Skip to main content
Log in

Tuning the optical properties, AC conductivity and dielectric modulus of PVA membrane by inclusion of TiO2 nanoparticles

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The article demonstrates the feasibility of tuning the optical and electrical properties of polyvinyl alcohol (PVA) by adding different wt% of TiO2 nanoparticles (0.001–0.01 wt%). UV–visible, photoluminescence and LCR spectroscopies techniques were used. UV–visible measurements of PVA/TiO2 membranes displayed a shift in the absorbance edge across the region of longer wavelength. This reflects a decrease in the bandgap energy, which indicates an increase in the electrical AC conductivity of the samples. Furthermore, the transmittance of a pure PVA membrane decreases from 85% for pure PVA to 3% for PVA/TiO2 with 0.01 wt%. In addition, an amendment was observed in the optical parameters of nanocomposite membranes. The photoluminescence emission spectra exhibited a luminescence response of the PVA/TiO2 samples and significant emission bands were generated with the increase in the TiO2 nanoparticles. With increasing TiO2 nanoparticles, an increase in the AC conductivity and an improvement in the dielectric parameters of the samples were observed. The electric modulus was calculated and used to evaluate the relaxation behaviour in the nanocomposite membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Zaki M F, Radwan R M and Rashad A M 2020 Poly. Bull. 78 7167

    Article  Google Scholar 

  2. Zaki M F, Rashad A M and Elkalashy Sh I 2020 Nucl. Instr. Meth. Phys. Res. Sect. B 482 37

  3. Soliman T S and Vshivkov S A 2019 J. Nano Cryst. Solids 519 119452

    Article  CAS  Google Scholar 

  4. Nguyen T P 2011 Surf. Coatings Technol. 206 742

    Article  CAS  Google Scholar 

  5. Mallakpour S and Nazari H Y 2018 Ultrason. Sonochem. 41 1

    Article  CAS  Google Scholar 

  6. Abdullah O G, Aziz S B, Omer K M and Salih Y M 2015 J. Mater. Sci. Mater. Electron 26 5303

    Article  CAS  Google Scholar 

  7. Abdelkader K A and Anwar Z 2006 J. Appl. Polym. Sci. 2 1146

    Google Scholar 

  8. Aziz S B, Hassan A Q, Mohammed S J, Karim W O, Kadir M F Z, Tajuddin H A et al 2019 Nanomaterials 9 216

    Article  CAS  Google Scholar 

  9. Karthikeyan B, Hariharan S, Sasidharan A, Gayathri V, Arun T, Akbari-Fakhrabadi A et al 2019 Opt. Mater. 90 139

    Article  CAS  Google Scholar 

  10. Viswanath V, Nair S S, Subodh G and Muneera C I 2019 Mater. Res. Bull. 112 281

    Article  CAS  Google Scholar 

  11. Selvi J, Parthasarathy V, Mahalakshmi S, Anbarasan R, Daramola M O and Senthil Kumar P 2020 Iran. Polym. J. (Engl. Ed.) 29 411

  12. Samuel E S, Emmanuel R S and Emmanuel E O 2022 (eds) Polymer based bio-nanocomposites (Springer Nature Singapore Pte Ltd)

  13. Oladipo F, Moses O O, Yskandar H, Rotimi S and Suprakas S R 2022 Molecules 27 3696

    Article  Google Scholar 

  14. Oladipo F, Rotimi S, Yskandar H and Suprakas S R 2022 Appl. Phys. A 128 54

    Article  Google Scholar 

  15. Oladipo F, Yskandar H, Rotimi S, Suprakas S and Adekoya G J 2019 Polymers 11 1250

    Article  Google Scholar 

  16. Oladipo F, Yskandar H, Rotimi S, Suprakas S R and Neeraj K 2021 Polymers 13 1034

    Article  Google Scholar 

  17. Soliman T S, Zaki M F, Hessien M M and Elkalashy Sh I 2021 Opt. Mater. 111 110648

    Article  CAS  Google Scholar 

  18. Ulrike D 2003 Surf. Sci. Rep. 48 53

    Article  Google Scholar 

  19. Chen X and Mao S S 2007 Chem. Rev. 107 2891

    Article  CAS  Google Scholar 

  20. Linsebigler A L, Lu G and Yates J T 1995 Chem. Rev. 95 735

    Article  CAS  Google Scholar 

  21. Ahmad Jamil, Deshmukh Kalim and Hagg May-Britt 2013 Inter. J. Poly. Anal. Charact. 18 287

    Article  CAS  Google Scholar 

  22. Serdar G, Serdar Y, Erdal C and Lütfiye Z A A 2018 J. Aust. Ceram. Soc. 54 523

    Article  Google Scholar 

  23. Ali F M 2019 J. Mol. Struct. 1189 352

    Article  CAS  Google Scholar 

  24. Choudhary S 2018 J. Mater. Sci. Mater. Electron. 29 10517

    Article  CAS  Google Scholar 

  25. Mallakpour S and Khani Z 2018 Polym. Compos. 39 E1589

    Article  CAS  Google Scholar 

  26. Chebil A, Ben Doudou B, Dridi C and Dammak M 2019 Mater. Sci. Eng. B 243 125

    Article  CAS  Google Scholar 

  27. Zihlif A, Faduos A S and Ragosta G 2012 J. Thermoplast. Compos. Mater. 26 1180

    Article  Google Scholar 

  28. Khordad R 2016 Armen. J. Phys. 9 211

    CAS  Google Scholar 

  29. Aziz S B, Ahmed H M, Hussein A M, Fathulla A B, Wsw R M and Hussein R T 2015 J. Mater. Sci. Mater. Electron. 26 8022

    Article  CAS  Google Scholar 

  30. Han J H and Floros J D 1997 J. Plas. Film Sheeting 13 287

    Article  CAS  Google Scholar 

  31. Tomás Madera-Santana J, Meléndrez R, González-García Gerardo, Quintana-Owen Patricia and Suresh Pillai D 2016 Radiat. Phys. Chem. 123 6

    Google Scholar 

  32. El Sayed A M and Morsi W M 2014 J. Mater. Sci. 49 5378

    Article  Google Scholar 

  33. Changneng Z, Mingguang K, Xiaoguang Z, Kongjia W, Mingtai W, Fang L et al 2005 Plasma Sci. Technol. 7 2962

    Article  Google Scholar 

  34. Urbach F 1953 J. Phys. Rev. 92 1324

    Article  CAS  Google Scholar 

  35. Ebnalwaled A A and Thabet A 2016 Synth. Met. 220 374

    Article  CAS  Google Scholar 

  36. Taha T A, Hendawy N, El-Rabaie S, Esmat A and El-Mansy M K 2019 Polym. Bull. 76 4769

    Article  CAS  Google Scholar 

  37. Rashad M 2020 Opt. Mater. 105 109857

    Article  CAS  Google Scholar 

  38. Brza M A, Aziz S B, Anuar H and Al Hazza M H F 2019 Int. J. Mol. Sci. 20 3910

    Article  CAS  Google Scholar 

  39. Aziz S B, Hussein S, Hussein A M and Saeed S R 2013 Int. J. Met. 4 1

    Google Scholar 

  40. Wilson J L, Poddar P, Frey N A, Srikanth H, Mohomed K, Harmon J P et al 2004 J. Appl. Phys. 95 1439

    Article  CAS  Google Scholar 

  41. Sonal A and Aggarwal S 2018 J. Non-Cryst. Solids 485 57

    Article  CAS  Google Scholar 

  42. Dadashi S, Poursalehi R and Delavari H 2015 Procedia. Mater. Sci. 11 722

    CAS  Google Scholar 

  43. Yahia I S, Farag A A M, Cavas M and Yakuphanoglu F 2013 Microst. 53 63

    Article  CAS  Google Scholar 

  44. Soliman T S, Elkalashy Sh I, Zaki M F and Doaa Shabaan H 2021 Phys. Scr. 96 125814

    Article  Google Scholar 

  45. Abutalib M M and Yahia I S 2019 Optik (Stuttg) 179 145

    Article  CAS  Google Scholar 

  46. Taha T A and Saleh A 2018 Appl. Phys. A Mater. Sci. Process. 124 600

    Article  Google Scholar 

  47. Zhao Y, Zhang Z and Lin Y 2004 J. Phys. D Appl. Phys. 37 3392

    Article  CAS  Google Scholar 

  48. Su X, Zhang Z and Zhu M 2006 Appl. Phys. Lett. 88 061913

    Article  Google Scholar 

  49. Downey D F, Farley M, Jones K S and Ryding G 1992 (eds) Ion implantation technology - 92 (North Holland: Elsevier)

  50. Rashad M M and Shalan A E 2012 Int. J. Nanopart. 5 159

    Article  CAS  Google Scholar 

  51. Xu J, Li L, An Y Y, Wang H, Wang X, Fu X et al 2008 J. Colloid Interface Sci. 318 29

    Article  CAS  Google Scholar 

  52. Sagar P, Shishodia P K, Mehra R M, Okada H, Wakahara A and Yoshida A 2007 J. Lumin. 126 800

    Article  CAS  Google Scholar 

  53. Studenikin S A, Golego N and Cocivera M 1998 J. Appl. Phys. 84 2287

    Article  CAS  Google Scholar 

  54. Liu M, Kitai A H and Mascher P 1992 J. Lumin. 54 35

    Article  CAS  Google Scholar 

  55. Djurisic A B, Leung Y H, Tam K H, Ding L, Ge W K, Chen H Y et al 2006 Appl. Phys. Lett. 88 103

    Article  Google Scholar 

  56. Van Dijken A, Meulenkamp E A, Vanmaekelbergh D and Meijerink A 2000 J. Lumin. 454 87

    Google Scholar 

  57. Van Dijken A, Meulenkamp E A, Vanmaekelbergh D and Meijerink A 2000 J. Lumin. 90 123

    Article  Google Scholar 

  58. Syed Mansoor Ali, AL Salman S A, AL-Ghamdi S S, AL Garawi M S, Baig M R and Turki ALKhuraiji S 2016 J. Optoelect. Adv. Mater. 18 666

  59. Jonscher A K 1977 Nature 267 673

    Article  CAS  Google Scholar 

  60. Jonscher A K 1999 J. Phys. D: Appl. Phys. 32 R57

    Article  CAS  Google Scholar 

  61. Meaz T M, Attia S M and Abo ElAta A M 2003 J. Magn. Magn. Mater. 257 296

    Article  CAS  Google Scholar 

  62. Wang Y, Mohite S S, Bridwell L B, Giedd R E and Sofield C J 1993 J. Mater. Res. 8 388

    Article  CAS  Google Scholar 

  63. Abdel-Hamid H M, Radwan R M and Ashour A H 2002 J. Phys. D: Appl. Phys. 35 1183

    Article  CAS  Google Scholar 

  64. Kwan C K 2004 Dielectric phenomena in solids (San Diego: Elsevier)

    Google Scholar 

  65. Mahato D K, Dutta A and Sinha T P 2011 Bull. Mater. Sci. 34 455

    Article  CAS  Google Scholar 

  66. Hegab N A, Afifi M A, Atyia H E and Farid A S 2009 J. Alloys Compd. 477 925

    Article  CAS  Google Scholar 

  67. Naceue H, Megriche A and EL-Maaoui M, 2013 Oriental J. Chem. 29 937

    Article  Google Scholar 

  68. Dixon R K 1990 Phys. Rev. B 42 8179

    Article  CAS  Google Scholar 

  69. Oueslati A, Hlel F, Guidara K and Gargouri M 2010 J. Alloys Compd. 492 508

    Article  CAS  Google Scholar 

  70. Smaoui H, Mir L E L, Guermazi H, Agnel S and Toureille A 2009 J. Alloys Compd. 477 316

    Article  CAS  Google Scholar 

  71. Darwish A A A, El-Nahass M M and Bekheet A E 2014 J. Alloys Compd. 586 142

    Article  CAS  Google Scholar 

  72. Hassen A, Hanfy T A, El-Sayed S and Himanshu A K 2011 J. Appl. Phys. 110 114119

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M F Zaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaki, M.F., Tayel, A. & El Basaty, A.B. Tuning the optical properties, AC conductivity and dielectric modulus of PVA membrane by inclusion of TiO2 nanoparticles. Bull Mater Sci 45, 236 (2022). https://doi.org/10.1007/s12034-022-02816-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02816-z

Keywords

Navigation