Skip to main content

Advertisement

Log in

Purinoceptors on Neuroglia

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

An Erratum to this article was published on 28 April 2009

Abstract

Purinergic transmission is one of the most ancient and widespread extracellular signalling systems. In the brain, purinergic signalling plays a unique role in integrating neuronal and glial cellular circuits, as virtually every type of glial cell possesses receptors to purines and pyrimidines. These receptors, represented by metabotropic P1 adenosine receptors, metabotropic P2Y purinoceptors and ionotropic P2X purinoceptors, control numerous physiological functions of glial cells and are intimately involved in virtually every form of neuropathology. In this essay, we provide an in depth overview of purinoceptor distribution in two types of CNS glia—in astrocytes and oligodendrocytes—and discuss their physiological and pathophysiological roles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Virchow R (1858) Die Cellularpathologie in ihrer Begründung auf physiologische and pathologische Gewebelehre. Zwanzig Vorlesungen gehalten während der Monate Februar, März und April 1858 im pathologischen Institut zu Berlin. August Hirschwald, Berlin

    Google Scholar 

  2. Verkhratsky A (2006) Patching the glia reveals the functional organisation of the brain. Pflugers Arch 453:411–420

    Article  PubMed  CAS  Google Scholar 

  3. Kettenmann H, Verkhratsky A (2008) Neuroglia: the 150 years after. Trends Neurosci 31:653–659

    Article  PubMed  CAS  Google Scholar 

  4. Verkhratsky A, Toescu EC (2006) Neuronal–glial networks as substrate for CNS integration. J Cell Mol Med 10:826–836

    Article  PubMed  CAS  Google Scholar 

  5. Verkhratsky A (2009) Neuronismo y reticulismo: neuronal–glial circuits unify the reticular and neuronal theories of brain organization. Acta Physiol (Oxf) 195:111–122

    Article  CAS  Google Scholar 

  6. Oberheim NA, Tian GF, Han X, Peng W, Takano T, Ransom B, Nedergaard M (2008) Loss of astrocytic domain organization in the epileptic brain. J Neurosci 28:3264–3276

    Article  PubMed  CAS  Google Scholar 

  7. Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22:183–192

    PubMed  CAS  Google Scholar 

  8. Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26:523–530

    Article  PubMed  CAS  Google Scholar 

  9. Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86:1009–1031

    Article  PubMed  CAS  Google Scholar 

  10. Magistretti PJ (2006) Neuron–glia metabolic coupling and plasticity. J Exp Biol 209:2304–2311

    Article  PubMed  CAS  Google Scholar 

  11. Simard M, Arcuino G, Takano T, Liu QS, Nedergaard M (2003) Signaling at the gliovascular interface. J Neurosci 23:9254–9262

    PubMed  CAS  Google Scholar 

  12. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215

    Article  PubMed  CAS  Google Scholar 

  13. Halassa MM, Fellin T, Haydon PG (2007) The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med 13:54–63

    Article  PubMed  CAS  Google Scholar 

  14. Tian GF, Azmi H, Takano T, Xu Q, Peng W, Lin J, Oberheim N, Lou N, Wang X, Zielke HR, Kang J, Nedergaard M (2005) An astrocytic basis of epilepsy. Nat Med 11:973–981

    PubMed  CAS  Google Scholar 

  15. Nedergaard M, Dirnagl U (2005) Role of glial cells in cerebral ischemia. Glia 50:281–286

    Article  PubMed  Google Scholar 

  16. Giaume C, Kirchhoff F, Matute C, Reichenbach A, Verkhratsky A (2007) Glia: the fulcrum of brain diseases. Cell Death Differ 14:1324–1335

    Article  PubMed  CAS  Google Scholar 

  17. Rodriguez JJ, Olabarria M, Chvatal A, Verkhratsky A (2009) Astroglia in dementia and Alzheimer’s disease. Cell Death Differ 16:378–385

    Article  PubMed  CAS  Google Scholar 

  18. Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797

    Article  PubMed  CAS  Google Scholar 

  19. Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64:1471–1483

    Article  PubMed  CAS  Google Scholar 

  20. Abbracchio MP, Burnstock G, Verkhratsky A, Zimmerman H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32:19–29

    Article  PubMed  CAS  Google Scholar 

  21. Burnstock G (1996) Purinoceptors: ontogeny and phylogeny. Drug Dev Res 39:204–242

    Article  CAS  Google Scholar 

  22. Burnstock G, Verkhratsky A (2009) Evolutionary origins of the purinergic signalling system. Acta Physiologica (Oxf) 195:415–447

    Google Scholar 

  23. Burnstock G, Knight GE (2004) Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol 240:31–304

    Article  PubMed  CAS  Google Scholar 

  24. Dale N (2008) Dynamic ATP signalling and neural development. J Physiol 586:2429–2436

    Article  PubMed  CAS  Google Scholar 

  25. Pankratov Y, Lalo U, Verkhratsky A, North RA (2006) Vesicular release of ATP at central synapses. Pflugers Arch 452:589–597

    Article  PubMed  CAS  Google Scholar 

  26. Zhang Z, Chen G, Zhou W, Song A, Xu T, Luo Q, Wang W, Gu XS, Duan S (2007) Regulated ATP release from astrocytes through lysosome exocytosis. Nat Cell Biol 9:945–953

    Article  PubMed  CAS  Google Scholar 

  27. Zimmermann H (2006) Ectonucleotidases in the nervous system. Novartis Found Symp 276:113–128 discussion 128–130, 233–117, 275–181

    Article  PubMed  CAS  Google Scholar 

  28. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    PubMed  CAS  Google Scholar 

  29. Khakh BS, Burnstock G, Kennedy C, King BF, North RA, Seguela P, Voigt M, Humphrey PP (2001) International union of pharmacology. XXIV. Current status of the nomenclature and properties of P2X receptors and their subunits. Pharmacol Rev 53:107–118

    PubMed  CAS  Google Scholar 

  30. Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA (2006) International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58:281–341

    Article  PubMed  CAS  Google Scholar 

  31. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    PubMed  CAS  Google Scholar 

  32. Burnstock G, Kennedy C (1985) Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol 16:433–440

    PubMed  CAS  Google Scholar 

  33. Fredholm BB, IJ AP, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552

    PubMed  CAS  Google Scholar 

  34. Pankratov Y, Lalo U, Verkhratsky A, North RA (2007) Quantal release of ATP in mouse cortex. J Gen Physiol 129:257–265

    Article  PubMed  CAS  Google Scholar 

  35. North RA, Verkhratsky A (2006) Purinergic transmission in the central nervous system. Pflugers Arch 452:479–485

    Article  PubMed  CAS  Google Scholar 

  36. Anderson CM, Bergher JP, Swanson RA (2004) ATP-induced ATP release from astrocytes. J Neurochem 88:246–256

    PubMed  CAS  Google Scholar 

  37. Bowser DN, Khakh BS (2007) Vesicular ATP is the predominant cause of intercellular calcium waves in astrocytes. J Gen Physiol 129:485–491

    Article  PubMed  CAS  Google Scholar 

  38. Evanko DS, Zhang Q, Zorec R, Haydon PG (2004) Defining pathways of loss and secretion of chemical messengers from astrocytes. Glia 47:233–240

    Article  PubMed  Google Scholar 

  39. Guthrie PB, Knappenberger J, Segal M, Bennett MV, Charles AC, Kater SB (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19:520–528

    PubMed  CAS  Google Scholar 

  40. Bains JS, Oliet SH (2007) Glia: they make your memories stick!. Trends Neurosci 30:417–424

    Article  PubMed  CAS  Google Scholar 

  41. Abbracchio MP, Ceruti S (2006) Roles of P2 receptors in glial cells: focus on astrocytes. Purinergic Signal 2:595–604

    Article  PubMed  CAS  Google Scholar 

  42. Abbracchio MP, Verderio C (2006) Pathophysiological roles of P2 receptors in glial cells. Novartis Found Symp 276:91–103 discussion 103–112, 275–181

    Article  PubMed  CAS  Google Scholar 

  43. Fields RD, Stevens B (2000) ATP: an extracellular signaling molecule between neurons and glia. Trends Neurosci 23:625–633

    Article  PubMed  CAS  Google Scholar 

  44. Fields RD, Burnstock G (2006) Purinergic signalling in neuron–glia interactions. Nat Rev Neurosci 7:423–436

    Article  PubMed  CAS  Google Scholar 

  45. Fischer W, Krugel U (2007) P2Y receptors: focus on structural, pharmacological and functional aspects in the brain. Curr Med Chem 14:2429–2455

    Article  PubMed  CAS  Google Scholar 

  46. Franke H, Krugel U, Illes P (2006) P2 receptors and neuronal injury. Pflugers Arch 452:622–644

    Article  PubMed  CAS  Google Scholar 

  47. Inoue K, Koizumi S, Tsuda M (2007) The role of nucleotides in the neuron–glia communication responsible for the brain functions. J Neurochem 102:1447–1458

    Article  PubMed  CAS  Google Scholar 

  48. Fellin T, Sul JY, D’Ascenzo M, Takano H, Pascual O, Haydon PG (2006) Bidirectional astrocyte–neuron communication: the many roles of glutamate and ATP. Novartis Found Symp 276:208–217

    Article  PubMed  CAS  Google Scholar 

  49. Newman EA (2006) A purinergic dialogue between glia and neurons in the retina. Novartis Found Symp 276:193–202

    Article  PubMed  CAS  Google Scholar 

  50. Verkhratsky A, Steinhauser C (2000) Ion channels in glial cells. Brain Res Brain Res Rev 32:380–412

    Article  PubMed  CAS  Google Scholar 

  51. Franke H, Schepper C, Illes P, Krugel U (2007) Involvement of P2X and P2Y receptors in microglial activation in vivo. Purinergic Signal 3:435–445

    Article  PubMed  CAS  Google Scholar 

  52. Haas S, Brockhaus J, Verkhratsky A, Kettenmann H (1996) ATP-induced membrane currents in ameboid microglia acutely isolated from mouse brain slices. Neuroscience 75:257–261

    Article  PubMed  CAS  Google Scholar 

  53. Illes P, Norenberg W, Gebicke-Haerter PJ (1996) Molecular mechanisms of microglial activation. B. Voltage- and purinoceptor-operated channels in microglia. Neurochem Int 29:13–24

    Article  PubMed  CAS  Google Scholar 

  54. Inoue K (2002) Microglial activation by purines and pyrimidines. Glia 40:156–163

    Article  PubMed  Google Scholar 

  55. Inoue K, Koizumi S, Tsuda M, Shigemoto-Mogami Y (2003) Signaling of ATP receptors in glia-neuron interaction and pain. Life Sci 74:189–197

    Article  PubMed  CAS  Google Scholar 

  56. Inoue K, Tsuda M, Koizumi S (2004) Chronic pain and microglia: the role of ATP. Novartis Found Symp 261:55–64

    Article  PubMed  CAS  Google Scholar 

  57. Inoue K (2006) ATP receptors of microglia involved in pain. Novartis Found Symp 276:263–272

    Article  PubMed  CAS  Google Scholar 

  58. Inoue K (2006) The function of microglia through purinergic receptors: neuropathic pain and cytokine release. Pharmacol Ther 109:210–226

    Article  PubMed  CAS  Google Scholar 

  59. Inoue K (2008) Purinergic systems in microglia. Cell Mol Life Sci. 65:3074–3080

    Article  PubMed  CAS  Google Scholar 

  60. Farber K, Kettenmann H (2006) Purinergic signaling and microglia. Pflugers Arch 452:615–621

    Article  PubMed  CAS  Google Scholar 

  61. Sperlagh B, Illes P (2007) Purinergic modulation of microglial cell activation. Purinergic Signal 3:117–127

    Article  PubMed  CAS  Google Scholar 

  62. Trang T, Beggs S, Salter MW (2006) Purinoceptors in microglia and neuropathic pain. Pflugers Arch 452:645–652

    Article  PubMed  CAS  Google Scholar 

  63. Tsuda M, Inoue K, Salter MW (2005) Neuropathic pain and spinal microglia: a big problem from molecules in “small” glia. Trends Neurosci 28:101–107

    Article  PubMed  CAS  Google Scholar 

  64. Boison D (2008) Adenosine as a neuromodulator in neurological diseases. Curr Opin Pharmacol 8:2–7

    Article  PubMed  CAS  Google Scholar 

  65. Abbracchio MP, Cattabeni F (1999) Brain adenosine receptors as targets for therapeutic intervention in neurodegenerative diseases. Ann N Y Acad Sci 890:79–92

    Article  PubMed  CAS  Google Scholar 

  66. Dare E, Schulte G, Karovic O, Hammarberg C, Fredholm BB (2007) Modulation of glial cell functions by adenosine receptors. Physiol Behav 92:15–20

    Article  PubMed  CAS  Google Scholar 

  67. Hosli L, Hosli E, Uhr M, Della Briotta G (1987) Electrophysiological evidence for adenosine receptors on astrocytes of cultured rat central nervous system. Neurosci Lett 79:108–112

    Article  PubMed  CAS  Google Scholar 

  68. Woods MD, Freshney RI, Ball SG, Vaughan PF (1989) Regulation of cyclic AMP formation in cultures of human foetal astrocytes by beta 2-adrenergic and adenosine receptors. J Neurochem 53:864–869

    Article  PubMed  CAS  Google Scholar 

  69. Peakman MC, Hill SJ (1994) Adenosine A2B-receptor-mediated cyclic AMP accumulation in primary rat astrocytes. Br J Pharmacol 111:191–198

    PubMed  CAS  Google Scholar 

  70. Peakman MC, Hill SJ (1996) Adenosine A1 receptor-mediated inhibition of cyclic AMP accumulation in type-2 but not type-1 rat astrocytes. Eur J Pharmacol 306:281–289

    Article  PubMed  CAS  Google Scholar 

  71. Biber K, Fiebich BL, Gebicke-Harter P, van Calker D (1999) Carbamazepine-induced upregulation of adenosine A1-receptors in astrocyte cultures affects coupling to the phosphoinositol signaling pathway. Neuropsychopharmacology 20:271–278

    Article  PubMed  CAS  Google Scholar 

  72. Biber K, Klotz KN, Berger M, Gebicke-Harter PJ, van Calker D (1997) Adenosine A1 receptor-mediated activation of phospholipase C in cultured astrocytes depends on the level of receptor expression. J Neurosci 17:4956–4964

    PubMed  CAS  Google Scholar 

  73. Biber K, Lubrich B, Fiebich BL, Boddeke HW, van Calker D (2001) Interleukin-6 enhances expression of adenosine A1 receptor mRNA and signaling in cultured rat cortical astrocytes and brain slices. Neuropsychopharmacology 24:86–96

    Article  PubMed  CAS  Google Scholar 

  74. Pilitsis JG, Kimelberg HK (1998) Adenosine receptor mediated stimulation of intracellular calcium in acutely isolated astrocytes. Brain Res 798:294–303

    PubMed  CAS  Google Scholar 

  75. Peakman MC, Hill SJ (1995) Adenosine A1 receptor-mediated changes in basal and histamine-stimulated levels of intracellular calcium in primary rat astrocytes. Br J Pharmacol 115:801–810

    PubMed  CAS  Google Scholar 

  76. Porter JT, McCarthy KD (1995) Adenosine receptors modulate [Ca2+]i in hippocampal astrocytes in situ. J Neurochem 65:1515–1523

    Article  PubMed  CAS  Google Scholar 

  77. Doengi M, Deitmer JW, Lohr C (2008) New evidence for purinergic signaling in the olfactory bulb: A2A and P2Y1 receptors mediate intracellular calcium release in astrocytes. FASEB J 22:2368–2378

    Article  PubMed  CAS  Google Scholar 

  78. Chen Y, Rathbone MP, Hertz L (2001) Guanosine-induced increase in free cytosolic calcium concentration in mouse astrocytes in primary cultures: does it act on an A3 adenosine receptor? J Neurosci Res 65:184–189

    Article  PubMed  CAS  Google Scholar 

  79. Ogata T, Nakamura Y, Tsuji K, Shibata T, Kataoka K, Schubert P (1994) Adenosine enhances intracellular Ca2+ mobilization in conjunction with metabotropic glutamate receptor activation by t-ACPD in cultured hippocampal astrocytes. Neurosci Lett 170:5–8

    Article  PubMed  CAS  Google Scholar 

  80. Ogata T, Nakamura Y, Schubert P (1996) Potentiated cAMP rise in metabotropically stimulated rat cultured astrocytes by a Ca2+-related A1/A2 adenosine receptor cooperation. Eur J Neurosci 8:1124–1131

    Article  PubMed  CAS  Google Scholar 

  81. Alloisio S, Cugnoli C, Ferroni S, Nobile M (2004) Differential modulation of ATP-induced calcium signalling by A1 and A2 adenosine receptors in cultured cortical astrocytes. Br J Pharmacol 141:935–942

    Article  PubMed  CAS  Google Scholar 

  82. Ferroni S, Marchini C, Ogata T, Schubert P (2002) Recovery of deficient cholinergic calcium signaling by adenosine in cultured rat cortical astrocytes. J Neurosci Res 68:615–621

    Article  PubMed  CAS  Google Scholar 

  83. Jimenez AI, Castro E, Mirabet M, Franco R, Delicado EG, Miras-Portugal MT (1999) Potentiation of ATP calcium responses by A2B receptor stimulation and other signals coupled to Gs proteins in type-1 cerebellar astrocytes. Glia 26:119–128

    Article  PubMed  CAS  Google Scholar 

  84. Toms NJ, Roberts PJ (1999) Group 1 mGlu receptors elevate [Ca2+]i in rat cultured cortical type 2 astrocytes: [Ca2+]i synergy with adenosine A1 receptors. Neuropharmacology 38:1511–1517

    Article  PubMed  CAS  Google Scholar 

  85. Nobile M, Monaldi I, Alloisio S, Cugnoli C, Ferroni S (2003) ATP-induced, sustained calcium signalling in cultured rat cortical astrocytes: evidence for a non-capacitative, P2X7-like-mediated calcium entry. FEBS Lett 538:71–76

    Article  PubMed  CAS  Google Scholar 

  86. Nishizaki T, Nagai K, Nomura T, Tada H, Kanno T, Tozaki H, Li XX, Kondoh T, Kodama N, Takahashi E, Sakai N, Tanaka K, Saito N (2002) A new neuromodulatory pathway with a glial contribution mediated via A2A adenosine receptors. Glia 39:133–147

    Article  PubMed  CAS  Google Scholar 

  87. Li XX, Nomura T, Aihara H, Nishizaki T (2001) Adenosine enhances glial glutamate efflux via A2A adenosine receptors. Life Sci 68:1343–1350

    Article  PubMed  CAS  Google Scholar 

  88. Hagberg H, Andersson P, Lacarewicz J, Jacobson I, Butcher S, Sandberg M (1987) Extracellular adenosine, inosine, hypoxanthine, and xanthine in relation to tissue nucleotides and purines in rat striatum during transient ischemia. J Neurochem 49:227–231

    Article  PubMed  CAS  Google Scholar 

  89. Hindley S, Herman MA, Rathbone MP (1994) Stimulation of reactive astrogliosis in vivo by extracellular adenosine diphosphate or an adenosine A2 receptor agonist. J Neurosci Res 38:399–406

    Article  PubMed  CAS  Google Scholar 

  90. Brambilla R, Cottini L, Fumagalli M, Ceruti S, Abbracchio MP (2003) Blockade of A2A adenosine receptors prevents basic fibroblast growth factor-induced reactive astrogliosis in rat striatal primary astrocytes. Glia 43:190–194

    Article  PubMed  Google Scholar 

  91. Trincavelli ML, Marroni M, Tuscano D, Ceruti S, Mazzola A, Mitro N, Abbracchio MP, Martini C (2004) Regulation of A2B adenosine receptor functioning by tumour necrosis factor a in human astroglial cells. J Neurochem 91:1180–1190

    Article  PubMed  CAS  Google Scholar 

  92. Trincavelli ML, Tonazzini I, Montali M, Abbracchio MP, Martini C (2008) Short-term TNF-Alpha treatment induced A2B adenosine receptor desensitization in human astroglial cells. J Cell Biochem 104:150–161

    Article  PubMed  CAS  Google Scholar 

  93. Appel E, Kazimirsky G, Ashkenazi E, Kim SG, Jacobson KA, Brodie C (2001) Roles of BCL-2 and caspase 3 in the adenosine A3 receptor-induced apoptosis. J Mol Neurosci 17:285–292

    Article  PubMed  CAS  Google Scholar 

  94. Abbracchio MP, Ceruti S, Brambilla R, Franceschi C, Malorni W, Jacobson KA, von Lubitz DK, Cattabeni F (1997) Modulation of apoptosis by adenosine in the central nervous system: a possible role for the A3 receptor. Pathophysiological significance and therapeutic implications for neurodegenerative disorders. Ann N Y Acad Sci 825:11–22

    CAS  Google Scholar 

  95. Abbracchio MP, Cerut S, Brambilla R, Barbieri D, Camurri A, Franceschi C, Giammarioli AM, Jacobson KA, Cattabeni F, Malorni W (1998) Adenosine A3 receptors and viability of astrocytes. Drug Dev Res 45:379–386

    Article  CAS  Google Scholar 

  96. Choi JW, Yoo BK, Ryu MK, Choi MS, Park GH, Ko KH (2005) Adenosine and purine nucleosides prevent the disruption of mitochondrial transmembrane potential by peroxynitrite in rat primary astrocytes. Arch Pharm Res 28:810–815

    Article  PubMed  CAS  Google Scholar 

  97. Brodie C, Blumberg PM, Jacobson KA (1998) Activation of the A2A adenosine receptor inhibits nitric oxide production in glial cells. FEBS Lett 429:139–142

    Article  PubMed  CAS  Google Scholar 

  98. D’Alimonte I, Ballerini P, Nargi E, Buccella S, Giuliani P, Di Iorio P, Caciagli F, Ciccarelli R (2007) Staurosporine-induced apoptosis in astrocytes is prevented by A1 adenosine receptor activation. Neurosci Lett 418:66–71

    Article  PubMed  CAS  Google Scholar 

  99. Bjorklund O, Shang M, Tonazzini I, Dare E, Fredholm BB (2008) Adenosine A1 and A3 receptors protect astrocytes from hypoxic damage. Eur J Pharmacol 596:6–13

    Article  PubMed  CAS  Google Scholar 

  100. Wittendorp MC, Boddeke HW, Biber K (2004) Adenosine A3 receptor-induced CCL2 synthesis in cultured mouse astrocytes. Glia 46:410–418

    Article  PubMed  Google Scholar 

  101. Stevens B, Porta S, Haak LL, Gallo V, Fields RD (2002) Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 36:855–868

    Article  PubMed  CAS  Google Scholar 

  102. Ishibashi T, Dakin KA, Stevens B, Lee PR, Kozlov SV, Stewart CL, Fields RD (2006) Astrocytes promote myelination in response to electrical impulses. Neuron 49:823–832

    Article  PubMed  CAS  Google Scholar 

  103. Fields RD (2006) Nerve impulses regulate myelination through purinergic signalling. Novartis Found Symp 276:148–158

    Article  PubMed  CAS  Google Scholar 

  104. Tsutsui S, Schnermann J, Noorbakhsh F, Henry S, Yong VW, Winston BW, Warren K, Power C (2004) A1 adenosine receptor upregulation and activation attenuates neuroinflammation and demyelination in a model of multiple sclerosis. J Neurosci 24:1521–1529

    Article  PubMed  CAS  Google Scholar 

  105. Turner CP, Yan H, Schwartz M, Othman T, Rivkees SA (2002) A1 adenosine receptor activation induces ventriculomegaly and white matter loss. Neuroreport 13:1199–1204

    Article  PubMed  CAS  Google Scholar 

  106. Nicke A, Baumert HG, Rettinger J, Eichele A, Lambrecht G, Mutschler E, Schmalzing G (1998) P2X1 and P2X3 receptors form stable trimers: a novel structural motif of ligand-gated ion channels. EMBO J 17:3016–3028

    Article  PubMed  CAS  Google Scholar 

  107. Khakh BS (2001) Molecular physiology of P2X receptors and ATP signalling at synapses. Nat Rev Neurosci 2:165–174

    Article  PubMed  CAS  Google Scholar 

  108. Roberts JA, Vial C, Digby HR, Agboh KC, Wen H, Atterbury-Thomas A, Evans RJ (2006) Molecular properties of P2X receptors. Pflugers Arch 452:486–500

    Article  PubMed  CAS  Google Scholar 

  109. Illes P, Alexandre Ribeiro J (2004) Molecular physiology of P2 receptors in the central nervous system. Eur J Pharmacol 483:5–17

    Article  PubMed  CAS  Google Scholar 

  110. Surprenant A, North RA (2009) Signaling at purinergic P2X receptors. Annu Rev Physiol 71:333–359

    Article  CAS  PubMed  Google Scholar 

  111. Duan S, Neary JT (2006) P2X7 receptors: properties and relevance to CNS function. Glia 54:738–746

    Article  PubMed  Google Scholar 

  112. Sperlagh B, Vizi ES, Wirkner K, Illes P (2006) P2X7 receptors in the nervous system. Prog Neurobiol 78:327–346

    Article  PubMed  CAS  Google Scholar 

  113. Fumagalli M, Brambilla R, D’Ambrosi N, Volonte C, Matteoli M, Verderio C, Abbracchio MP (2003) Nucleotide-mediated calcium signaling in rat cortical astrocytes: Role of P2X and P2Y receptors. Glia 43:218–203

    Article  PubMed  Google Scholar 

  114. Dixon SJ, Yu R, Panupinthu N, Wilson JX (2004) Activation of P2 nucleotide receptors stimulates acid efflux from astrocytes. Glia 47:367–376

    Article  PubMed  Google Scholar 

  115. Franke H, Grosche J, Schadlich H, Krugel U, Allgaier C, Illes P (2001) P2X receptor expression on astrocytes in the nucleus accumbens of rats. Neuroscience 108:421–429

    Article  PubMed  CAS  Google Scholar 

  116. Jabs R, Guenther E, Marquordt K, Wheeler-Schilling TH (2000) Evidence for P2X3, P2X4, P2X5 but not for P2X7 containing purinergic receptors in Müller cells of the rat retina. Brain Res Mol Brain Res 76:205–210

    Article  PubMed  CAS  Google Scholar 

  117. Pannicke T, Fischer W, Biedermann B, Schadlich H, Grosche J, Faude F, Wiedemann P, Allgaier C, Illes P, Burnstock G, Reichenbach A (2000) P2X7 receptors in Müller glial cells from the human retina. J Neurosci 20:5965–5972

    PubMed  CAS  Google Scholar 

  118. Lalo U, Pankratov Y, Wichert SP, Rossner MJ, North RA, Kirchhoff F, Verkhratsky A (2008) P2X1 and P2X5 subunits form the functional P2X receptor in mouse cortical astrocytes. J Neurosci 28:5473–5480

    Article  PubMed  CAS  Google Scholar 

  119. Loesch A, Burnstock G (1998) Electron-immunocytochemical localization of P2X1 receptors in the rat cerebellum. Cell Tissue Res 294:253–260

    Article  PubMed  CAS  Google Scholar 

  120. Kanjhan R, Housley GD, Thorne PR, Christie DL, Palmer DJ, Luo L, Ryan AF (1996) Localization of ATP-gated ion channels in cerebellum using P2x2R subunit-specific antisera. Neuroreport 7:2665–2669

    Article  PubMed  CAS  Google Scholar 

  121. Kanjhan R, Housley GD, Burton LD, Christie DL, Kippenberger A, Thorne PR, Luo L, Ryan AF (1999) Distribution of the P2X2 receptor subunit of the ATP-gated ion channels in the rat central nervous system. J Comp Neurol 407:11–32

    Article  PubMed  CAS  Google Scholar 

  122. Ashour F, Deuchars J (2004) Electron microscopic localisation of P2X4 receptor subunit immunoreactivity to pre- and post-synaptic neuronal elements and glial processes in the dorsal vagal complex of the rat. Brain Res 1026:44–55

    Article  PubMed  CAS  Google Scholar 

  123. Kukley M, Barden JA, Steinhauser C, Jabs R (2001) Distribution of P2X receptors on astrocytes in juvenile rat hippocampus. Glia 36:11–21

    Article  PubMed  CAS  Google Scholar 

  124. Magoski NS, Walz W (1992) Ionic dependence of a P2-purinoceptor mediated depolarization of cultured astrocytes. J Neurosci Res 32:530–538

    Article  PubMed  CAS  Google Scholar 

  125. Walz W, Gimpl G, Ohlemeyer C, Kettenmann H (1994) Extracellular ATP-induced currents in astrocytes: involvement of a cation channel. J Neurosci Res 38:12–18

    Article  PubMed  CAS  Google Scholar 

  126. Jabs R, Matthias K, Grote A, Grauer M, Seifert G, Steinhauser C (2007) Lack of P2X receptor mediated currents in astrocytes and GluR type glial cells of the hippocampal CA1 region. Glia 55:1648–1655

    Article  PubMed  Google Scholar 

  127. Kirischuk S, Moller T, Voitenko N, Kettenmann H, Verkhratsky A (1995) ATP-induced cytoplasmic calcium mobilization in Bergmann glial cells. J Neurosci 15:7861–7871

    PubMed  CAS  Google Scholar 

  128. Torres GE, Haines WR, Egan TM, Voigt MM (1998) Co-expression of P2X1 and P2X5 receptor subunits reveals a novel ATP-gated ion channel. Mol Pharmacol 54:989–993

    PubMed  CAS  Google Scholar 

  129. Surprenant A, Schneider DA, Wilson HL, Galligan JJ, North RA (2000) Functional properties of heteromeric P2X1/5 receptors expressed in HEK cells and excitatory junction potentials in guinea-pig submucosal arterioles. J Auton Nerv Syst 81:249–263

    Article  PubMed  CAS  Google Scholar 

  130. Haines WR, Torres GE, Voigt MM, Egan TM (1999) Properties of the novel ATP-gated ionotropic receptor composed of the P2X1 and P2X5 isoforms. Mol Pharmacol 56:720–727

    PubMed  CAS  Google Scholar 

  131. Le KT, Boue-Grabot E, Archambault V, Seguela P (1999) Functional and biochemical evidence for heteromeric ATP-gated channels composed of P2X1 and P2X5 subunits. J Biol Chem 274:15415–15419

    Article  PubMed  CAS  Google Scholar 

  132. James G, Butt AM (1999) Adenosine 5′ triphosphate evoked mobilization of intracellular calcium in central nervous system white matter of adult mouse optic nerve. Neurosci Lett 268:53–56

    Article  PubMed  CAS  Google Scholar 

  133. Hamilton N, Vayro S, Kirchhoff F, Verkhratsky A, Robbins J, Gorecki DC, Butt AM (2008) Mechanisms of ATP- and glutamate-mediated calcium signaling in white matter astrocytes. Glia 56:734–749

    Article  PubMed  Google Scholar 

  134. Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1β release by the ATP-gated P2X7 receptor. Embo J 25:5071–5082

    Article  PubMed  CAS  Google Scholar 

  135. Collo G, Neidhart S, Kawashima E, Kosco-Vilbois M, North RA, Buell G (1997) Tissue distribution of the P2X7 receptor. Neuropharmacology 36:1277–1283

    Article  PubMed  CAS  Google Scholar 

  136. Sim JA, Young MT, Sung HY, North RA, Surprenant A (2004) Reanalysis of P2X7 receptor expression in rodent brain. J Neurosci 24:6307–6314

    Article  PubMed  CAS  Google Scholar 

  137. Yu Y, Ugawa S, Ueda T, Ishida Y, Inoue K, Kyaw Nyunt A, Umemura A, Mase M, Yamada K, Shimada S (2008) Cellular localization of P2X7 receptor mRNA in the rat brain. Brain Res 1194:45–55

    Article  PubMed  CAS  Google Scholar 

  138. Duan S, Anderson CM, Keung EC, Chen Y, Swanson RA (2003) P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J Neurosci 23:1320–1328

    PubMed  CAS  Google Scholar 

  139. Narcisse L, Scemes E, Zhao Y, Lee SC, Brosnan CF (2005) The cytokine IL-1β transiently enhances P2X7 receptor expression and function in human astrocytes. Glia 49:245–258

    Article  PubMed  Google Scholar 

  140. Hung AC, Sun SH (2002) The P2X7 receptor-mediated phospholipase D activation is regulated by both PKC-dependent and PKC-independent pathways in a rat brain-derived Type-2 astrocyte cell line, RBA-2. Cell Signal 14:83–92

    Article  PubMed  CAS  Google Scholar 

  141. Wang CM, Chang YY, Sun SH (2003) Activation of P2X7 purinoceptor-stimulated TGF-β 1 mRNA expression involves PKC/MAPK signalling pathway in a rat brain-derived type-2 astrocyte cell line, RBA-2. Cell Signal 15:1129–1137

    Article  PubMed  CAS  Google Scholar 

  142. John GR, Simpson JE, Woodroofe MN, Lee SC, Brosnan CF (2001) Extracellular nucleotides differentially regulate interleukin-1β signaling in primary human astrocytes: implications for inflammatory gene expression. J Neurosci 21:4134–4142

    PubMed  CAS  Google Scholar 

  143. Panenka W, Jijon H, Herx LM, Armstrong JN, Feighan D, Wei T, Yong VW, Ransohoff RM, MacVicar BA (2001) P2X7-like receptor activation in astrocytes increases chemokine monocyte chemoattractant protein-1 expression via mitogen-activated protein kinase. J Neurosci 21:7135–7142

    PubMed  CAS  Google Scholar 

  144. Ballerini P, Rathbone MP, Di Iorio P, Renzetti A, Giuliani P, D’Alimonte I, Trubiani O, Caciagli F, Ciccarelli R (1996) Rat astroglial P2Z (P2X7) receptors regulate intracellular calcium and purine release. Neuroreport 7:2533–2537

    Article  PubMed  CAS  Google Scholar 

  145. James G, Butt AM (2002) P2Y and P2X purinoceptor mediated Ca2+ signalling in glial cell pathology in the central nervous system. Eur J Pharmacol 447:247–260

    Article  PubMed  CAS  Google Scholar 

  146. Wang CM, Chang YY, Kuo JS, Sun SH (2002) Activation of P2X7 receptors induced [(3) H]GABA release from the RBA-2 type-2 astrocyte cell line through a Cl(−)/HCO(3)(−)-dependent mechanism. Glia 37:8–18

    Article  PubMed  Google Scholar 

  147. Suadicani SO, Brosnan CF, Scemes E (2006) P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J Neurosci 26:1378–1385

    Article  PubMed  CAS  Google Scholar 

  148. Fellin T, Pozzan T, Carmignoto G (2006) Purinergic receptors mediate two distinct glutamate release pathways in hippocampal astrocytes. J Biol Chem 281:4274–4284

    Article  PubMed  CAS  Google Scholar 

  149. Walter L, Dinh T, Stella N (2004) ATP induces a rapid and pronounced increase in 2-arachidonoylglycerol production by astrocytes, a response limited by monoacylglycerol lipase. J Neurosci 24:8068–8074

    Article  PubMed  CAS  Google Scholar 

  150. Kucher BM, Neary JT (2005) Bi-functional effects of ATP/P2 receptor activation on tumor necrosis factor-alpha release in lipopolysaccharide-stimulated astrocytes. J Neurochem 92:525–535

    Article  PubMed  CAS  Google Scholar 

  151. Murakami K, Nakamura Y, Yoneda Y (2003) Potentiation by ATP of lipopolysaccharide-stimulated nitric oxide production in cultured astrocytes. Neuroscience 117:37–42

    Article  PubMed  CAS  Google Scholar 

  152. Jacques-Silva MC, Rodnight R, Lenz G, Liao Z, Kong Q, Tran M, Kang Y, Gonzalez FA, Weisman GA, Neary JT (2004) P2X7 receptors stimulate AKT phosphorylation in astrocytes. Br J Pharmacol 141:1106–1117

    Article  PubMed  CAS  Google Scholar 

  153. Gendron FP, Neary JT, Theiss PM, Sun GY, Gonzalez FA, Weisman GA (2003) Mechanisms of P2X7 receptor-mediated ERK1/2 phosphorylation in human astrocytoma cells. Am J Physiol Cell Physiol 284:C571–581

    PubMed  CAS  Google Scholar 

  154. Lu H, Burns D, Garnier P, Wei G, Zhu K, Ying W (2007) P2X7 receptors mediate NADH transport across the plasma membranes of astrocytes. Biochem Biophys Res Commun 362:946–950

    Article  PubMed  CAS  Google Scholar 

  155. Ballerini P, Ciccarelli R, Caciagli F, Rathbone MP, Werstiuk ES, Traversa U, Buccella S, Giuliani P, Jang S, Nargi E, Visini D, Santavenere C, Di Iorio P (2005) P2X7 receptor activation in rat brain cultured astrocytes increases the biosynthetic release of cysteinyl leukotrienes. Int J Immunopathol Pharmacol 18:417–430

    PubMed  CAS  Google Scholar 

  156. Lo JC, Huang WC, Chou YC, Tseng CH, Lee WL, Sun SH (2008) Activation of P2X7 receptors decreases glutamate uptake and glutamine synthetase activity in RBA-2 astrocytes via distinct mechanisms. J Neurochem 105:151–164

    Article  PubMed  CAS  Google Scholar 

  157. D’Alimonte I, Ciccarelli R, Di Iorio P, Nargi E, Buccella S, Giuliani P, Rathbone MP, Jiang S, Caciagli F, Ballerini P (2007) Activation of P2X7 receptors stimulates the expression of P2Y2 receptor mRNA in astrocytes cultured from rat brain. Int J Immunopathol Pharmacol 20:301–316

    PubMed  Google Scholar 

  158. Lee M, Lee SJ, Choi HJ, Jung YW, Frokiaer J, Nielsen S, Kwon TH (2008) Regulation of AQP4 protein expression in rat brain astrocytes: role of P2X7 receptor activation. Brain Res 1195:1–11

    Article  PubMed  CAS  Google Scholar 

  159. Franke H, Gunther A, Grosche J, Schmidt R, Rossner S, Reinhardt R, Faber-Zuschratter H, Schneider D, Illes P (2004) P2X7 receptor expression after ischemia in the cerebral cortex of rats. J Neuropathol Exp Neurol 63:686–699

    PubMed  CAS  Google Scholar 

  160. Bringmann A, Pannicke T, Moll V, Milenkovic I, Faude F, Enzmann V, Wolf S, Reichenbach A (2001) Upregulation of P2X7 receptor currents in Müller glial cells during proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 42:860–867

    PubMed  CAS  Google Scholar 

  161. Meomartini ME, Amadio S, Visentin S, Franchini L, Aloisi F, Volontà C, Agresti C (2003) Expression and functional analysis of P2 receptors in oligodendrocytes. Glia 43(Suppl. 2):59

    Google Scholar 

  162. Agresti C, Meomartini ME, Amadio S, Ambrosini E, Volonte C, Aloisi F, Visentin S (2005) ATP regulates oligodendrocyte progenitor migration, proliferation, and differentiation: involvement of metabotropic P2 receptors. Brain Res Brain Res Rev 48:157–165

    Article  PubMed  CAS  Google Scholar 

  163. James G, Butt AM (2001) P2X and P2Y purinoreceptors mediate ATP-evoked calcium signalling in optic nerve glia in situ. Cell Calcium 30:251–259

    Article  PubMed  CAS  Google Scholar 

  164. Kirischuk S, Scherer J, Kettenmann H, Verkhratsky A (1995) Activation of P2-purinoreceptors triggered Ca2+ release from InsP3-sensitive internal stores in mammalian oligodendrocytes. J Physiol 483:41–57

    PubMed  CAS  Google Scholar 

  165. Matute C, Torre I, Perez-Cerda F, Perez-Samartin A, Alberdi E, Etxebarria E, Arranz AM, Ravid R, Rodriguez-Antiguedad A, Sanchez-Gomez M, Domercq M (2007) P2X7 receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J Neurosci 27:9525–9533

    Article  PubMed  CAS  Google Scholar 

  166. Matute C (2008) P2X7 receptors in oligodendrocytes: a novel target for neuroprotection. Mol Neurobiol 38:123–128

    Article  PubMed  CAS  Google Scholar 

  167. White PJ, Webb TE, Boarder MR (2003) Characterization of a Ca2+ response to both UTP and ATP at human P2Y11 receptors: evidence for agonist-specific signaling. Mol Pharmacol 63:1356–1363

    Article  PubMed  CAS  Google Scholar 

  168. Erb L, Liu J, Ockerhausen J, Kong Q, Garrad RC, Griffin K, Neal C, Krugh B, Santiago-Perez LI, Gonzalez FA, Gresham HD, Turner JT, Weisman GA (2001) An RGD sequence in the P2Y2 receptor interacts with αVβ3 integrins and is required for G(o)-mediated signal transduction. J Cell Biol 153:491–501

    Article  PubMed  CAS  Google Scholar 

  169. Bennett GC, Ford AP, Smith JA, Emmett CJ, Webb TE, Boarder MR (2003) P2Y receptor regulation of cultured rat cerebral cortical cells: calcium responses and mRNA expression in neurons and glia. Br J Pharmacol 139:279–288

    Article  PubMed  CAS  Google Scholar 

  170. Fam SR, Gallagher CJ, Salter MW (2000) P2Y1 purinoceptor-mediated Ca2+ signaling and Ca2+ wave propagation in dorsal spinal cord astrocytes. J Neurosci 20:2800–2808

    PubMed  CAS  Google Scholar 

  171. Zhu Y, Kimelberg HK (2004) Cellular expression of P2Y and β-AR receptor mRNAs and proteins in freshly isolated astrocytes and tissue sections from the CA1 region of P8–12 rat hippocampus. Brain Res Dev Brain Res 148:77–87

    Article  PubMed  CAS  Google Scholar 

  172. Zhu Y, Kimelberg HK (2001) Developmental expression of metabotropic P2Y1 and P2Y2 receptors in freshly isolated astrocytes from rat hippocampus. J Neurochem 77:530–541

    Article  PubMed  CAS  Google Scholar 

  173. Fries JE, Wheeler-Schilling TH, Kohler K, Guenther E (2004) Distribution of metabotropic P2Y receptors in the rat retina: a single-cell RT-PCR study. Brain Res Mol Brain Res 130:1–6

    Article  PubMed  CAS  Google Scholar 

  174. Fries JE, Goczalik IM, Wheeler-Schilling TH, Kohler K, Guenther E, Wolf S, Wiedemann P, Bringmann A, Reichenbach A, Francke M, Pannicke T (2005) Identification of P2Y receptor subtypes in human Müller glial cells by physiology, single cell RT-PCR, and immunohistochemistry. Invest Ophthalmol Vis Sci 46:3000–3007

    Article  PubMed  Google Scholar 

  175. Reifel Saltzberg JM, Garvey KA, Keirstead SA (2003) Pharmacological characterization of P2Y receptor subtypes on isolated tiger salamander Müller cells. Glia 42:149–159

    Article  PubMed  Google Scholar 

  176. Franke H, Krugel U, Grosche J, Heine C, Hartig W, Allgaier C, Illes P (2004) P2Y receptor expression on astrocytes in the nucleus accumbens of rats. Neuroscience 127:431–441

    Article  PubMed  CAS  Google Scholar 

  177. Kostyuk P, Verkhratsky A (1994) Calcium stores in neurons and glia. Neuroscience 63:381–404

    Article  PubMed  CAS  Google Scholar 

  178. Verkhratsky A, Kettenmann H (1996) Calcium signalling in glial cells. Trends Neurosci 19:346–352

    Article  PubMed  CAS  Google Scholar 

  179. Verkhratsky A, Orkand RK, Kettenmann H (1998) Glial calcium: homeostasis and signaling function. Physiol Rev 78:99–141

    PubMed  CAS  Google Scholar 

  180. Bernstein M, Behnisch T, Balschun D, Reymann KG, Reiser G (1998) Pharmacological characterisation of metabotropic glutamatergic and purinergic receptors linked to Ca2+ signalling in hippocampal astrocytes. Neuropharmacology 37:169–178

    Article  PubMed  CAS  Google Scholar 

  181. Pearce B, Murphy S, Jeremy J, Morrow C, Dandona P (1989) ATP-evoked Ca2+ mobilisation and prostanoid release from astrocytes: P2-purinergic receptors linked to phosphoinositide hydrolysis. J Neurochem 52:971–977

    Article  PubMed  CAS  Google Scholar 

  182. Chen CC, Chen WC (1996) ATP-evoked inositol phosphates formation through activation of P2U purinergic receptors in cultured astrocytes: regulation by PKC subtypes alpha, delta, and theta. Glia 17:63–71

    Article  PubMed  CAS  Google Scholar 

  183. Ishimoto H, Nakahata N, Matsuoka I, Nakanishi H (1997) Effects of ATP on phosphoinositide hydrolysis and prostaglandin E2 generation in rabbit astrocytes. J Pharm Pharmacol 49:520–524

    PubMed  CAS  Google Scholar 

  184. Pearce B, Langley D (1994) Purine- and pyrimidine-stimulated phosphoinositide breakdown and intracellular calcium mobilisation in astrocytes. Brain Res 660:329–332

    Article  PubMed  CAS  Google Scholar 

  185. Bruner G, Murphy S (1993) UTP activates multiple second messenger systems in cultured rat astrocytes. Neurosci Lett 162:105–108

    Article  PubMed  CAS  Google Scholar 

  186. Jimenez AI, Castro E, Communi D, Boeynaems JM, Delicado EG, Miras-Portugal MT (2000) Coexpression of several types of metabotropic nucleotide receptors in single cerebellar astrocytes. J Neurochem 75:2071–2079

    Article  PubMed  CAS  Google Scholar 

  187. Kastritsis CH, Salm AK, McCarthy K (1992) Stimulation of the P2Y purinergic receptor on type 1 astroglia results in inositol phosphate formation and calcium mobilization. J Neurochem 58:1277–1284

    Article  PubMed  CAS  Google Scholar 

  188. Centemeri C, Bolego C, Abbracchio MP, Cattabeni F, Puglisi L, Burnstock G, Nicosia S (1997) Characterization of the Ca2+ responses evoked by ATP and other nucleotides in mammalian brain astrocytes. Br J Pharmacol 121:1700–1706

    Article  PubMed  CAS  Google Scholar 

  189. Uchiyama M, Nakajima Y, Sakuma Y, Kato M (2001) Purinergic regulation of intracellular Ca2+ concentration of rat pituitary folliculo-stellate cells in primary culture. J Neuroendocrinol 13:378–385

    Article  PubMed  CAS  Google Scholar 

  190. Troadec JD, Thirion S, Petturiti D, Bohn MT, Poujeol P (1999) ATP acting on P2Y receptors triggers calcium mobilization in primary cultures of rat neurohypophysial astrocytes (pituicytes). Pflugers Arch 437:745–753

    Article  PubMed  CAS  Google Scholar 

  191. Salter MW, Hicks JL (1995) ATP causes release of intracellular Ca2+ via the phospholipase C β/IP3 pathway in astrocytes from the dorsal spinal cord. J Neurosci 15:2961–2971

    PubMed  CAS  Google Scholar 

  192. Salter MW, Hicks JL (1994) ATP-evoked increases in intracellular calcium in neurons and glia from the dorsal spinal cord. J Neurosci 14:1563–1575

    PubMed  CAS  Google Scholar 

  193. Koizumi S, Saito Y, Nakazawa K, Nakajima K, Sawada JI, Kohsaka S, Illes P, Inoue K (2002) Spatial and temporal aspects of Ca2+ signaling mediated by P2Y receptors in cultured rat hippocampal astrocytes. Life Sci 72:431–442

    Article  PubMed  CAS  Google Scholar 

  194. Espallergues J, Solovieva O, Techer V, Bauer K, Alonso G, Vincent A, Hussy N (2007) Synergistic activation of astrocytes by ATP and norepinephrine in the rat supraoptic nucleus. Neuroscience 148:712–723

    Article  PubMed  CAS  Google Scholar 

  195. Bennett MR, Buljan V, Farnell L, Gibson WG (2006) Purinergic junctional transmission and propagation of calcium waves in spinal cord astrocyte networks. Biophys J 91:3560–3571

    Article  PubMed  CAS  Google Scholar 

  196. Gallagher CJ, Salter MW (2003) Differential properties of astrocyte calcium waves mediated by P2Y1 and P2Y2 receptors. J Neurosci 23:6728–6739

    PubMed  CAS  Google Scholar 

  197. Fam SR, Gallagher CJ, Kalia LV, Salter MW (2003) Differential frequency dependence of P2Y1- and P2Y2- mediated Ca2+ signaling in astrocytes. J Neurosci 23:4437–4444

    PubMed  CAS  Google Scholar 

  198. Suadicani SO, De Pina-Benabou MH, Urban-Maldonado M, Spray DC, Scemes E (2003) Acute downregulation of Cx43 alters P2Y receptor expression levels in mouse spinal cord astrocytes. Glia 42:160–171

    Article  PubMed  Google Scholar 

  199. John GR, Scemes E, Suadicani SO, Liu JS, Charles PC, Lee SC, Spray DC, Brosnan CF (1999) IL-1β differentially regulates calcium wave propagation between primary human fetal astrocytes via pathways involving P2 receptors and gap junction channels. Proc Natl Acad Sci U S A 96:11613–11618

    Article  PubMed  CAS  Google Scholar 

  200. Meme W, Ezan P, Venance L, Glowinski J, Giaume C (2004) ATP-induced inhibition of gap junctional communication is enhanced by interleukin-1β treatment in cultured astrocytes. Neuroscience 126:95–104

    Article  PubMed  CAS  Google Scholar 

  201. Ballerini P, Di Iorio P, Caciagli F, Rathbone MP, Jiang S, Nargi E, Buccella S, Giuliani P, D’Alimonte I, Fischione G, Masciulli A, Romano S, Ciccarelli R (2006) P2Y2 receptor up-regulation induced by guanosine or UTP in rat brain cultured astrocytes. Int J Immunopathol Pharmacol 19:293–308

    PubMed  CAS  Google Scholar 

  202. Bringmann A, Pannicke T, Weick M, Biedermann B, Uhlmann S, Kohen L, Wiedemann P, Reichenbach A (2002) Activation of P2Y receptors stimulates potassium and cation currents in acutely isolated human Müller (glial) cells. Glia 37:139–152

    Article  PubMed  Google Scholar 

  203. Piet R, Jahr CE (2007) Glutamatergic and purinergic receptor-mediated calcium transients in Bergmann glial cells. J Neurosci 27:4027–4035

    Article  PubMed  CAS  Google Scholar 

  204. Bowser DN, Khakh BS (2004) ATP excites interneurons and astrocytes to increase synaptic inhibition in neuronal networks. J Neurosci 24:8606–8620

    Article  PubMed  CAS  Google Scholar 

  205. Darby M, Kuzmiski JB, Panenka W, Feighan D, MacVicar BA (2003) ATP released from astrocytes during swelling activates chloride channels. J Neurophysiol 89:1870–1877

    Article  PubMed  CAS  Google Scholar 

  206. Wang Z, Haydon PG, Yeung ES (2000) Direct observation of calcium-independent intercellular ATP signaling in astrocytes. Anal Chem 72:2001–2007

    Article  PubMed  CAS  Google Scholar 

  207. Stout CE, Costantin JL, Naus CC, Charles AC (2002) Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem 277:10482–10488

    Article  PubMed  CAS  Google Scholar 

  208. Abdipranoto A, Liu GJ, Werry EL, Bennett MR (2003) Mechanisms of secretion of ATP from cortical astrocytes triggered by uridine triphosphate. Neuroreport 14:2177–2181

    Article  PubMed  CAS  Google Scholar 

  209. Coco S, Calegari F, Pravettoni E, Pozzi D, Taverna E, Rosa P, Matteoli M, Verderio C (2003) Storage and release of ATP from astrocytes in culture. J Biol Chem 278:1354–1362

    Article  PubMed  CAS  Google Scholar 

  210. Haas B, Schipke CG, Peters O, Sohl G, Willecke K, Kettenmann H (2006) Activity-dependent ATP-waves in the mouse neocortex are independent from astrocytic calcium waves. Cereb Cortex 16:237–246

    Article  PubMed  Google Scholar 

  211. Striedinger K, Meda P, Scemes E (2007) Exocytosis of ATP from astrocyte progenitors modulates spontaneous Ca2+ oscillations and cell migration. Glia 55:652–662

    Article  PubMed  Google Scholar 

  212. Verderio C, Matteoli M (2001) ATP mediates calcium signaling between astrocytes and microglial cells: modulation by IFN-γ. J Immunol 166:6383–6391

    PubMed  CAS  Google Scholar 

  213. Cotrina ML, Lin JH, Alves-Rodrigues A, Liu S, Li J, Azmi-Ghadimi H, Kang J, Naus CC, Nedergaard M (1998) Connexins regulate calcium signaling by controlling ATP release. Proc Natl Acad Sci U S A 95:15735–15740

    Article  PubMed  CAS  Google Scholar 

  214. Cotrina ML, Lin JH, Lopez-Garcia JC, Naus CC, Nedergaard M (2000) ATP-mediated glia signaling. J Neurosci 20:2835–2844

    PubMed  CAS  Google Scholar 

  215. Cunha RA (2008) Different cellular sources and different roles of adenosine: A1 receptor-mediated inhibition through astrocytic-driven volume transmission and synapse-restricted A2A receptor-mediated facilitation of plasticity. Neurochem Int 52:65–72

    Article  PubMed  CAS  Google Scholar 

  216. Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116

    Article  PubMed  CAS  Google Scholar 

  217. Martin ED, Fernandez M, Perea G, Pascual O, Haydon PG, Araque A, Cena V (2007) Adenosine released by astrocytes contributes to hypoxia-induced modulation of synaptic transmission. Glia 55:36–45

    Article  PubMed  Google Scholar 

  218. Jeremic A, Jeftinija K, Stevanovic J, Glavaski A, Jeftinija S (2001) ATP stimulates calcium-dependent glutamate release from cultured astrocytes. J Neurochem 77:664–675

    Article  PubMed  CAS  Google Scholar 

  219. Domercq M, Brambilla L, Pilati E, Marchaland J, Volterra A, Bezzi P (2006) P2Y1 receptor-evoked glutamate exocytosis from astrocytes: control by tumor necrosis factor-alpha and prostaglandins. J Biol Chem 281:30684–30696

    Article  PubMed  CAS  Google Scholar 

  220. Wirkner K, Gunther A, Weber M, Guzman SJ, Krause T, Fuchs J, Koles L, Norenberg W, Illes P (2007) Modulation of NMDA receptor current in layer V pyramidal neurons of the rat prefrontal cortex by P2Y receptor activation. Cereb Cortex 17:621–631

    Article  PubMed  Google Scholar 

  221. Mongin AA, Kimelberg HK (2002) ATP potently modulates anion channel-mediated excitatory amino acid release from cultured astrocytes. Am J Physiol Cell Physiol 283:C569–578

    PubMed  CAS  Google Scholar 

  222. Kimelberg HK (2004) Increased release of excitatory amino acids by the actions of ATP and peroxynitrite on volume-regulated anion channels (VRACs) in astrocytes. Neurochem Int 45:511–519

    Article  PubMed  CAS  Google Scholar 

  223. Fellin T, Pascual O, Haydon PG (2006) Astrocytes coordinate synaptic networks: balanced excitation and inhibition. Physiology (Bethesda) 21:208–215

    CAS  Google Scholar 

  224. Zhang JM, Wang HK, Ye CQ, Ge W, Chen Y, Jiang ZL, Wu CP, Poo MM, Duan S (2003) ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40:971–982

    Article  PubMed  CAS  Google Scholar 

  225. Bruner G, Murphy S (1990) ATP-evoked arachidonic acid mobilization in astrocytes is via a P2Y-purinergic receptor. J Neurochem 55:1569–1575

    Article  PubMed  CAS  Google Scholar 

  226. Bruner G, Murphy S (1993) Purinergic P2Y receptors on astrocytes are directly coupled to phospholipase A2. Glia 7:219–224

    Article  PubMed  CAS  Google Scholar 

  227. Gebicke-Haerter PJ, Wurster S, Schobert A, Hertting G (1988) P2-purinoceptor induced prostaglandin synthesis in primary rat astrocyte cultures. Naunyn Schmiedebergs Arch Pharmacol 338:704–707

    Article  PubMed  CAS  Google Scholar 

  228. Takasaki I, Takarada S, Tatsumi S, Azegami A, Yasuda M, Fukuchi M, Tabuchi A, Kondo T, Tabuchi Y, Tsuda M (2008) Extracellular adenosine 5′-triphosphate elicits the expression of brain-derived neurotrophic factor exon IV mRNA in rat astrocytes. Glia 56:1369–1379

    Article  PubMed  Google Scholar 

  229. Tran MD, Neary JT (2006) Purinergic signaling induces thrombospondin-1 expression in astrocytes. Proc Natl Acad Sci U S A 103:9321–9326

    Article  PubMed  CAS  Google Scholar 

  230. Abbracchio MP, Ceruti S, Langfelder R, Cattabeni F, Saffrey MJ, Burnstock G (1995) Effects of ATP analogues and basic fibroblast growth factor on astroglial cell differentiation in primary cultures of rat striatum. Int J Dev Neurosci 13:685–693

    Article  PubMed  CAS  Google Scholar 

  231. Bolego C, Ceruti S, Brambilla R, Puglisi L, Cattabeni F, Burnstock G, Abbracchio MP (1997) Characterization of the signalling pathways involved in ATP and basic fibroblast growth factor-induced astrogliosis. Br J Pharmacol 121:1692–1699

    Article  PubMed  CAS  Google Scholar 

  232. Abe K, Saito H (1999) Effect of ATP on astrocyte stellation is switched from suppressive to stimulatory during development. Brain Res 850:150–157

    Article  PubMed  CAS  Google Scholar 

  233. Abbracchio MP, Brambilla R, Ceruti S, Cattabeni F (1999) Signalling mechanisms involved in P2Y receptor-mediated reactive astrogliosis. Prog Brain Res 120:333–342

    Article  PubMed  CAS  Google Scholar 

  234. Brambilla R, Burnstock G, Bonazzi A, Ceruti S, Cattabeni F, Abbracchio MP (1999) Cyclo-oxygenase-2 mediates P2Y receptor-induced reactive astrogliosis. Br J Pharmacol 126:563–567

    Article  PubMed  CAS  Google Scholar 

  235. Brambilla R, Ceruti S, Malorni W, Cattabeni F, Abbracchio MP (2000) A novel gliotic P2 receptor mediating cyclooxygenase-2 induction in rat and human astrocytes. J Auton Nerv Syst 81:3–9

    Article  PubMed  CAS  Google Scholar 

  236. Brambilla R, Neary JT, Cattabeni F, Cottini L, D’Ippolito G, Schiller PC, Abbracchio MP (2002) Induction of COX-2 and reactive gliosis by P2Y receptors in rat cortical astrocytes is dependent on ERK1/2 but independent of calcium signalling. J Neurochem 83:1285–1296

    Article  PubMed  CAS  Google Scholar 

  237. Ciccarelli R, Di Iorio P, Ballerini P, Ambrosini G, Giuliani P, Tiboni GM, Caciagli F (1994) Effects of exogenous ATP and related analogues on the proliferation rate of dissociated primary cultures of rat astrocytes. J Neurosci Res 39:556–566

    Article  PubMed  CAS  Google Scholar 

  238. Neary JT, Kang Y, Shi YF, Tran MD, Wanner IB (2006) P2 receptor signalling, proliferation of astrocytes, and expression of molecules involved in cell–cell interactions. Novartis Found Symp 276:131–143

    Article  PubMed  CAS  Google Scholar 

  239. Neary JT, Kang Y, Bu Y, Yu E, Akong K, Peters CM (1999) Mitogenic signaling by ATP/P2Y purinergic receptors in astrocytes: involvement of a calcium-independent protein kinase C, extracellular signal-regulated protein kinase pathway distinct from the phosphatidylinositol-specific phospholipase C/calcium pathway. J Neurosci 19:4211–4220

    PubMed  CAS  Google Scholar 

  240. Francke M, Weick M, Pannicke T, Uckermann O, Grosche J, Goczalik I, Milenkovic I, Uhlmann S, Faude F, Wiedemann P, Reichenbach A, Bringmann A (2002) Upregulation of extracellular ATP-induced Müller cell responses in a dispase model of proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 43:870–881

    PubMed  Google Scholar 

  241. Francke M, Uhlmann S, Pannicke T, Goczalik I, Uckermann O, Weick M, Hartig W, Wiedemann P, Reichenbach A, Bringmann A (2003) Experimental dispase-induced retinopathy causes up-regulation of P2Y receptor-mediated calcium responses in Müller glial cells. Ophthalmic Res 35:30–41

    Article  PubMed  CAS  Google Scholar 

  242. Uckermann O, Uhlmann S, Weick M, Pannicke T, Francke M, Reichenbach A, Wiedemann P, Bringmann A (2003) Upregulation of purinergic P2Y receptor-mediated calcium responses in glial cells during experimental detachment of the rabbit retina. Neurosci Lett 338:131–134

    Article  PubMed  CAS  Google Scholar 

  243. Uhlmann S, Bringmann A, Uckermann O, Pannicke T, Weick M, Ulbricht E, Goczalik I, Reichenbach A, Wiedemann P, Francke M (2003) Early glial cell reactivity in experimental retinal detachment: effect of suramin. Invest Ophthalmol Vis Sci 44:4114–4122

    Article  PubMed  Google Scholar 

  244. Franke H, Krugel U, Illes P (1999) P2 receptor-mediated proliferative effects on astrocytes in vivo. Glia 28:190–200

    Article  PubMed  CAS  Google Scholar 

  245. Franke H, Krugel U, Schmidt R, Grosche J, Reichenbach A, Illes P (2001) P2 receptor-types involved in astrogliosis in vivo. Br J Pharmacol 134:1180–1189

    Article  PubMed  CAS  Google Scholar 

  246. Franke H, Kittner H, Grosche J, Illes P (2003) Enhanced P2Y1 receptor expression in the brain after sensitisation with d-amphetamine. Psychopharmacology (Berl) 167:187–194

    CAS  Google Scholar 

  247. Perez-Ortiz JM, Serrano-Perez MC, Pastor MD, Martin ED, Calvo S, Rincon M, Tranque P (2008) Mechanical lesion activates newly identified NFATc1 in primary astrocytes: implication of ATP and purinergic receptors. Eur J Neurosci 27:2453–2465

    Article  PubMed  Google Scholar 

  248. Wang M, Kong Q, Gonzalez FA, Sun G, Erb L, Seye C, Weisman GA (2005) P2Y nucleotide receptor interaction with α integrin mediates astrocyte migration. J Neurochem 95:630–640

    Article  PubMed  CAS  Google Scholar 

  249. Weisman GA, Wang M, Kong Q, Chorna NE, Neary JT, Sun GY, Gonzalez FA, Seye CI, Erb L (2005) Molecular determinants of P2Y2 nucleotide receptor function: implications for proliferative and inflammatory pathways in astrocytes. Mol Neurobiol 31:169–183

    Article  PubMed  CAS  Google Scholar 

  250. Washburn KB, Neary JT (2006) P2 purinergic receptors signal to STAT3 in astrocytes: Difference in STAT3 responses to P2Y and P2X receptor activation. Neuroscience 142:411–423

    Article  PubMed  CAS  Google Scholar 

  251. Burgos M, Neary JT, Gonzalez FA (2007) P2Y2 nucleotide receptors inhibit trauma-induced death of astrocytic cells. J Neurochem 103:1785–1800

    Article  PubMed  CAS  Google Scholar 

  252. Fujita T, Tozaki-Saitoh H, Inoue K (2008) P2Y1 receptor signaling enhances neuroprotection by astrocytes against oxidative stress via IL-6 release in hippocampal cultures. Glia 57:244–257

    Article  Google Scholar 

  253. Wu J, Holstein JD, Upadhyay G, Lin DT, Conway S, Muller E, Lechleiter JD (2007) Purinergic receptor-stimulated IP3-mediated Ca2+ release enhances neuroprotection by increasing astrocyte mitochondrial metabolism during aging. J Neurosci 27:6510–6520

    Article  PubMed  CAS  Google Scholar 

  254. Kim SG, Soltysiak KA, Gao ZG, Chang TS, Chung E, Jacobson KA (2003) Tumor necrosis factor α-induced apoptosis in astrocytes is prevented by the activation of P2Y6, but not P2Y4 nucleotide receptors. Biochem Pharmacol 65:923–931

    Article  PubMed  CAS  Google Scholar 

  255. Chorna NE, Santiago-Perez LI, Erb L, Seye CI, Neary JT, Sun GY, Weisman GA, Gonzalez FA (2004) P2Y receptors activate neuroprotective mechanisms in astrocytic cells. J Neurochem 91:119–132

    Article  PubMed  CAS  Google Scholar 

  256. Agresti C, Meomartini ME, Amadio S, Ambrosini E, Serafini B, Franchini L, Volonte C, Aloisi F, Visentin S (2005) Metabotropic P2 receptor activation regulates oligodendrocyte progenitor migration and development. Glia 50:132–144

    Article  PubMed  CAS  Google Scholar 

  257. Moran-Jimenez MJ, Matute C (2000) Immunohistochemical localization of the P2Y1 purinergic receptor in neurons and glial cells of the central nervous system. Brain Res Mol Brain Res 78:50–58

    Article  PubMed  CAS  Google Scholar 

  258. Bernstein M, Lyons SA, Moller T, Kettenmann H (1996) Receptor-mediated calcium signalling in glial cells from mouse corpus callosum slices. J Neurosci Res 46:152–163

    Article  PubMed  CAS  Google Scholar 

  259. Butt AM (2006) Neurotransmitter-mediated calcium signalling in oligodendrocyte physiology and pathology. Glia 54:666–675

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

GB thanks the Leverhulme Trust for their support. AV and OK acknowledge financial support from INTAS; AV research is also supported by Alzheimer Research Foundation (UK) and by the Grant Agency of the Czech Republic. The authors thank Dr. Gillian E. Knight for excellent editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Verkhrasky.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12035-009-8070-3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verkhrasky, A., Krishtal, O.A. & Burnstock, G. Purinoceptors on Neuroglia. Mol Neurobiol 39, 190–208 (2009). https://doi.org/10.1007/s12035-009-8063-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-009-8063-2

Keywords

Navigation