Skip to main content
Log in

Coenzyme Q10 Depletion in Medical and Neuropsychiatric Disorders: Potential Repercussions and Therapeutic Implications

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Coenzyme Q10 (CoQ10) is an antioxidant, a membrane stabilizer, and a vital cofactor in the mitochondrial electron transport chain, enabling the generation of adenosine triphosphate. It additionally regulates gene expression and apoptosis; is an essential cofactor of uncoupling proteins; and has anti-inflammatory, redox modulatory, and neuroprotective effects. This paper reviews the known physiological role of CoQ10 in cellular metabolism, cell death, differentiation and gene regulation, and examines the potential repercussions of CoQ10 depletion including its role in illnesses such as Parkinson’s disease, depression, myalgic encephalomyelitis/chronic fatigue syndrome, and fibromyalgia. CoQ10 depletion may play a role in the pathophysiology of these disorders by modulating cellular processes including hydrogen peroxide formation, gene regulation, cytoprotection, bioenegetic performance, and regulation of cellular metabolism. CoQ10 treatment improves quality of life in patients with Parkinson’s disease and may play a role in delaying the progression of that disorder. Administration of CoQ10 has antidepressive effects. CoQ10 treatment significantly reduces fatigue and improves ergonomic performance during exercise and thus may have potential in alleviating the exercise intolerance and exhaustion displayed by people with myalgic encepholamyletis/chronic fatigue syndrome. Administration of CoQ10 improves hyperalgesia and quality of life in patients with fibromyalgia. The evidence base for the effectiveness of treatment with CoQ10 may be explained via its ability to ameliorate oxidative stress and protect mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CoQ10:

Coenzyme Q10

ATP:

Adenosine triphosphate

ROS:

Reactive oxygen species

RNS:

Reactive nitrogen species

O&NS:

Oxidative and nitrosative stress

NF-κB:

Nuclear factor-κB

MDA:

Malondialdehyde

SOD:

Superoxide dismutase

ME/CFS:

Myalgic encepholamyletis/chronic fatigue syndrome

PD:

Parkinson’s disease

NO:

Nitric oxide

BH4 :

Tetrahydrobiopterin

PUFAs:

Poly-unsaturated fatty acids

UPS:

Ubiquitin–proteasome system

4HNE:

4-Hydroxynonenal

PGC-1α:

Peroxisome proliferator-activated receptor (PPAR) gamma co-activator-1 alpha

UCP:

Uncoupler protein

Nrf2:

Nuclear factor (erythroid-derived 2)-like 2

ARE:

Antioxidant response element

mtDNA:

Mitochondrial DNA

NRF1/2:

Nuclear respiratory factor 1/2

(TNF)α:

Tumor necrosis factor

(C-X-C-motif):

Chemokine

IL:

Interleukin

n-SMase:

Neutral-sphingomyelinase

CVD:

Cardiovascular disorder

Kfor:

Forward rate constant

UPDRS:

Unified Parkinson Disease Rating Scale

References

  1. Jelin JM, Gregory PJ et al (2009) Natural medicines comprehensive database/compiled by the editors of Pharmacist’s Letter, Prescriber’s Letter, 11th edn. Therapeutic Research Faculty, Stockton, CA, pp 452–457

    Google Scholar 

  2. Fetrow CW, Avila JR (2001) Professional’s handbook of complementary & alternative medicines, 2nd edn. Springhouse, Springhouse, PA, pp 211–215

    Google Scholar 

  3. Berthold HK, Naini A, Di Mauro S, Hallikainen M, Gylling H, Krone W, Gouni-Berthold I (2006) Effect of ezetimibe and/or simvastatin on coenzyme Q10 levels in plasma: a randomised trial. Drug Saf 29(8):703–712

    CAS  PubMed  Google Scholar 

  4. Littarru GP, Tiano L (2007) Bioenergetic and antioxidant properties of coenzyme Q10: recent developments. Mol Biotechnol 37(1):31–37

    CAS  PubMed  Google Scholar 

  5. Ikematsu H, Nakamura K, Harashima S, Fujii K, Fukutomi N (2006) Safety assessment of coenzyme Q10 (Kaneka Q10) in healthy subjects: a double-blind, randomized, placebo-controlled trial. Regul Toxicol Pharmacol 44(3):212–218

    CAS  PubMed  Google Scholar 

  6. Crane FL (2008) The evolution of coenzyme Q. Biofactors 32(1–4):5–11

    CAS  PubMed  Google Scholar 

  7. De Cabo R, Cabello R, Rios M, López-Lluch G, Ingram DK, Lane MA, Navas P (2004) Calorie restriction attenuates age-related alterations in the plasma membrane antioxidant system in rat liver. Exp Gerontol 39(3):297–304

    PubMed  Google Scholar 

  8. Navarro F, Villalba JM, Crane FL, Mackellar WC, Navas P (1995) A phospholipid-dependent NADH-coenzyme Q reductase from liver plasma membrane. Biochem Biophys Res Commun 212(1):138–143

    CAS  PubMed  Google Scholar 

  9. Matthews RT, Yang L, Browne S, Baik M, Beal MF (1998) Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc Natl Acad Sci U S A 95(15):8892–8897

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Crane FL (2001) Biochemical functions of coenzyme Q10. J Am Coll Nutr 20(6):591–598

    CAS  PubMed  Google Scholar 

  11. Potgieter M, Pretorius E, Oberholzer HM (2009) Qualitative electron microscopic analysis of cultured chick embryonic cardiac and skeletal muscle cells: the cellular effect of coenzyme q10 after exposure to triton x-100. Ultrastruct Pathol 33(3):93–101

    PubMed  Google Scholar 

  12. Schmelzer C, Lindner I, Rimbach G, Niklowitz P, Menke T, Doring F (2008) Functions of coenzyme Q10 in inflammation and gene expression. Biofactors 32(1–4):179–183

    CAS  PubMed  Google Scholar 

  13. Bentinger M, Tekle M, Dallner G (2010) Coenzyme Q—biosynthesis and functions. Biochem Biophys Res Commun 396(1):74–79

    CAS  PubMed  Google Scholar 

  14. Groneberg DA, Kindermann B, Althammer M, Klapper M, Vormann J, Littarru GP, Döring F (2005) Coenzyme Q10 affects expression of genes involved in cell signalling, metabolism and transport in human CaCo-2 cells. Int J Biochem Cell Biol 37(6):1208–1218

    CAS  PubMed  Google Scholar 

  15. Schmelzer C, Döring F (2010) Identification of LPS-inducible genes downregulated by ubiquinone in human THP-1 monocytes. Biofactors 36(3):222–228

    CAS  PubMed  Google Scholar 

  16. Lee CK, Pugh TD, Klopp RG, Edwards J, Allison DB, Weindruch R, Prolla TA (2004) The impact of alpha-lipoic acid, coenzyme Q10 and caloric restriction on life span and gene expression patterns in mice. Free Radic Biol Med 36(8):1043–1057

    CAS  PubMed  Google Scholar 

  17. Wyman M, Leonard M, Morledge T (2010) Coenzyme Q10: a therapy for hypertension and statin-induced myalgia? Cleve Clin J Med 77(7):435–442

    PubMed  Google Scholar 

  18. Schmelzer C, Lindner I, Vock C, Fujii K, Döring F (2007) Functional connections and pathways of coenzyme Q10-inducible genes: an in-silico study. IUBMB Life 59(10):628–633

    PubMed  Google Scholar 

  19. Schmelzer C, Lorenz G, Rimbach G, Döring F (2007) Influence of coenzyme Q{10} on release of pro-inflammatory chemokines in the human monocytic cell line THP-1. Biofactors 31(3–4):211–217

    CAS  PubMed  Google Scholar 

  20. Schmelzer C, Lorenz G, Rimbach G, Döring F (2009) In vitro effects of the reduced form of coenzyme Q(10) on secretion levels of TNF-alpha and chemokines in response to LPS in the human monocytic cell line THP-1. J Clin Biochem Nutr 44(1):62–66

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Barroso MP, Gómez-Díaz C, Villalba JM, Burón MI, López-Lluch G, Navas P (1997) Plasma membrane ubiquinone controls ceramide production and prevents cell death induced by serum withdrawal. J Bioenerg Biomembr 29(3):259–267

    CAS  PubMed  Google Scholar 

  22. González R, Ferrín G, Hidalgo AB, Ranchal I, López-Cillero P, Santos-Gónzalez M, López-Lluch G, Briceño J, Gómez MA, Poyato A, Villalba JM, Navas P, de la Mata M, Muntané J (2009) N-acetylcysteine, coenzyme Q10 and superoxide dismutase mimetic prevent mitochondrial cell dysfunction and cell death induced by d-galactosamine in primary culture of human hepatocytes. Chem Biol Interact 181(1):95–106

    PubMed  Google Scholar 

  23. Kon M, Kimura F, Akimoto T, Tanabe K, Murase Y, Ikemune S, Kono I (2007) Effect of coenzyme Q10 supplementation on exercise-induced muscular injury of rats. Exerc Immunol Rev 13:76–88

    PubMed  Google Scholar 

  24. Wang H, Zhao X, Yin S (2008) Effects of coenzyme Q10 or combined with micronutrients on antioxidant defense system in rats. Wei Sheng Yan Jiu 37(3):311–313

    CAS  PubMed  Google Scholar 

  25. González-Aragón D, Burón MI, López-Lluch G, Hermán MD, Gómez-Díaz C, Navas P, Villalba JM (2005) Coenzyme Q and the regulation of intracellular steady-state levels of superoxide in HL-60 cells. Biofactors 25(1–4):31–41

    PubMed  Google Scholar 

  26. Hiebert JB, Shen Q, Pierce JD (2012) Application of coenzyme Q10 in clinical practice. Int J Intern Med. doi:10.5580/2b24

    Google Scholar 

  27. Quinzii C, Naini A, Salviati L, Trevisson E, Navas P, Dimauro S, Hirano M (2006) A mutation in para-hydroxybenzoate-polyprenyl transferase (COQ2) causes primary coenzyme Q10 deficiency. Am J Hum Genet 78(2):345–349

    CAS  PubMed Central  PubMed  Google Scholar 

  28. López LC, Schuelke M, Quinzii CM, Kanki T, Rodenburg RJ, Naini A, Dimauro S, Hirano M (2006) Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. Am J Hum Genet 79(6):1125–1129

    PubMed Central  PubMed  Google Scholar 

  29. DiMauro S, Quinzii CM, Hirano M (2007) Mutations in coenzyme Q10 biosynthetic genes. J Clin Invest 117(3):587–589

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Fischer A, Schmelzer C, Rimbach G, Niklowitz P, Menke T, Döring F (2011) Association between genetic variants in the coenzyme Q10 metabolism and coenzyme Q10 status in humans. BMC Res Notes 4:245

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Abe K, Fujimura H, Nishikawa Y, Yorifuji S, Mezaki T, Hirono N, Nishitani N, Kameyama M (1991) Marked reduction in CSF lactate and pyruvate levels after CoQ therapy in a patient with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS). Acta Neurol Scand 83(6):356–359

    CAS  PubMed  Google Scholar 

  32. Bresolin N, Bet L, Binda A, Moggio M, Comi G, Nador F, Ferrante C, Carenzi A, Scarlato G (1988) Clinical and biochemical correlations in mitochondrial myopathies treated with coenzyme Q10. Neurology 38(6):892–899

    CAS  PubMed  Google Scholar 

  33. Shoffner JM, Lott MT, Voljavec AS, Soueidan SA, Costigan DA, Wallace DC (1989) Spontaneous Kearns–Sayre/chronic external ophthalmoplegia plus syndrome associated with a mitochondrial DNA deletion: a slip-replication model and metabolic therapy. Proc Natl Acad Sci U S A 86(20):7952–7956

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Kurup RK, Kurup PA (2003) Isoprenoid pathway dysfunction in chronic fatigue syndrome. Acta Neuropsychiatr 15(5):266–273

    Google Scholar 

  35. Maes M, Mihaylova I, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E (2009) Increased 8-hydroxy-deoxyguanosine, a marker of oxidative damage to DNA, in major depression and myalgic encephalomyelitis/chronic fatigue syndrome. Neuro Endocrinol Lett 30(6):715–722

    CAS  PubMed  Google Scholar 

  36. Maes M, Mihaylova I, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E (2009) Coenzyme Q10 deficiency in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is related to fatigue, autonomic and neurocognitive symptoms and is another risk factor explaining the early mortality in ME/CFS due to cardiovascular disorder. Neuro Endocrinol Lett 30(4):470–476

    CAS  PubMed  Google Scholar 

  37. Cordero MD, Cano-García FJ, Alcocer-Gómez E, De Miguel M, Sánchez-Alcázar JA (2012) Oxidative stress correlates with headache symptoms in fibromyalgia: coenzyme Q10 effect on clinical improvement. PLoS One 7(4):e35677

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Cordero MD, Cotán D, del-Pozo-Martín Y, Carrión AM, de Miguel M, Bullón P, Sánchez-Alcazar JA (2012) Oral coenzyme Q10 supplementation improves clinical symptoms and recovers pathologic alterations in blood mononuclear cells in a fibromyalgia patient. Nutrition 28(11–12):1200–1203

    CAS  PubMed  Google Scholar 

  39. Forester BP, Zuo CS, Ravichandran C, Harper DG, Du F, Kim S, Cohen BM, Renshaw PF (2012) Coenzyme Q10 effects on creatine kinase activity and mood in geriatric bipolar depression. J Geriatr Psychiatry Neurol 25(1):43–50

    PubMed  Google Scholar 

  40. Shults CW, Haas RH, Passov D, Beal MF (1997) Coenzyme Q10 levels correlate with the activities of complexes I and II/III in mitochondria from parkinsonian and nonparkinsonian subjects. Ann Neurol 42(2):261–264

    CAS  PubMed  Google Scholar 

  41. Beal MF (2002) Coenzyme Q10 as a possible treatment for neurodegenerative diseases. Free Radic Res 36(4):455–460

    PubMed  Google Scholar 

  42. Beal MF (2004) Therapeutic effects of coenzyme Q10 in neurodegenerative diseases. Methods Enzymol 382:473–487

    CAS  PubMed  Google Scholar 

  43. Dhanasekaran M, Ren J (2005) The emerging role of coenzyme Q-10 in aging, neurodegeneration, cardiovascular disease, cancer and diabetes mellitus. Curr Neurovasc Res 2(5):447–459

    CAS  PubMed  Google Scholar 

  44. Maes M, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E (2011) Increased plasma peroxides as a marker of oxidative stress in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Med Sci Monit 17(4):SC11–SC15

    CAS  PubMed  Google Scholar 

  45. Berk M, Kapczinski F, Andreazza AC, Dean OM, Giorlando F, Maes M, Yücel M, Gama CS, Dodd S, Dean B, Magalhães PV, Amminger P, McGorry P, Malhi GS (2011) Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev 35(3):804–817

    CAS  PubMed  Google Scholar 

  46. Anderson G, Maes M (2013) TRYCAT pathways link peripheral inflammation, nicotine, somatization and depression in the etiology and course of Parkinson’s disease. CNS Neurolog Dis (in press).

  47. Rollins B, Martin MV, Sequeira PA, Moon EA, Morgan LZ, Watson SJ, Schatzberg A, Akil H, Myers RM, Jones EG, Wallace DC, Bunney WE, Vawter MP (2009) Mitochondrial variants in schizophrenia, bipolar disorder, and major depressive disorder. PLoS One 4(3):e4913. doi:10.1371/journal.pone.0004913, Epub 2009 Mar 17. PubMed PMID: 19290059; PubMed Central PMCID: PMC2654519

    PubMed Central  PubMed  Google Scholar 

  48. Nierenberg AA, Kansky C, Brennan BP, Shelton RC, Perlis R, Iosifescu DV (2013) Mitochondrial modulators for bipolar disorder: a pathophysiologically informed paradigm for new drug development. Aust N Z J Psychiatry 47(1):26–42

    PubMed  Google Scholar 

  49. Shults CW (2003) Coenzyme Q10 in neurodegenerative diseases. Curr Med Chem 10(19):1917–1921

    CAS  PubMed  Google Scholar 

  50. Mancuso M, Orsucci D, Volpi L, Calsolaro V, Siciliano G (2010) Coenzyme Q10 in neuromuscular and neurodegenerative disorders. Curr Drug Targets 11(1):111–121

    CAS  PubMed  Google Scholar 

  51. Shults CW, Oakes D, Kieburtz K, Beal MF, Haas R, Plumb S, Juncos JL, Nutt J, Shoulson I, Carter J, Kompoliti K, Perlmutter JS, Reich S, Stern M, Watts RL, Kurlan R, Molho E, Harrison M, Lew M, Parkinson Study Group (2002) Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch Neurol 59(10):1541–1550

    PubMed  Google Scholar 

  52. Liu J, Wang L, Zhan SY, Xia Y (2011) Coenzyme Q10 for Parkinson’s disease. Cochrane Database Syst Rev 2011(12), CD008150

    Google Scholar 

  53. Turko IV, Marcondes S, Murad F (2001) Diabetes-associated nitration of tyrosine and inactivation of succinyl-CoA:3-oxoacid CoA-transferase. Am J Physiol Heart Circ Physiol 281(6):H2289–H2294

    CAS  PubMed  Google Scholar 

  54. Evans JL, Goldfine ID, Maddux BA, Grodsky GM (2002) Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 23(5):599–622

    CAS  PubMed  Google Scholar 

  55. Vega-López S, Devaraj S, Jialal I (2004) Oxidative stress and antioxidant supplementation in the management of diabetic cardiovascular disease. J Investig Med 52(1):24–32

    PubMed  Google Scholar 

  56. Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208

    CAS  PubMed  Google Scholar 

  57. Fernstrom JD (1999) Effects of dietary polyunsaturated fatty acids on neuronal function. Lipids 34(2):161–169

    CAS  PubMed  Google Scholar 

  58. Buisson A, Lakhmeche N, Verrecchia C, Plotkine M, Boulu RG (1993) Nitric oxide: an endogenous anticonvulsant substance. Neuroreport 4(4):444–446

    CAS  PubMed  Google Scholar 

  59. Jenkinson AM, Collins AR, Duthie SJ, Wahle KW, Duthie GG (1999) The effect of increased intakes of polyunsaturated fatty acids and vitamin E on DNA damage in human lymphocytes. FASEB J 13(15):2138–2142

    CAS  PubMed  Google Scholar 

  60. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochemistry 97(6):1634–1658

    CAS  Google Scholar 

  61. Smith JA, Park S, Krause JS, Banik NL (2013) Oxidative stress, DNA damage, and the telomeric complex as therapeutic targets in acute neurodegeneration. Neurochem Int. doi:10.1016/j.neuint.2013.02.013, Epub ahead of print

    PubMed  Google Scholar 

  62. Shibata N, Kobayashi M (2008) The role for oxidative stress in neurodegenerative diseases. Brain Nerve 60(2):157–170

    CAS  PubMed  Google Scholar 

  63. Farooqui T, Farooqui AA (2011) Lipid-mediated oxidative stress and inflammation in the pathogenesis of Parkinson’s disease. Park Dis 2011:247467

    Google Scholar 

  64. Nakamura T, Lipton SA (2010) Redox regulation of mitochondrial fission, protein misfolding, synaptic damage, and neuronal cell death: potential implications for Alzheimer’s and Parkinson’s diseases. Apoptosis 15(11):1354–1363

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Storch A, Jost WH, Vieregge P, Spiegel J, Greulich W, Durner J, Müller T, Kupsch A, Henningsen H, Oertel WH, Fuchs G, Kuhn W, Niklowitz P, Koch R, Herting B, Reichmann H, German Coenzyme Q(10) Study Group (2007) Randomized, double-blind, placebo-controlled trial on symptomatic effects of coenzyme Q(10) in Parkinson disease. Arch Neurol 64(7):938–944

    PubMed  Google Scholar 

  66. Bandyopadhyay U, Cuervo AM (2007) Chaperone-mediated autophagy in aging and neurodegeneration: lessons from alpha-synuclein. Exp Gerontol 42(1–2):120–128

    PubMed  Google Scholar 

  67. Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443(7113):780–786

    CAS  PubMed  Google Scholar 

  68. Keller JN, Dimayuga E, Chen Q, Thorpe J, Gee J, Ding Q (2004) Autophagy, proteasomes, lipofuscin, and oxidative stress in the aging brain. Int J Biochem Cell Biol 36(12):2376–2391

    CAS  PubMed  Google Scholar 

  69. Grune T, Reinheckel T, Joshi M, Davies KJ (1995) Proteolysis in cultured liver epithelial cells during oxidative stress. Role of the multicatalytic proteinase complex, proteasome. J Biol Chem 270(5):2344–2351

    CAS  PubMed  Google Scholar 

  70. Grune T, Blasig IE, Sitte N, Roloff B, Haseloff R, Davies KJ (1998) Peroxynitrite increases the degradation of aconitase and other cellular proteins by proteasome. J Biol Chem 273(18):10857–10862

    CAS  PubMed  Google Scholar 

  71. Ullrich O, Reinheckel T, Sitte N, Grune T (1999) Degradation of hypochlorite-damaged glucose-6-phosphate dehydrogenase by the 20S proteasome. Free Radic Biol Med 27(5–6):487–492

    CAS  PubMed  Google Scholar 

  72. Malkus KA, Tsika E, Ischiropoulos H (2009) Oxidative modifications, mitochondrial dysfunction, and impaired protein degradation in Parkinson’s disease: how neurons are lost in the Bermuda triangle. Mol Neurodegener 4:24

    PubMed Central  PubMed  Google Scholar 

  73. Friguet B, Szweda LI (1997) Inhibition of the multicatalytic proteinase (proteasome) by 4-hydroxy-2-nonenal cross-linked protein. FEBS Lett 405(1):21–25

    CAS  PubMed  Google Scholar 

  74. Friguet B, Stadtman ER, Szweda LI (1994) Modification of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal. Formation of cross-linked protein that inhibits the multicatalytic protease. J Biol Chem 269(34):21639–21643

    CAS  PubMed  Google Scholar 

  75. Sitte N, Merker K, Von Zglinicki T, Grune T, Davies KJ (2000) Protein oxidation and degradation during cellular senescence of human BJ fibroblasts: part I—effects of proliferative senescence. FASEB J 14(15):2495–2502

    CAS  PubMed  Google Scholar 

  76. Sitte N, Huber M, Grune T, Ladhoff A, Doecke WD, Von Zglinicki T, Davies KJ (2000) Proteasome inhibition by lipofuscin/ceroid during postmitotic aging of fibroblasts. FASEB J 14(11):1490–1498

    CAS  PubMed  Google Scholar 

  77. Martinez-Vicente M, Talloczy Z, Kaushik S, Massey AC, Mazzulli J, Mosharov EV, Hodara R, Fredenburg R, Wu DC, Follenzi A, Dauer W, Przedborski S, Ischiropoulos H, Lansbury PT, Sulzer D, Cuervo AM (2008) Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J Clin Invest 118(2):777–788

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Wan FY, Wang YN, Zhang GJ (2001) The influence of oxidation of membrane thiol groups on lysosomal proton permeability. Biochem J 360(Pt 2):355–362

    CAS  PubMed  Google Scholar 

  79. Brunk UT, Dalen H, Roberg K, Hellquist HB (1997) Photo-oxidative disruption of lysosomal membranes causes apoptosis of cultured human fibroblasts. Free Radic Biol Med 23(4):616–626

    CAS  PubMed  Google Scholar 

  80. Brunk UT, Terman A (2002) Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic Biol Med 33(5):611–619

    CAS  PubMed  Google Scholar 

  81. Ditaranto K, Tekirian TL, Yang AJ (2001) Lysosomal membrane damage in soluble Abeta-mediated cell death in Alzheimer’s disease. Neurobiol Dis 8(1):19–31

    CAS  PubMed  Google Scholar 

  82. Nakamura M, Hayashi T (1994) One- and two-electron reduction of quinones by rat liver subcellular fractions. J Biochem 115(6):1141–1147

    CAS  PubMed  Google Scholar 

  83. Ernster L, Dallner G (1995) Biochemical, physiological and medical aspects of ubiquinone function. Biochim Biophys Acta 1271(1):195–204

    PubMed  Google Scholar 

  84. Bhagavan HN, Chopra RK (2006) Coenzyme Q10: absorption, tissue uptake, metabolism and pharmacokinetics. Free Radic Res 40(5):445–453

    CAS  PubMed  Google Scholar 

  85. Donnino MW, Cocchi MN, Salciccioli JD, Kim D, Naini AB, Buettner C, Akuthota P (2011) Coenzyme Q10 levels are low and may be associated with the inflammatory cascade in septic shock. Crit Care 15(4):R189

    PubMed  Google Scholar 

  86. Crane FL, Navas P (1997) The diversity of coenzyme Q function. Mol Aspects Med 18(Suppl):S1–S6

    CAS  PubMed  Google Scholar 

  87. Larm JA, Vaillant F, Linnane AW, Lawen A (1994) Up-regulation of the plasma membrane oxidoreductase as a prerequisite for the viability of human Namalwa rho 0 cells. J Biol Chem 269(48):30097–30100

    CAS  PubMed  Google Scholar 

  88. Morré DM, Lenaz G, Morré DJ (2000) Surface oxidase and oxidative stress propagation in aging. J Exp Biol 203(Pt 10):1513–1521

    PubMed  Google Scholar 

  89. Nohl H, Jordan W (1986) The mitochondrial site of superoxide formation. Biochem Biophys Res Commun 138(2):533–539

    CAS  PubMed  Google Scholar 

  90. Turrens JF, Alexandre A, Lehninger AL (1985) Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys 237(2):408–414

    CAS  PubMed  Google Scholar 

  91. DegliEsposti M, Ballester F, Timoneda J, Crimi M, Lenaz G (1990) The oxidation of ubiquinol by the isolated Rieske iron-sulfur protein in solution. Arch Biochem Biophys 28(2):258–265

    Google Scholar 

  92. Trumpower BL (1981) New concepts on the role of ubiquinone in the mitochondrial respiratory chain. J Bioenerg Biomembr 13(1–2):1–24

    CAS  PubMed  Google Scholar 

  93. Lenaz G (1998) Role of mitochondria in oxidative stress and ageing. Biochim Biophys Acta 1366(1–2):53–67

    CAS  PubMed  Google Scholar 

  94. Navas P, Villalba JM, de Cabo R (2007) The importance of plasma membrane coenzyme Q in aging and stress responses. Mitochondrion 7(Suppl):S34–S40

    CAS  PubMed  Google Scholar 

  95. Santos-Ocaña C, Do TQ, Padilla S, Navas P, Clarke CF (2002) Uptake of exogenous coenzyme Q and transport to mitochondria is required for bc1 complex stability in yeast coq mutants. J Biol Chem 277(13):10973–10981

    PubMed  Google Scholar 

  96. Rodríguez-Hernández A, Cordero MD, Salviati L, Artuch R, Pineda M, Briones P, Gómez Izquierdo L, Cotán D, Navas P, Sánchez-Alcázar JA (2009) Coenzyme Q deficiency triggers mitochondria degradation by mitophagy. Autophagy 5(1):19–32

    PubMed  Google Scholar 

  97. Schulte-Mattler WJ, Müller T, Deschauer M, Gellerich FN, Iaizzo PA, Zierz S (2003) Increased metabolic muscle fatigue is caused by some but not all mitochondrial mutations. Arch Neurol 60(1):50–58

    PubMed  Google Scholar 

  98. Finsterer J (2004) Mitochondriopathies. Eur J Neurol 11(3):163–186

    CAS  PubMed  Google Scholar 

  99. Tsao CY, Mendell JR (2002) Combined partial deficiencies of carnitine palmitoyltransferase II and mitochondrial complex I presenting as increased serum creatine kinase level. J Child Neurol 17(4):304–306

    PubMed  Google Scholar 

  100. Andrich J, Saft C, Gerlach M, Schneider B, Arz A, Kuhn W, Müller T (2004) Coenzyme Q10 serum levels in Huntington’s disease. J Neural Transm Suppl 68:111–116

    CAS  PubMed  Google Scholar 

  101. Steele PE, Tang PH, DeGrauw AJ, Miles MV (2004) Clinical laboratory monitoring of coenzyme Q10 use in neurologic and muscular diseases. Am J Clin Pathol 121(Suppl):S113–S120

    PubMed  Google Scholar 

  102. Walker FO, Raymond LA (2004) Targeting energy metabolism in Huntington’s disease. Lancet 364(9431):312–313

    PubMed  Google Scholar 

  103. Werbach MR (2000) Nutritional strategies for treating chronic fatigue syndrome. Altern Med Rev 5(2):93–108

    CAS  PubMed  Google Scholar 

  104. Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134(3):707–716

    CAS  PubMed  Google Scholar 

  105. Beyer RE, Ernster L (1990) The antioxidant role of Coenzyme Q. In: Lenaz G, Barnobei O, Robbi A, Battino M (eds) Highlights of ubiquinone research. Taylor & Francis, London, pp 191–213

    Google Scholar 

  106. Kettawan A, Takahashi T, Kongkachuichai R, Charoenkiatkul S, Kishi T, Okamoto T (2007) Protective effects of coenzyme q(10) on decreased oxidative stress resistance induced by simvastatin. J Clin Biochem Nutr 40(3):194–202

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Kagan V, Serbinova E, Packer L (1990) Antioxidant effects of ubiquinones in microsomes and mitochondria are mediated by tocopherol recycling. Biochem Biophys Res Commun 169(3):851–857

    CAS  PubMed  Google Scholar 

  108. Ernster L, Forsmark P, Nordenbrand K (1992) The mode of action of lipid-soluble antioxidants in biological membranes: relationship between the effects of ubiquinol and vitamin E as inhibitors of lipid peroxidation in submitochondrial particles. Biofactors 3(4):241–248

    CAS  PubMed  Google Scholar 

  109. Yamamoto Y, Komuro E, Niki E (1990) Antioxidant activity of ubiquinol in solution and phosphatidylcholine liposome. J Nutr Sci Vitaminol 36(5):505–511 (Tokyo)

    CAS  PubMed  Google Scholar 

  110. Landi L, Cabrini L, Fiorentini D, Stefanelli C, Pedulli GF (1992) The antioxidant activity of ubiquinol-3 in homogeneous solution and in liposomes. Chem Phys Lipids 61(2):121–130

    CAS  PubMed  Google Scholar 

  111. Bentinger M, Brismar K, Dallner G (2007) The antioxidant role of coenzyme Q. Mitochondrion 7(Suppl):S41–S50

    CAS  PubMed  Google Scholar 

  112. James AM, Smith RA, Murphy MP (2004) Antioxidant and prooxidant properties of mitochondrial coenzyme Q. Arch Biochem Biophys 423(1):47–56

    CAS  PubMed  Google Scholar 

  113. Alleva R, Tomasetti M, Battino M, Curatola G, Littarru GP, Folkers K (1995) The roles of coenzyme Q10 and vitamin E on the peroxidation of human low density lipoprotein subfractions. Proc Natl Acad Sci U S A 92(20):9388–9391

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Singh U, Devaraj S, Jialal I (2007) Coenzyme Q10 supplementation and heart failure. Nutr Rev 65(6 Pt 1):286–293

    PubMed  Google Scholar 

  115. Lee BJ, Lin YC, Huang YC, Ko YW, Hsia S, Lin PT (2012) The relationship between coenzyme Q10, oxidative stress, and antioxidant enzymes activities and coronary artery disease. Scientific World Journal 2012:792756

    PubMed  Google Scholar 

  116. Frei B, Kim MC, Ames BN (1990) Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc Natl Acad Sci U S A 87(12):4879–4883

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Mordente A, Martorana GE, Santini SA, Miggiano GA, Petitti T, Giardina B, Battino M, Littarru GP (1993) Antioxidant effect of coenzyme Q on hydrogen peroxide-activated myoglobin. Clin Investig 71(8 Suppl):S92–S96

    CAS  PubMed  Google Scholar 

  118. Ernster L, Forsmark-Andrée P (1993) Ubiquinol: an endogenous antioxidant in aerobic organisms. Clin Investig 71(8 Suppl):S60–S65

    CAS  PubMed  Google Scholar 

  119. Weber C, Jakobsen TS, Mortensen SA, Paulsen G, Hølmer G (1994) Effect of dietary coenzyme Q10 as an antioxidant in human plasma. Mol Aspects Med 15(Suppl):S97–S102

    CAS  PubMed  Google Scholar 

  120. Kunitomo M, Yamaguchi Y, Kagota S, Otsubo K (2008) Beneficial effect of coenzyme Q10 on increased oxidative and nitrative stress and inflammation and individual metabolic components developing in a rat model of metabolic syndrome. J Pharmacol Sci 107(2):128–137

    CAS  PubMed  Google Scholar 

  121. Ahmadvand H, Tavafi M, Khosrowbeygi A (2012) Amelioration of altered antioxidant enzymes activity and glomerulosclerosis by coenzyme Q10 in alloxan-induced diabetic rats. J Diabetes Complications 26(6):476–482

    PubMed  Google Scholar 

  122. Fritz KS, Galligan JJ, Smathers RL, Roede JR, Shearn CT, Reigan P, Petersen DR (2011) 4-Hydroxynonenal inhibits SIRT3 via thiol-specific modification. Chem Res Toxicol 24(5):651–662

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Massudi H, Grant R, Braidy N, Guest J, Farnsworth B, Guillemin GJ (2012) Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS One 7(7):e42357

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Linnane AW, Eastwood H (2006) Cellular redox regulation and prooxidant signaling systems: a new perspective on the free radical theory of aging. Ann N Y Acad Sci 1067:47–55

    CAS  PubMed  Google Scholar 

  125. Linnane AW, Eastwood H (2004) Cellular redox poise modulation; the role of coenzyme Q10, gene and metabolic regulation. Mitochondrion 4(5–6):779–789

    CAS  PubMed  Google Scholar 

  126. Linnane AW (2002) Cellular coenzyme Q10 redox poise constitutes a major cell metabolic and gene regulatory system. Biogerontology 3(1–2):3–6

    CAS  PubMed  Google Scholar 

  127. Rusnak F, Reiter T (2000) Sensing electrons: protein phosphatase redox regulation. Trends Biochem Sci 25(11):527–529

    CAS  PubMed  Google Scholar 

  128. Echtay KS, Winkler E, Klingenberg M (2000) Coenzyme Q is an obligatory cofactor for uncoupling protein function. Nature 408(6812):609–613

    CAS  PubMed  Google Scholar 

  129. Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N (2004) Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 37(6):755–767

    CAS  PubMed  Google Scholar 

  130. Brand MD, Chien LF, Ainscow EK, Rolfe DF, Porter RK (1994) The causes and functions of mitochondrial proton leak. Biochim Biophys Acta 1187(2):132–139

    CAS  PubMed  Google Scholar 

  131. Brand MD, Brindle KM, Buckingham JA, Harper JA, Rolfe DF, Stuart JA (1999) The significance and mechanism of mitochondrial proton conductance. Int J Obes Relat Metab Disord 23(Suppl 6):S4–S11

    CAS  PubMed  Google Scholar 

  132. Brown GC, Brand MD (1991) On the nature of the mitochondrial proton leak. Biochim Biophys Acta 1059(1):55–62

    CAS  PubMed  Google Scholar 

  133. Porter RK, Brand MD (1995) Causes of differences in respiration rate of hepatocytes from mammals of different body mass. Am J Physiol 269(5 Pt 2):R1213–R1224

    CAS  PubMed  Google Scholar 

  134. Rolfe DF, Newman JM, Buckingham JA, Clark MG, Brand MD (1999) Contribution of mitochondrial proton leak to respiration rate in working skeletal muscle and liver and to SMR. Am J Physiol 276(3 Pt 1):C692–C699

    CAS  PubMed  Google Scholar 

  135. Rousset S, Alves-Guerra MC, Mozo J, Miroux B, Cassard-Doulcier AM, Bouillaud F, Ricquier D (2004) The biology of mitochondrial uncoupling proteins. Diabetes 53(Suppl 1):S130–S135

    CAS  PubMed  Google Scholar 

  136. Emre Y, Hurtaud C, Karaca M, Nubel T, Zavala F, Ricquier D (2007) Role of uncoupling protein UCP2 in cell-mediated immunity: how macrophage-mediated insulitis is accelerated in a model of autoimmune diabetes. Proc Natl Acad Sci U S A 104(48):19085–19090

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Blanc J, Alves-Guerra MC, Esposito B, Rousset S, Gourdy P, Ricquier D, Tedgui A, Miroux B, Mallat Z (2003) Protective role of uncoupling protein 2 in atherosclerosis. Circulation 107(3):388–390

    CAS  PubMed  Google Scholar 

  138. Paradis E, Clavel S, Bouillaud F, Ricquier D, Richard D (2003) Uncoupling protein 2: a novel player in neuroprotection. Trends Mol Med 9(12):522–525

    CAS  PubMed  Google Scholar 

  139. Diao J, Allister EM, Koshkin V, Lee SC, Bhattacharjee A, Tang C, Giacca A, Chan CB, Wheeler MB (2008) UCP2 is highly expressed in pancreatic alpha-cells and influences secretion and survival. Proc Natl Acad Sci U S A 105(33):12057–12062

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Arsenijevic D, Onuma H, Pecqueur C, Raimbault S, Manning BS, Miroux B, Couplan E, Alves-Guerra MC, Goubern M, Surwit R, Bouillaud F, Richard D, Collins S, Ricquier D (2000) Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat Genet 26(4):435–439

    CAS  PubMed  Google Scholar 

  141. Rousset S, Emre Y, Join-Lambert O, Hurtaud C, Ricquier D, Cassard-Doulcier AM (2006) The uncoupling protein 2 modulates the cytokine balance in innate immunity. Cytokine 35(3–4):135–142

    CAS  PubMed  Google Scholar 

  142. Parton LE, Ye CP, Coppari R, Enriori PJ, Choi B, Zhang CY, Xu C, Vianna CR, Balthasar N, Lee CE, Elmquist JK, Cowley MA, Lowell BB (2007) Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature 449(7159):228–232

    CAS  PubMed  Google Scholar 

  143. Zhang CY, Baffy G, Perret P, Krauss S, Peroni O, Grujic D, Hagen T, Vidal-Puig AJ, Boss O, Kim YB, Zheng XX, Wheeler MB, Shulman GI, Chan CB, Lowell BB (2001) Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes. Cell 105(6):745–755

    CAS  PubMed  Google Scholar 

  144. Newell MK, Villalobos-Menuey E, Schweitzer SC, Harper ME, Camley RE (2006) Cellular metabolism as a basis for immune privilege. J Immune Based Ther Vaccines 4:1

    PubMed Central  PubMed  Google Scholar 

  145. Harper ME, Antoniou A, Villalobos-Menuey E, Russo A, Trauger R, Vendemelio M, George A, Bartholomew R, Carlo D, Shaikh A, Kupperman J, Newell EW, Bespalov IA, Wallace SS, Liu Y, Rogers JR, Gibbs GL, Leahy JL, Camley RE, Melamede R, Newell MK (2002) Characterization of a novel metabolic strategy used by drug-resistant tumor cells. FASEB J 16(12):1550–1557

    CAS  PubMed  Google Scholar 

  146. Talbot DA, Hanuise N, Rey B, Rouanet JL, Duchamp C, Brand MD (2003) Superoxide activates a GDP-sensitive proton conductance in skeletal muscle mitochondria from king penguin (Aptenodytes patagonicus). Biochem Biophys Res Commun 312(4):983–1038

    CAS  PubMed  Google Scholar 

  147. Echtay KS, Roussel D, St-Pierre J, Jekabsons MB, Cadenas S, Stuart JA, Harper JA, Roebuck SJ, Morrison A, Pickering S, Clapham JC, Brand MD (2002) Superoxide activates mitochondrial uncoupling proteins. Nature 415(6867):96–99

    CAS  PubMed  Google Scholar 

  148. Murphy MP, Echtay KS, Blaikie FH, Asin-Cayuela J, Cocheme HM, Green K, Buckingham JA, Taylor ER, Hurrell F, Hughes G, Miwa S, Cooper CE, Svistunenko DA, Smith RA, Brand MD (2003) Superoxide activates uncoupling proteins by generating carbon-centered radicals and initiating lipid peroxidation: studies using a mitochondria-targeted spin trap derived from alpha-phenyl-N-tert-butylnitrone. J Biol Chem 278(49):48534–48545

    CAS  PubMed  Google Scholar 

  149. Barreiro E, Garcia-Martínez C, Mas S, Ametller E, Gea J, Argilés JM, Busquets S, López-Soriano FJ (2009) UCP3 overexpression neutralizes oxidative stress rather than nitrosative stress in mouse myotubes. FEBS Lett 583(2):350–356

    CAS  PubMed  Google Scholar 

  150. Jiang N, Zhang G, Bo H, Qu J, Ma G, Cao D, Wen L, Liu S, Ji LL, Zhang Y (2009) Upregulation of uncoupling protein-3 in skeletal muscle during exercise: a potential antioxidant function. Free Radic Biol Med 46(2):138–145

    CAS  PubMed  Google Scholar 

  151. Bezaire V, Spriet LL, Campbell S, Sabet N, Gerrits M, Bonen A, Harper ME (2005) Constitutive UCP3 overexpression at physiological levels increases mouse skeletal muscle capacity for fatty acid transport and oxidation. FASEB J 19(8):977–979

    CAS  PubMed  Google Scholar 

  152. Himms-Hagen J, Harper ME (2001) Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: an hypothesis. Exp Biol Med (Maywood) 226(2):78–84

    CAS  Google Scholar 

  153. Schrauwen P, Hoeks J, Hesselink MK (2006) Putative function and physiological relevance of the mitochondrial uncoupling protein-3: involvement in fatty acid metabolism? Prog Lipid Res 45(1):17–41

    CAS  PubMed  Google Scholar 

  154. Mattson MP, Kroemer G (2003) Mitochondria in cell death: novel targets for neuroprotection and cardioprotection. Trends Mol Med 9(5):196–205

    CAS  PubMed  Google Scholar 

  155. Mattson MP, Liu D (2003) Mitochondrial potassium channels and uncoupling proteins in synaptic plasticity and neuronal cell death. Biochem Biophys Res Commun 304(3):539–549

    CAS  PubMed  Google Scholar 

  156. Erlanson-Albertsson C (2003) The role of uncoupling proteins in the regulation of metabolism. Acta Physiol Scand 178(4):405–412

    CAS  PubMed  Google Scholar 

  157. Parker N, Affourtit C, Vidal-Puig A, Brand MD (2008) Energization-dependent endogenous activation of proton conductance in skeletal muscle mitochondria. Biochem J 412(1):131–139

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Echtay KS, Esteves TC, Pakay JL, Jekabsons MB, Lambert AJ, Portero-Otín M, Pamplona R, Vidal-Puig AJ, Wang S, Roebuck SJ, Brand MD (2003) A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J 22(16):4103–4110

    CAS  PubMed  Google Scholar 

  159. Esteves TC, Parker N, Brand MD (2006) Synergy of fatty acid and reactive alkenal activation of proton conductance through uncoupling protein 1 in mitochondria. Biochem J 395(3):619–628

    CAS  PubMed  Google Scholar 

  160. Li LX, Skorpen F, Egeberg K, Jørgensen IH, Grill V (2001) Uncoupling protein-2 participates in cellular defense against oxidative stress in clonal beta-cells. Biochem Biophys Res Commun 282(1):273–277

    CAS  PubMed  Google Scholar 

  161. Giardina TM, Steer JH, Lo SZ, Joyce DA (2008) Uncoupling protein-2 accumulates rapidly in the inner mitochondrial membrane during mitochondrial reactive oxygen stress in macrophages. Biochim Biophys Acta 1777(2):118–129

    CAS  PubMed  Google Scholar 

  162. Mehta SL, Li PA (2009) Neuroprotective role of mitochondrial uncoupling protein 2 in cerebral stroke. J Cereb Blood Flow Metab 29(6):1069–1078

    CAS  PubMed  Google Scholar 

  163. Echtay KS, Winkler E, Frischmuth K, Klingenberg M (2001) Uncoupling proteins 2 and 3 are highly active H(+) transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone). Proc Natl Acad Sci U S A 98(4):1416–1421

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Horvath TL, Diano S, Leranth C, Garcia-Segura LM, Cowley MA, Shanabrough M, Elsworth JD, Sotonyi P, Roth RH, Dietrich EH, Matthews RT, Barnstable CJ, Redmond DE Jr (2003) Coenzyme Q induces nigral mitochondrial uncoupling and prevents dopamine cell loss in a primate model of Parkinson's disease. Endocrinology 144(7):2757–2760

    CAS  PubMed  Google Scholar 

  165. Reznick RM, Shulman GI (2006) The role of AMP-activated protein kinase in mitochondrial biogenesis. J Physiol 574:33–39

    CAS  PubMed  Google Scholar 

  166. Garesse R, Vallejo CG (2001) Animal mitochondrial biogenesis and function: a regulatory cross-talk between two genomes. Gene 263(1–2):1–16

    CAS  PubMed  Google Scholar 

  167. Finck BN, Kelly DP (2007) Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) regulatory cascade in cardiac physiology and disease. Circulation 115(19):2540–2548

    PubMed  Google Scholar 

  168. Ryan MT, Hoogenraad NJ (2007) Mitochondrial-nuclear communications. Annu Rev Biochem 76:701–722

    CAS  PubMed  Google Scholar 

  169. Wagner AE, Ernst IM, Birringer M, Sancak O, Barella L, Rimbach G (2012) A combination of lipoic acid plus coenzyme Q10 induces PGC1α, a master switch of energy metabolism, improves stress response, and increases cellular glutathione levels in cultured C2C12 skeletal muscle cells. Oxid Med Cell Longev 2012:835970

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Choi HK, Pokharel YR, Lim SC, Han HK, Ryu CS, Kim SK, Kwak MK, Kang KW (2009) Inhibition of liver fibrosis by solubilized coenzyme Q10: role of Nrf2 activation in inhibiting transforming growth factor-β1 expression. Toxicol Appl Pharmacol 240(3):377–384

    CAS  PubMed  Google Scholar 

  171. Garnier A, Fortin D, Zoll J, N'Guessan B, Mettauer B, Lampert E, Veksler V, Ventura-Clapier R (2005) Coordinated changes in mitochondrial function and biogenesis in healthy and diseased human skeletal muscle. FASEB J 19(1):43–52

    CAS  PubMed  Google Scholar 

  172. Hood DA (2001) Invited review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol 90(3):1137–1157

    CAS  PubMed  Google Scholar 

  173. Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1(6):361–370

    PubMed  Google Scholar 

  174. Scarpulla RC (2008) Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 88(2):611–638

    CAS  PubMed  Google Scholar 

  175. Hood DA, Adhihetty PJ, Colavecchia M, Gordon JW, Irrcher I, Joseph AM, Lowe ST, Rungi AA (2003) Mitochondrial biogenesis and the role of the protein import pathway. Med Sci Sports Exerc 35(1):86–94

    CAS  PubMed  Google Scholar 

  176. Bereiter-Hahn J (1990) Behavior of mitochondria in the living cell. Int Rev Cytol 122:1–63

    CAS  PubMed  Google Scholar 

  177. Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 24(1):78–90

    CAS  PubMed  Google Scholar 

  178. Wu Z, Boss O (2007) Targeting PGC-1 alpha to control energy homeostasis. Expert Opin Ther Targets 11(10):1329–1338

    CAS  PubMed  Google Scholar 

  179. Cantó C, Auwerx J (2009) PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 20(2):98–105

    PubMed Central  PubMed  Google Scholar 

  180. Liang H, Ward WF (2006) PGC-1alpha: a key regulator of energy metabolism. Adv Physiol Educ 30(4):145–151

    PubMed  Google Scholar 

  181. Scarpulla RC (2002) Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim Biophys Acta 1576(1–2):1–14

    CAS  PubMed  Google Scholar 

  182. Kelly DP, Scarpulla RC (2004) Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 18(4):357–368

    CAS  PubMed  Google Scholar 

  183. Scarpulla RC (2011) Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta 1813(7):1269–1278

    CAS  PubMed Central  PubMed  Google Scholar 

  184. Yang YM, Noh K, Han CY, Kim SG (2010) Transactivation of genes encoding for phase II enzymes and phase III transporters by phytochemical antioxidants. Molecules 15(9):6332–6348. doi:10.3390/molecules15096332

    CAS  PubMed  Google Scholar 

  185. Lee DH, Gold R, Linker RA (2012) Mechanisms of oxidative damage in multiple sclerosis and neurodegenerative diseases: therapeutic modulation via fumaric acid esters. Int J Mol Sci 13(9):11783–11803

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Hahm KB, Lee HJ, Han Y, Kim EH, Kim YJ (2012) A possible involvement of Nrf2-mediated heme oxygenase-1 up-regulation in protective effect of the proton pump inhibitor pantoprazole against indomethacin-induced gastric damage in rats. BMC Gastroenterol 12(1):143

    PubMed Central  PubMed  Google Scholar 

  187. Reichard JF, Motz GT, Puga A (2007) Heme oxygenase-1 induction by NRF2 requires inactivation of the transcriptional repressor BACH1. Nucleic Acids Res 35(21):7074–7086

    CAS  PubMed Central  PubMed  Google Scholar 

  188. Zhu H, Itoh K, Yamamoto M, Zweier JL, Li Y (2005) Role of Nrf2 signaling in regulation of antioxidants and phase 2 enzymes in cardiac fibroblasts: protection against reactive oxygen and nitrogen species-induced cell injury. FEBS Lett 579(14):3029–3036

    CAS  PubMed  Google Scholar 

  189. Dreger H, Westphal K, Weller A, Baumann G, Stangl V, Meiners S, Stangl K (2009) Nrf2-dependent upregulation of antioxidative enzymes: a novel pathway for proteasome inhibitor-mediated cardioprotection. Cardiovasc Res 83(2):354–361

    CAS  PubMed  Google Scholar 

  190. Schmelzer C, Niklowitz P, Okun JG, Haas D, Menke T, Döring F (2011) Ubiquinol-induced gene expression signatures are translated into altered parameters of erythropoiesis and reduced low density lipoprotein cholesterol levels in humans. IUBMB Life 63(1):42–48

    CAS  PubMed  Google Scholar 

  191. Moon HJ, Ko WK, Han SW, Kim DS, Hwang YS, Park HK, Kwon IK (2012) Antioxidants, like coenzyme Q10, selenite, and curcumin, inhibited osteoclast differentiation by suppressing reactive oxygen species generation. Biochem Biophys Res Commun 418(2):247–253

    CAS  PubMed  Google Scholar 

  192. Kandhare AD, Ghosh P, Ghule AE, Bodhankar SL (2012) Elucidation of molecular mechanism involved in neuroprotective effect of coenzyme Q10 in alcohol-induced neuropathic pain. Fundam Clin Pharmacol. doi:10.1111/fcp.12003

    PubMed  Google Scholar 

  193. Bliznakov E, Casey A, Premuzic E (1970) Coenzymes Q: stimulants of the phagocytic activity in rats and immune response in mice. Experientia 26(9):253–254

    Google Scholar 

  194. Kawase I, Niitani H, Saijo N, Sasaki H, Morita T (1978) Enhancing effect of coenzyme Q10 on immunorestoration with Mycobacterium bovis BCG in tumor-bearing mice. Gann 69(4):493–497

    CAS  PubMed  Google Scholar 

  195. Folkers K, Shizukuishi S, Takemura K, Drzewoski J, Richardson P, Ellis J, Kuzell WC (1982) Increase in levels of IgG in serum of patients treated with coenzyme Q10. Res Commun Chem Pathol Pharmacol 38(2):335–338

    CAS  PubMed  Google Scholar 

  196. Folkers K, Hanioka T, Xia LJ, McRee JT Jr, Langsjoen P (1991) Coenzyme Q10 increases T4/T8 ratios of lymphocytes in ordinary subjects and relevance to patients having the AIDS related complex. Biochem Biophys Res Commun 176(2):786–791

    CAS  PubMed  Google Scholar 

  197. Barbieri B, Lund B, Lundström B, Scaglione F (1999) Coenzyme Q10 administration increases antibody titer in hepatitis B vaccinated volunteers—a single blind placebo-controlled and randomized clinical study. Biofactors 9(2–4):351–357

    CAS  PubMed  Google Scholar 

  198. Bliznakov EG (1973) Effect of stimulation of the host defense system by coenzyme Q10 on dibenzpyrene-induced tumors and infection with friend leukemia virus in mice. Proc Natl Acad Sci U S A 70(2):390–394

    CAS  PubMed Central  PubMed  Google Scholar 

  199. Bliznakov EG (1977) Coenzyme Q in experimental infections and neoplasia. In: Folkers K, Yamamura Y (eds) Biomedical and clinical aspects of coenzyme Q. Elsevier, Amsterdam, The Netherlands, pp 73–83

    Google Scholar 

  200. Bliznakov EG, Adler AD (1972) Nonlinear response of the reticuloendothelial system upon stimulation. Pathol Microbiol (Basel) 38(6):393–410

    CAS  Google Scholar 

  201. Villalba JM, Crane FL, Navas P (1998) Plasma membrane redox system and their role in biological stress and disease. In: Asard H, Berczi A, Caubergs RJ (eds) Kluwer, Dordrecht, vol 1, Vol., pp 247–265

    Google Scholar 

  202. Navas P, Fernandez-Ayala DM, Martin SF, Lopez-Lluch G, De Caboa R, Rodriguez-Aguilera JC, Villalba JM (2002) Ceramide-dependent caspase 3 activation is prevented by coenzyme Q from plasma membrane in serum-deprived cells. Free Radic Res 36(4):369–374

    CAS  PubMed  Google Scholar 

  203. Fontaine E, Eriksson O, Ichas F, Bernardi P (1998) Regulation of the permeability transition pore in skeletal muscle mitochondria. Modulation by electron flow through the respiratory chain complex i. J Biol Chem 273(20):12662–12668

    CAS  PubMed  Google Scholar 

  204. Wolf BB, Green DR (1999) Suicidal tendencies: apoptotic cell death by caspase family proteinases. J Biol Chem 274(29):20049–20052

    CAS  PubMed  Google Scholar 

  205. Maes M, Mihaylova I, Leunis JC (2006) Chronic fatigue syndrome is accompanied by an IgM-related immune response directed against neopitopes formed by oxidative or nitrosative damage to lipids and proteins. Neuro Endocrinol Lett 27(5):615–621

    CAS  PubMed  Google Scholar 

  206. Manuel y Keenoy B, Moorkens G, Vertommen J, De Leeuw I (2001) Antioxidant status and lipoprotein peroxidation in chronic fatigue syndrome. Life Sci 68(17):2037–2049

    CAS  PubMed  Google Scholar 

  207. Vecchiet J, Cipollone F, Falasca K, Mezzetti A, Pizzigallo E, Bucciarelli T, De Laurentis S, Affaitati G, De Cesare D, Giamberardino MA (2003) Relationship between musculoskeletal symptoms and blood markers of oxidative stress in patients with chronic fatigue syndrome. Neurosci Lett 335(3):151–154

    CAS  PubMed  Google Scholar 

  208. Smirnova IV, Pall ML (2003) Elevated levels of protein carbonyls in sera of chronic fatigue syndrome patients. Mol Cell Biochem 248(1–2):93–95

    CAS  PubMed  Google Scholar 

  209. Miwa K, Fujita M (2009) Increased oxidative stress suggested by low serum vitamin E concentrations in patients with chronic fatigue syndrome. Int J Cardiol 136(2):238–239

    PubMed  Google Scholar 

  210. Jason L, Sorenson M, Sebally K, Alkazemi D, Lerch A, Porter N, Kubow S (2011) Increased HDAC in association with decreased plasma cortisol in older adults with chronic fatigue syndrome. Brain Behav Immun 25(8):1544–1554

    CAS  PubMed  Google Scholar 

  211. Brkic S, Tomic S, Maric D, Novakov Mikic A, Turkulov V (2010) Lipid peroxidation is elevated in female patients with chronic fatigue syndrome. Med Sci Monit 16(12):CR628–CR632

    CAS  PubMed  Google Scholar 

  212. Kennedy G, Spence VA, McLaren M, Hill A, Underwood C, Belch JJ (2005) Oxidative stress levels are raised in chronic fatigue syndrome and are associated with clinical symptoms. Free Radic Biol Med 39(5):584–589

    CAS  PubMed  Google Scholar 

  213. Manuel y Keenoy B, Moorkens G, Vertommen J, Noe M, Neve J, De Leeuw I (2000) Magnesium status and parameters of the oxidant-antioxidant balance in patients with chronic fatigue: effects of supplementation with magnesium. J Am Coll Nutr 19(3):374–382

    CAS  PubMed  Google Scholar 

  214. Richards RS, Roberts TK, McGregor NR, Dunstan RH, Butt HL (2000) Blood parameters indicative of oxidative stress are associated with symptom expression in chronic fatigue syndrome. Redox Rep 5(1):35–41

    CAS  PubMed  Google Scholar 

  215. Richards RS, Wang L, Jelinek H (2007) Erythrocyte oxidative damage in chronic fatigue syndrome. Arch Med Res 38(1):94–98

    CAS  PubMed  Google Scholar 

  216. Miwa K, Fujita M (2010) Fluctuation of serum vitamin E (alpha-tocopherol) concentrations during exacerbation and remission phases in patients with chronic fatigue syndrome. Heart Vessels 25(4):319–323

    PubMed  Google Scholar 

  217. Maes M, Mihaylova I, Kubera M, Bosmans E (2007) Not in the mind but in the cell: increased production of cyclo-oxygenase-2 and inducible NO synthase in chronic fatigue syndrome. Neuro Endocrinol Lett 28(4):463–469

    CAS  PubMed  Google Scholar 

  218. Maes M, Twisk FNM, Kubera M, Ringel K (2012) Evidence for inflammation and activation of cell-mediated immunity in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): increased interleukin-1, tumor necrosis factor-α, PMN-elastase, lysozyme and neopterin. J Affect Disord 136(3):933–939

    CAS  PubMed  Google Scholar 

  219. Jammes Y, Steinberg JG, Mambrini O, Bregeon F, Delliaux S (2005) Chronic fatigue syndrome: assessment of increased oxidative stress and altered muscle excitability in response to incremental exercise. J Intern Med 257(3):299–310

    CAS  PubMed  Google Scholar 

  220. Jammes Y, Steinberg JG, Delliaux S, Bregeon F (2009) Chronic fatigue syndrome combines increased exercise-induced oxidative stress and reduced cytokine and Hsp responses. J Intern Med 266(2):196–206

    CAS  PubMed  Google Scholar 

  221. Jammes Y, Steinberg JG, Delliaux S (2011) Chronic fatigue syndrome: acute infection and history of physical activity affect resting levels and response to exercise of plasma oxidant/antioxidant status and heat shock proteins. J Intern Med 272(1):74–84

    Google Scholar 

  222. Fulle S, Pietrangelo T, Mancinelli R, Saggini R, Fano G (2007) Specific correlations between muscle oxidative stress and chronic fatigue syndrome: a working hypothesis. J Muscle Res Cell Motil 28(6):355–362

    CAS  PubMed  Google Scholar 

  223. Shungu DC, Weiduschat N, Murrough JW, Mao X, Pillemer S, Dyke JP, Medow MS, Natelson BH, Stewart JM, Mathew SJ (2012) Increased ventricular lactate in chronic fatigue syndrome. III. Relationships to cortical glutathione and clinical symptoms implicate oxidative stress in disorder pathophysiology. NMR Biomed 25(9):1073–1087

    CAS  PubMed  Google Scholar 

  224. Maes M, Mihaylova I, Leunis JC (2007) Increased serum IgM antibodies directed against phosphatidyl inositol (Pi) in chronic fatigue syndrome (CFS) and major depression: evidence that an IgM-mediated immune response against Pi is one factor underpinning the comorbidity between both CFS and depression. Neuro Endocrinol Lett 28(6):861–867

    PubMed  Google Scholar 

  225. Nathan N, Van Konynenburg RA (2009) Treatment study of methylation cycle support in patients with chronic fatigue syndrome and fibromyalgia. 9th International IACFS/ME Conference, Reno, Nevada

  226. Morris G, Maes M (2012) A neuro-immune model of myalgic encephalomyelitis/chronic fatigue syndrome. Metab Brain Dis. doi:10.1007/s11011-012-9324-8

  227. Morris G, Maes M (2012) Increased nuclear factor-κB and loss of p53 are key mechanisms in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Med Hypotheses 79(5):607–613. doi:10.1016/j.mehy.2012.07.034

    CAS  PubMed  Google Scholar 

  228. Vermeulen RC, Kurk RM, Visser FC, Sluiter W, Scholte HR (2010) Patients with chronic fatigue syndrome performed worse than controls in a controlled repeated exercise study despite a normal oxidative phosphorylation capacity. J Transl Med 8:93. doi:10.1186/1479-5876-8-93

    PubMed Central  PubMed  Google Scholar 

  229. Paul L, Wood L, Behan WM, Maclaren WM (1999) Demonstration of delayed recovery from fatiguing exercise in chronic fatigue syndrome. Eur J Neurol 6(1):63–69

    CAS  PubMed  Google Scholar 

  230. Arnold DL, Bore PJ, Radda GK, Styles P, Taylor DJ (1984) Excessive intracellular acidosis of skeletal muscle on exercise in a patient with a post-viral exhaustion/fatigue syndrome. Lancet 1(8391):1367–1369

    CAS  PubMed  Google Scholar 

  231. Behan WM, More IA, Behan PO (1991) Mitochondrial abnormalities in the postviral fatigue syndrome. Acta Neuropathol 83(1):61–65

    CAS  PubMed  Google Scholar 

  232. Lane RJ, Barrett MC, Taylor DJ, Kemp GJ, Lodi R (1998) Heterogeneity in chronic fatigue syndrome: evidence from magnetic resonance spectroscopy of muscle. Neuromuscul Disord 8(3–4):204–209

    CAS  PubMed  Google Scholar 

  233. Plioplys AV, Plioplys S (1995) Electron-microscopic investigation of muscle mitochondria in chronic fatigue syndrome. Neuropsychobiology 32(4):175–181

    CAS  PubMed  Google Scholar 

  234. Lane RJM, Barrett MC, Woodrow D, Moss J, Fletcher R, Archard LC (1998) Muscle fibre characteristics and lactate responses to exercise in chronic fatigue syndrome. J Neurol Neurosurg Psychiatry 64(3):362–367

    CAS  PubMed  Google Scholar 

  235. Allen DG, Lamb GD, Westerbland H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88(1):287–332

    CAS  PubMed  Google Scholar 

  236. Wu I-C, Ohsawa I, Fuku N, Tanaka M (2010) Metabolic analysis of 13C-labeled pyruvate for noninvasive assessment of mitochondrial function. Ann NY Acad Sci 1201:111–120

    CAS  PubMed  Google Scholar 

  237. Genova ML, Pich MM, Bernacchia A, Bianchi C, Biondi A, Bovina C, Falasca AI, Formiggini G, Castelli GP, Lenaz G (2004) The mitochondrial production of reactive oxygen species in relation to aging and pathology. Ann NY Acad Sci 1011:86–100

    CAS  PubMed  Google Scholar 

  238. Ozgocmen S, Ozyurt H, Sogut S, Akyol O, Ardicoglu O, Yildizhan H (2006) Antioxidant status, lipid peroxidation and nitric oxide in fibromyalgia: etiologic and therapeutic concerns. Rheumatol Int 26(7):598–603

    CAS  PubMed  Google Scholar 

  239. Altindag O, Celik H (2006) Total antioxidant capacity and the severity of the pain in patients with fibromyalgia. Redox Rep 11(3):131–135

    CAS  PubMed  Google Scholar 

  240. Sendur OF, Turan Y, Tastaban E, Yenisey C, Serter M (2009) Serum antioxidants and nitric oxide levels in fibromyalgia: a controlled study. Rheumatol Int 29(6):629–633

    CAS  PubMed  Google Scholar 

  241. Cordero MD (2011) Oxidative stress in fibromyalgia: pathophysiology and clinical implications. Reumatol Clin 7(5):281–283

    PubMed  Google Scholar 

  242. Neyal M, Yimenicioglu F, Aydeniz A, Taskin A, Saglam S, Cekmen M, Neyal A, Gursoy S, Erel O, Balat A (2012) Plasma nitrite levels, total antioxidant status, total oxidant status, and oxidative stress index in patients with tension-type headache and fibromyalgia. Clin Neurol Neurosurg S0303–8467(12):00453, 2

    Google Scholar 

  243. Cordero MD, Moreno-Fernández AM, Carmona-López MI, Sánchez-Alcázar JA, Rodríguez AF, Navas P, de Miguel M (2010) Mitochondrial dysfunction in skin biopsies and blood mononuclear cells from two cases of fibromyalgia patients. Clin Biochem 43(13–14):1174–1176

    CAS  PubMed  Google Scholar 

  244. Cordero MD, de Miguel M, Moreno-Fernández AM (2011) Mitochondrial dysfunction in fibromyalgia and its implication in the pathogenesis of disease. Med Clin (Barc) 136(6):252–256

    Google Scholar 

  245. Moylan S, Maes M, Wray NR, Berk M (2012) The neuroprogressive nature of major depressive disorder: pathways to disease evolution and resistance, and therapeutic implications. Mol Psychiatry. doi:10.1038/mp.2012.33

    PubMed  Google Scholar 

  246. Leonard B, Maes M (2012) Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev 36(2):764–785

    CAS  PubMed  Google Scholar 

  247. Maes M, Galecki P, Chang YS, Berk M (2011) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry 35(3):676–692

    CAS  PubMed  Google Scholar 

  248. Scapagnini G, Davinelli S, Drago F, De Lorenzo A, Oriani G (2012) Antioxidants as antidepressants: fact or fiction? CNS Drugs 26(6):477–490

    CAS  PubMed  Google Scholar 

  249. Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52(2):381–389

    CAS  PubMed  Google Scholar 

  250. Floor E, Wetzel MG (1998) Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. J Neurochem 70(1):268–275

    CAS  PubMed  Google Scholar 

  251. Good PF, Hsu A, Werner P, Perl DP, Olanow CW (1998) Protein nitration in Parkinson’s disease. J Neuropathol Exp Neurol 57(4):338–342

    CAS  PubMed  Google Scholar 

  252. Dexter D, Carter C, Agid F, Agid Y, Lees AJ, Jenner P, Marsden CD (1986) Lipid peroxidation as cause of nigral cell death in Parkinson’s disease. Lancet 2(8507):639–640

    CAS  PubMed  Google Scholar 

  253. Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B, Liu K, Xu K, Strathearn KE, Liu F, Cao S, Caldwell KA, Caldwell GA, Marsischky G, Kolodner RD, Labaer J, Rochet JC, Bonini NM, Lindquist S (2006) Alpha-synuclein blocks ER–Golgi traffic and Rab1 rescues neuron loss in Parkinson's models. Science 313(5785):324–328

    CAS  PubMed Central  PubMed  Google Scholar 

  254. Jomova K, Vondrakova D, Lawson M, Valko M (2010) Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345(1–2):91–104

    CAS  PubMed  Google Scholar 

  255. Dexter DT, Holley AE, Flitter WD, Slater TF, Wells FR, Daniel SE, Lees AJ, Jenner P, Marsden CD (1994) Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: an HPLC and ESR study. Mov Disord 9(1):92–97

    CAS  PubMed  Google Scholar 

  256. Kirches E (2009) Do mtDNA mutations participate in the pathogenesis of sporadic Parkinson’s disease? Curr Genomics 10(8):585–593

    CAS  PubMed  Google Scholar 

  257. Thomas B, Beal MF (2007) Parkinson’s disease. Hum Mol Genet 16(2):R183–R194

    CAS  PubMed  Google Scholar 

  258. Schapira AH (2007) Mitochondrial dysfunction in Parkinson’s disease. Cell Death Differ 14(7):1261–1266

    CAS  PubMed  Google Scholar 

  259. Chinta SJ, Andersen JK (2008) Redox imbalance in Parkinson’s disease. Biochim Biophys Acta 1780(11):1362–1367

    CAS  PubMed Central  PubMed  Google Scholar 

  260. Mizuno Y, Ohta S, Tanaka M, Takamiya S, Suzuki K, Sato T, Oya H, Ozawa T, Kagawa Y (1989) Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem Biophys Res Commun 163(3):1450–1455

    CAS  PubMed  Google Scholar 

  261. Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1(8649):1269

    CAS  PubMed  Google Scholar 

  262. Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54(3):823–827

    CAS  PubMed  Google Scholar 

  263. Schapira AH, Mann VM, Cooper JM, Dexter D, Daniel SE, Jenner P, Clark JB, Marsden CD (1990) Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J Neurochem 55(6):2142–2145

    CAS  PubMed  Google Scholar 

  264. Keeney PM, Xie J, Capaldi RA, Bennett JP Jr (2006) Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci 26(19):5256–5264

    CAS  PubMed  Google Scholar 

  265. Yoshino H, Nakagawa-Hattori Y, Kondo T, Mizuno Y (1992) Mitochondrial complex I and II activities of lymphocytes and platelets in Parkinson’s disease. J Neural Transm Park Dis Dement Sect 4(1):27–34

    CAS  PubMed  Google Scholar 

  266. Parker WD Jr, Boyson SJ, Parks JK (1989) Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 26(6):719–723

    PubMed  Google Scholar 

  267. Shoffner JM, Watts RL, Juncos JL, Torroni A, Wallace DC (1991) Mitochondrial oxidative phosphorylation defects in Parkinson’s disease. Ann Neurol 30(3):332–339

    CAS  PubMed  Google Scholar 

  268. Zheng B, Liao Z, Locascio JJ, Lesniak KA, Roderick SS, Watt ML, Eklund AC, Zhang-James Y, Kim PD, Hauser MA, Grünblatt E, Moran LB, Mandel SA, Riederer P, Miller RM, Federoff HJ, Wüllner U, Papapetropoulos S, Youdim MB, Cantuti-Castelvetri I, Young AB, Vance JM, Davis RL, Hedreen JC, Adler CH, Beach TG, Graeber MB, Middleton FA, Rochet JC, Scherzer CR, Global PD Gene Expression (GPEX) Consortium (2010) PGC-1α, a potential therapeutic target for early intervention in Parkinson’s disease. Sci Transl Med 2(52):52ra73

    PubMed Central  PubMed  Google Scholar 

  269. Cheung ZH, Ip NY (2009) The emerging role of autophagy in Parkinson’s disease. Mol Brain 2:29

    PubMed Central  PubMed  Google Scholar 

  270. Ahmed I, Liang Y, Schools S, Dawson VL, Dawson TM, Savitt JM (2012) Development and characterization of a new Parkinson’s disease model resulting from impaired autophagy. J Neurosci 32(46):16503–16509

    CAS  PubMed Central  PubMed  Google Scholar 

  271. Sarkar S, Korolchuk VI, Renna M, Imarisio S, Fleming A, Williams A, Garcia-Arencibia M, Rose C, Luo S, Underwood BR, Kroemer G, O'Kane CJ, Rubinsztein DC (2011) Complex inhibitory effects of nitric oxide on autophagy. Mol Cell 43(1):19–32

    CAS  PubMed Central  PubMed  Google Scholar 

  272. Sevcsik E, Trexler AJ, Dunn JM, Rhoades E (2011) Allostery in a disordered protein: oxidative modifications to α-synuclein act distally to regulate membrane binding. J Am Chem Soc 133(18):7152–7158

    CAS  PubMed Central  PubMed  Google Scholar 

  273. Uversky VN, Yamin G, Munishkina LA, Karymov MA, Millett IS, Doniach S, Lyubchenko YL, Fink AL (2005) Effects of nitration on the structure and aggregation of alpha-synuclein. Brain Res Mol Brain Res 134(1):84–102

    CAS  PubMed  Google Scholar 

  274. Protter D, Lang C, Cooper AA (2012) α-Synuclein and mitochondrial dysfunction: a pathogenic partnership in Parkinson’s disease? Park Dis 2012:829207

    Google Scholar 

  275. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441(7095):885–889

    CAS  PubMed  Google Scholar 

  276. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441(7095):880–884

    CAS  PubMed  Google Scholar 

  277. Sánchez-Pérez AM, Claramonte-Clausell B, Sánchez-Andrés JV, Herrero MT (2012) Parkinson’s disease and autophagy. Park Dis 2012:429524

    Google Scholar 

  278. Mitra S, Tsvetkov AS, Finkbeiner S (2009) Protein turnover and inclusion body formation. Autophagy 5(7):1037–1038

    CAS  PubMed Central  PubMed  Google Scholar 

  279. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075

    CAS  PubMed Central  PubMed  Google Scholar 

  280. Geisler S, Holmström KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12(2):119–131

    CAS  PubMed  Google Scholar 

  281. Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJ (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8(1):e1000298

    PubMed Central  PubMed  Google Scholar 

  282. Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, Kim J, May J, Tocilescu MA, Liu W, Ko HS, Magrané J, Moore DJ, Dawson VL, Grailhe R, Dawson TM, Li C, Tieu K, Przedborski S (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A 107(1):378–383

    CAS  PubMed Central  PubMed  Google Scholar 

  283. Maes M, Twisk FN (2009) Chronic fatigue syndrome: la bête noire of the Belgian Health Care System. Neuro Endocrinol Lett 30(3):300–311

    PubMed  Google Scholar 

  284. Cordero MD, Alcocer-Gómez E, de Miguel M, Cano-García FJ, Luque CM, Fernández-Riejo P, Fernández AM, Sánchez-Alcazar JA (2011) Coenzyme Q(10): a novel therapeutic approach for fibromyalgia? Case series with 5 patients. Mitochondrion 11(4):623–625

    CAS  PubMed  Google Scholar 

  285. Miyamae T, Seki M, Naga T, Uchino S, Asazuma H, Yoshida T, Iizuka Y, Kikuchi M, Imagawa T, Natsumeda Y, Yokota S, Yamamoto Y (2013) Increased oxidative stress and coenzyme Q10 deficiency in juvenile fibromyalgia: amelioration of hypercholesterolemia and fatigue by ubiquinol-10 supplementation. Redox Rep 18(1):12–19

    CAS  PubMed  Google Scholar 

  286. Langsjoen PH, Langsjoen JO, Langsjoen AM, Lucas LA (2005) Treatment of statin adverse effects with supplemental coenzyme Q10 and statin drug discontinuation. Biofactors 25(1–4):147–152

    CAS  PubMed  Google Scholar 

  287. Passi S, Stancato A, Aleo E, Dmitrieva A, Littarru GP (2003) Statins lower plasma and lymphocyte ubiquinol/ubiquinone without affecting other antioxidants and PUFA. Biofactors 18(1–4):113–124

    CAS  PubMed  Google Scholar 

  288. Lamperti C, Naini AB, Lucchini V, Prelle A, Bresolin N, Moggio M, Sciacco M, Kaufmann P, DiMauro S (2005) Muscle coenzyme Q10 level in statin-related myopathy. Arch Neurol 62(11):1709–1712

    PubMed  Google Scholar 

  289. Päivä H, Thelen KM, Van Coster R, Smet J, De Paepe B, Mattila KM, Laakso J, Lehtimäki T, von Bergmann K, Lütjohann D, Laaksonen R (2005) High-dose statins and skeletal muscle metabolism in humans: a randomized, controlled trial. Clin Pharmacol Ther 78(1):60–68

    PubMed  Google Scholar 

  290. Mabuchi H, Higashikata T, Kawashiri M, Katsuda S, Mizuno M, Nohara A, Inazu A, Koizumi J, Kobayashi J (2005) Reduction of serum ubiquinol-10 and ubiquinone-10 levels by atorvastatin in hypercholesterolemic patients. J Atheroscler Thromb 12(2):111–119

    CAS  PubMed  Google Scholar 

  291. Chu CS, Kou HS, Lee CJ, Lee KT, Chen SH, Voon WC, Sheu SH, Lai WT (2006) Effect of atorvastatin withdrawal on circulating coenzyme Q10 concentration in patients with hypercholesterolemia. Biofactors 28(3–4):177–184

    CAS  PubMed  Google Scholar 

  292. Butler MG, Dasouki M, Bittel D, Hunter S, Naini A, DiMauro S (2003) Coenzyme Q10 levels in Prader–Willi syndrome: comparison with obese and non-obese subjects. Am J Med Genet A 119A(2):168–171

    PubMed  Google Scholar 

  293. Cooper JM, Korlipara LV, Hart PE, Bradley JL, Schapira AH (2008) Coenzyme Q10 and vitamin E deficiency in Friedreich’s ataxia: predictor of efficacy of vitamin E and coenzyme Q10 therapy. Eur J Neurol 15(12):1371–1379

    CAS  PubMed  Google Scholar 

  294. Siciliano G, Mancuso M, Tedeschi D, Manca ML, Renna MR, Lombardi V, Rocchi A, Martelli F, Murri L (2001) Coenzyme Q10, exercise lactate and CTG trinucleotide expansion in myotonic dystrophy. Brain Res Bull 56(3–4):405–410

    CAS  PubMed  Google Scholar 

  295. Maes M, Mihaylova I, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E (2009) Lower plasma coenzyme Q10 in depression: a marker for treatment resistance and chronic fatigue in depression and a risk factor to cardiovascular disorder in that illness. Neuro Endocrinol Lett 30(4):462–469

    CAS  PubMed  Google Scholar 

  296. Moreno-Fernández AM, Cordero MD, Garrido-Maraver J, Alcocer-Gómez E, Casas-Barquero N, Carmona-López MI, Sánchez-Alcázar JA, de Miguel M (2012) Oral treatment with amitriptyline induces coenzyme Q deficiency and oxidative stress in psychiatric patients. J Psychiatr Res 46(3):341–345

    PubMed  Google Scholar 

  297. Matsubara T, Azuma T, Yoshida S, Yamagami T (1991) Serum coenzyme Q-10 level in Parkinson syndrome. In: Folkers K, Littarru P, Yamagami T (eds) Biomedical and clinical aspects of coenzyme Q. Elsevier, Amsterdam, pp 159–166

    Google Scholar 

  298. Mizuno K, Tanaka M, Nozaki S, Mizuma H, Ataka S, Tahara T, Sugino T, Shirai T, Kajimoto Y, Kuratsune H, Kajimoto O, Watanabe Y (2008) Antifatigue effects of coenzyme Q10 during physical fatigue. Nutrition 24(4):293–299

    CAS  PubMed  Google Scholar 

  299. Gökbel H, Gül I, Belviranl M, Okudan N (2010) The effects of coenzyme Q10 supplementation on performance during repeated bouts of supramaximal exercise in sedentary men. J Strength Cond Res 24(1):97–102

    PubMed  Google Scholar 

  300. Cooke M, Iosia M, Buford T, Shelmadine B, Hudson G, Kerksick C, Rasmussen C, Greenwood M, Leutholtz B, Willoughby D, Kreider R (2008) Effects of acute and 14-day coenzyme Q10 supplementation on exercise performance in both trained and untrained individuals. J Int Soc Sports Nutr 5:8

    PubMed Central  PubMed  Google Scholar 

  301. Díaz-Castro J, Guisado R, Kajarabille N, García C, Guisado IM, de Teresa C, Ochoa JJ (2012) Coenzyme Q(10) supplementation ameliorates inflammatory signaling and oxidative stress associated with strenuous exercise. Eur J Nutr 51(7):791–799

    PubMed  Google Scholar 

  302. Bonakdar RA, Guarneri E (2005) Coenzyme Q10. Am Fam Physician 72(6):1065–1070

    PubMed  Google Scholar 

  303. Singh RB, Neki NS, Kartikey K, Pella D, Kumar A, Niaz MA, Thakur AS (2003) Effect of coenzyme Q10 on risk of atherosclerosis in patients with recent myocardial infarction. Mol Cell Biochem 246(1–2):75–82

    CAS  PubMed  Google Scholar 

  304. Caso G, Kelly P, McNurlan MA, Lawson WE (2007) Effect of coenzyme q10 on myopathic symptoms in patients treated with statins. Am J Cardiol 99(10):1409–1412

    CAS  PubMed  Google Scholar 

  305. Thibault A, Samid D, Tompkins AC, Figg WD, Cooper MR, Hohl RJ, Trepel J, Liang B, Patronas N, Venzon DJ, Reed E, Myers CE (1996) Phase I study of lovastatin, an inhibitor of the mevalonate pathway, in patients with cancer. Clin Cancer Res 2(3):483–491

    CAS  PubMed  Google Scholar 

  306. Kim WS, Kim MM, Choi HJ, Yoon SS, Lee MH, Park K, Park CH, Kang WK (2001) Phase II study of high-dose lovastatin in patients with advanced gastric adenocarcinoma. Invest New Drugs 19(1):81–83

    CAS  PubMed  Google Scholar 

  307. Fedacko J, Pella D, Fedackova P, Hänninen O, Tuomainen P, Jarcuska P, Lopuchovsky T, Jedlickova L, Merkovska L, Littarru GP (2013) Coenzyme Q10 and selenium in statin-associated myopathy treatment. Can J Physiol Pharmacol 91(2):165–170

    CAS  PubMed  Google Scholar 

  308. Lister RE (2002) An open, pilot study to evaluate the potential benefits of coenzyme Q10 combined with Ginkgo biloba extract in fibromyalgia syndrome. J Int Med Res 30(2):195–199

    CAS  PubMed  Google Scholar 

  309. Fu X, Ji R, Dam J (2010) Antifatigue effect of coenzyme Q10 in mice. J Med Food 13(1):211–215

    CAS  PubMed  Google Scholar 

  310. Cordero MD, Alcocer-Gómez E, de Miguel M, Culic O, Carrión AM, Alvarez-Suarez JM, Bullón P, Battino M, Fernández-Rodríguez A, Sánchez-Alcazar JA (2013) Can coenzyme Q10 improve clinical and molecular parameter in fibromyalgia? Antioxid Redox Signal. doi:10.1089/ars.2013.5260

  311. Barbiroli B, Frassineti C, Martinelli P, Iotti S, Lodi R, Cortelli P, Montagna P (1997) Coenzyme Q10 improves mitochondrial respiration in patients with mitochondrial cytopathies. An in vivo study on brain and skeletal muscle by phosphorous magnetic resonance spectroscopy. Cell Mol Biol 43(5):741–749

    CAS  PubMed  Google Scholar 

  312. Bresolin N, Doriguzzi C, Ponzetto C, Angelini C, Moroni I, Castelli E, Cossutta E, Binda A, Gallanti A, Gabellini S, Piccolo G, Martinuzzi A, Ciafaloni E, Arnaudo E, Liciardello L, Carenzi A, Scarlato G (1990) Ubidecarenone in the treatment of mitochondrial myopathies: a multi-center double-blind trial. J Neurol Sci 100(1–2):70–78

    CAS  PubMed  Google Scholar 

  313. Chan A, Reichmann H, Kogel A, Beck A, Gold R (1998) Metabolic changes in patients with mitochondrial myopathies and effects of coenzyme Q10 therapy. J Neurol 245(10):681–685

    CAS  PubMed  Google Scholar 

  314. Kwong LK, Kamzalov S, Rebrin I, Bayne AC, Jana CK, Morris P, Forster MJ, Sohal RS (2002) Effects of coenzyme Q(10) administration on its tissue concentrations, mitochondrial oxidant generation, and oxidative stress in the rat. Free Radic Biol Med 33(5):627–638

    CAS  PubMed  Google Scholar 

  315. Kamzalov S, Sumien N, Forster MJ, Sohal RS (2003) Coenzyme Q intake elevates the mitochondrial and tissue levels of coenzyme Q and alpha-tocopherol in young mice. J Nutr 133(10):3175–3180

    CAS  PubMed  Google Scholar 

  316. Yamamoto M, Sato T, Anno M, Ujike H, Takemoto M (1987) Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes with recurrent abdominal symptoms and coenzyme Q10 administration. J Neurol Neurosurg Psychiatry 50:1475–1481

    CAS  PubMed  Google Scholar 

  317. Ihara Y, Namba R, Kuroda S, Sato T, Shirabe T (1989) Mitochondrial encephalomyopathy (MELAS): pathological study and successful therapy with coenzyme Q10 and idebenone. J Neurol Sci 90(3):263–271

    CAS  PubMed  Google Scholar 

  318. Goda S, Hamada T, Ishimoto S, Kobayashi T, Goto I, Kuroiwa Y (1987) Clinical improvement after administration of coenzyme Q10 in a patient with mitochondrial encephalomyopathy. J Neurol 234(1):62–63

    CAS  PubMed  Google Scholar 

  319. Abe K, Matsuo Y, Kadekawa J, Inoue S, Yanagihara T (1999) Effect of coenzyme Q10 in patients with mitochondrial Myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like Episodes (MELAS): evaluation by noninvasive tissue oximetry. J Neurol Sci 162(1):65–68

    CAS  PubMed  Google Scholar 

  320. Bendahan D, Desnuelle C, Vanuxem D, Confort-Gouny S, Figarella-Branger D, Pellissier JF, Kozak-Ribbens G, Pouget J, Serratrice G, Cozzone PJ (1992) 31P NMR spectroscopy and ergometer exercise test as evidence for muscle oxidative performance improvement with coenzyme Q in mitochondrial myopathies. Neurology 42(6):1203–1208

    CAS  PubMed  Google Scholar 

  321. Nishikawa Y, Takahashi M, Yorifuji S, Nakamura Y, Ueno S, Tarui S, Kozuka T, Nishimura T (1989) Longterm coenzyme Q10 therapy for a mitochondrial encephalomyopathy with cytochrome c oxidase deficiency: a 31P NMR study. Neurology 39(3):399–403

    CAS  PubMed  Google Scholar 

  322. Folkers K, Simonsen R (1995) Two successful double-blind trials with coenzyme Q10 (vitamin Q10) on muscular dystrophies and neurogenic atrophies. Biochim Biophys Acta 1271(1):281–286

    CAS  PubMed  Google Scholar 

  323. Chen RS, Huang CC, Chu NS (1997) Coenzyme Q10 treatment in mitochondrial encephalomyopathies. Short-term double-blind, crossover study. Eur Neurol 37(4):212–218

    CAS  PubMed  Google Scholar 

  324. Andersen CB, Henriksen JE, Hother-Nielsen O, Vaag A, Mortensen SA, BeckNielsen H (1997) The effect of coenzyme Q10 on blood glucose and insulin requirement in patients with insulin dependent diabetes mellitus. Mol Aspects Med 18(Suppl):S307–S309

    CAS  PubMed  Google Scholar 

  325. Musumeci O, Naini A, Slonim AE, Skavin N, Hadjigeorgiou GL, Krawiecki N, Weissman BM, Tsao CY, Mendell JR, Shanske S, De Vivo DC, Hirano M, DiMauro S (2001) Familial cerebellar ataxia with muscle coenzyme Q10 deficiency. Neurology 56(7):849–855

    CAS  PubMed  Google Scholar 

  326. Aboul-Fotouh S (2013) Coenzyme Q10 displays antidepressant-like activity with reduction of hippocampal oxidative/nitrosative DNA damage in chronically stressed rats. Pharmacol Biochem Behav 104:105–112

    CAS  PubMed  Google Scholar 

  327. Moreno-Fernández AM, Cordero MD, Garrido-Maraver J, Alcocer-Gómez E, Casas-Barquero N, Carmona-López MI, Sánchez-Alcázar JA, de Miguel M (2012) Oral treatment with amitriptyline induces coenzyme Q deficiency and oxidative stress in psychiatric patients. J Psychiatr Res 46:341–345

    PubMed  Google Scholar 

  328. Chao J, Leung Y, Wang M, Chang RC (2012) Nutraceuticals and their preventive or potential therapeutic value in Parkinson’s disease. Nutr Rev 70(7):373–386

    PubMed  Google Scholar 

  329. Sutachan JJ, Casas Z, Albarracin SL, Stab BR 2nd, Samudio I, Gonzalez J, Morales L, Barreto GE (2012) Cellular and molecular mechanisms of antioxidants in Parkinson’s disease. Nutr Neurosci 15(3):120–126

    CAS  PubMed  Google Scholar 

  330. Santos CM (2012) New agents promote neuroprotection in Parkinson’s disease models. CNS Neurol Disord Drug Targets 11(4):410–418

    CAS  PubMed  Google Scholar 

  331. Ebadi M, Govitrapong P, Sharma S, Muralikrishnan D, Shavali S, Pellett L, Schafer R, Albano C, Eken J (2001) Ubiquinone (coenzyme q10) and mitochondria in oxidative stress of Parkinson’s disease. Biol Signals Recept 10(3–4):224–253

    CAS  PubMed  Google Scholar 

  332. Beal MF, Shults CW (2003) Effects of coenzyme Q10 in Huntington’s disease and early Parkinson’s disease. Biofactors 18(1–4):153–161

    CAS  PubMed  Google Scholar 

  333. Gao X, Simon KC, Schwarzschild MA, Ascherio A (2012) Prospective study of statin use and risk of Parkinson disease. Arch Neurol 69(3):380–384

    PubMed Central  PubMed  Google Scholar 

  334. Martín SF, Gómez-Díaz C, Navas P, Villalba JM (2002) Ubiquinol inhibition of neutral sphingomyelinase in liver plasma membrane: specific inhibition of the Mg(2+)-dependent enzyme and role of isoprenoid chain. Biochem Biophys Res Commun 297(3):581–586

    PubMed  Google Scholar 

  335. Yalcin A, Kilinc E, Kocturk S, Resmi H, Sozmen EY (2004) Effect of melatonin cotreatment against kainic acid on coenzyme Q10, lipid peroxidation and Trx mRNA in rat hippocampus. Int J Neurosci 114(9):1085–1097

    CAS  PubMed  Google Scholar 

  336. Shults CW (2005) Therapeutic role of coenzyme Q(10) in Parkinson’s disease. Pharmacol Ther 107(1):120–130

    CAS  PubMed  Google Scholar 

  337. Shults CW, Flint Beal M, Song D, Fontaine D (2004) Pilot trial of high dosages of coenzyme Q10 in patients with Parkinson’s disease. Exp Neurol 188(2):491–494

    CAS  PubMed  Google Scholar 

Download references

Competing interests

No specific funding was obtained for this specific review. MBk has received Grant/Research Support from the NIH, Cooperative Research Centre, Simons Autism Foundation, Cancer Council of Victoria, Stanley Medical Research Foundation, MBF, NHMRC, Beyond Blue, Geelong Medical Research Foundation, Bristol Myers Squibb, Eli Lilly, Glaxo SmithKline, Organon, Novartis, Mayne Pharma and Servier; has been a speaker for Astra Zeneca, Bristol Myers Squibb, Eli Lilly, Glaxo SmithKline, Janssen Cilag, Lundbeck, Merck, Pfizer, Sanofi Synthelabo, Servier, Solvay, and Wyeth; and served as a consultant to Astra Zeneca, Bristol Myers Squibb, Eli Lilly, Glaxo SmithKline, Janssen Cilag, Lundbeck; and Servier. GM, AG, and MM declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Maes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morris, G., Anderson, G., Berk, M. et al. Coenzyme Q10 Depletion in Medical and Neuropsychiatric Disorders: Potential Repercussions and Therapeutic Implications. Mol Neurobiol 48, 883–903 (2013). https://doi.org/10.1007/s12035-013-8477-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8477-8

Keywords

Navigation