Nielsen M, Levin E M, Jaworski C, Schmidt-Rohr K and Heremans J 2012 Phys. Rev. B 85 045210

  21. Jaworski C M, Wiendlocha B, Jovovic V and Heremans J P 2011 Energy Environ. Sci. 4 4155

    Article  CAS  Google Scholar 

  22. Poudeu P F P, Guguen A, Wu C I, Hogan T and Kanatzidis M G 2010 Chem. Mater. 22 1046

    Article  CAS  Google Scholar 

  23. Paul B and Banerji P 2009 Nanosci. Nanotechnol. Lett. 1 208

    Article  CAS  Google Scholar 

  24. Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A et al 2008 Science 321 554

    Article  CAS  Google Scholar 

  25. Jovovic V, Thiagarajan S, Heremans J, Komissarova T, Khokhlov D and Nicorici A 2008 J. Appl. Phys. 103 053710

    Article  Google Scholar 

  26. Paul B and Banerji P 2010 J. Appl. Phys. 108 064322

  27. Heremans J P, Thrush C M and Morelli D T 2005 J. Appl. Phys. 98 063703

    Article  Google Scholar 

  28. Aminorroaya S, Wang H, Gibbs Z, Pei Y, Dou S and Jeffrey Snyder G 2013 Phys. Chem. Chem. Phys. 16 1832

  29. You L, Liu Y, Li X, Nan P, Ge B, Jiang Y et al 2018 Energy Environ. Sci. 11 1848

  30. Liu H, Chen Z, Yin C, Zhou B, Liu B and Ang R 2019 Appl. Phys. A 125 225

    Article  Google Scholar 

  31. Tan G, Stoumpos C C, Wang S, Bailey T P, Zhao L D, Uher C et al 2017 Adv. Energy Mater. 7 1700099

    Article  Google Scholar 

  32. Chen T, Zhang K, Wang H, Su W, Mehmood F, Wang T et al 2020 J. Mater. Chem. C 8 1679

    Article  CAS  Google Scholar 

  33. Jaworski C M, Tobola J, Levin E M, Schmidt-Rohr K and Heremans J P 2009 Phys. Rev. B 80 125208

    Article  Google Scholar 

  34. Vinokurov A A, Dorofeev S G, Tananaeva O I, Artamkin A I, Kuznetsova T A and Zlomanov V P 2006 Inorg. Mater. 42 1318

    Article  CAS  Google Scholar 

  35. Yu B, Zhang Q, Wang H, Wang X, Wang H, Wang D et al 2010 J. Appl. Phys. 108 016104

    Article  Google Scholar 

  36. Girard S N, He J, Zhou X, Shoemaker D, Jaworski C M, Uher C et al 2011 J. Am. Chem. Soc. 133 16588

    Article  CAS  Google Scholar 

  37. Korkosz R J, Chasapis T C, Lo S H, Doak J W, Kim Y J, Wu C I et al 2014 J. Am. Chem. Soc. 136 3225

  38. Orihashi M, Noda Y, Chen L D, Goto T and Hirai T 2000 J. Phys. Chem. Solids 61 919

    Article  CAS  Google Scholar 

  39. Wang D, Qin Y, Wang S, Qiu Y, Ren D, Xiao Y et al 2019 Annalen der Physik 1900421

  40. Strauss A J 1973 J. Electron. Mater. 2 553

    Article  CAS  Google Scholar 

  41. Cao Z, Tudor M J, Torah R N and Beeby S P 2016 IEEE Trans. Electron Devices 63 4024

    Article  CAS  Google Scholar 

  42. Fu T, Yue X, Wu H, Fu C, Zhu T, Liu X et al 2016 J. Materiomics 2 141 (special issue on ‘Advances in Thermoelectric Research’)

  43. Chen T H and Hong M T 2015 Int. J. Electrochem. Sci. 10 9417

    CAS  Google Scholar 

Download references

Acknowledgements

PRS acknowledges University Grants Commission (UGC), Government of India, for Junior Research Fellowship (JRF) (Grant No. F.17-45/2008 (SA-1) dated 03/11/2015) for the financial assistance. MRA acknowledges the University Grants Commission (UGC), India, for awarding UGC-BSR Faculty Fellowship (Grant No. F.18-1/2011 (BSR)). MRA acknowledges assistance from DST-DAAD exchange program (INT/FRG/DAAD/P-08/2016) and thanks Prof M Albrecht of University of Augsburg, Germany. ST acknowledges the financial support from DST, New Delhi via INSPIRE Faculty award, and CSIR-NIIST for providing measurement system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M R Anantharaman.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreeram, P.R., Nair, N.M., Dayal, G. et al. Ultra-high Seebeck coefficient of nanostructured Sb-substituted PbTe and fabrication of a thermoelectric generator module. Bull Mater Sci 44, 9 (2021). https://doi.org/10.1007/s12034-020-02262-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02262-9

Keywords

Navigation