Skip to main content

Advertisement

Log in

Hyperphosphorylated Tau is Implicated in Acquired Epilepsy and Neuropsychiatric Comorbidities

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Epilepsy is a common group of neurological diseases. Acquired epilepsy can be caused by brain insults, such as trauma, infection or tumour, and followed by a latent period from several months to years before the emergence of recurrent spontaneous seizures. More than 50 % of epilepsy cases will develop chronic neurodegenerative, neurocognitive and neuropsychiatric comorbidities. It is important to understand the mechanisms by which a brain insult results in acquired epilepsy and comorbidities in order to identify targets for novel therapeutic interventions that may mitigate these outcomes. Recent studies have implicated the hyperphosphorylated tubulin-associated protein (tau) in rodent models of epilepsy and Alzheimer's disease, and in experimental and clinical studies of traumatic brain injury. This potentially represents a novel target to mitigate epilepsy and associated neurocognitive and psychiatric disorders post-brain injury. This article reviews the potential role of tau-based mechanisms in the pathophysiology of acquired epilepsy and its neurocognitive and neuropsychiatric comorbidities, and the potential to target these for novel disease-modifying treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Hesdorffer DC (2010) The natural history of epilepsy: spontaneous remission and mortality. Epilepsy Curr 10:55–56

    Article  PubMed Central  PubMed  Google Scholar 

  2. Yang T, Zhou D, Stefan H (2010) Why mesial temporal lobe epilepsy with hippocampal sclerosis is progressive: uncontrolled inflammation drives disease progression? J Neurol Sci 296:1–6

    Article  PubMed  Google Scholar 

  3. Englander J, Bushnik T, Duong TT et al (2003) Analyzing risk factors for late posttraumatic seizures: a prospective, multicenter investigation. Arch Phys Med Rehabil 84:365–373

    Article  PubMed  Google Scholar 

  4. McIntosh AM, Kalnins RM, Mitchell LA et al (2004) Temporal lobectomy: long-term seizure outcome, late recurrence and risks for seizure recurrence. Brain 127:2018–2030

    Article  PubMed  Google Scholar 

  5. Adams SJ, O'Brien TJ, Lloyd J et al (2008) Neuropsychiatric morbidity in focal epilepsy. Br J Psychiatry 192:464–469

    Article  PubMed  Google Scholar 

  6. Pitkänen A, Sutula TP (2002) Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy. Lancet Neurol 1:173–181

    Article  PubMed  Google Scholar 

  7. Jensen FE (2011) Epilepsy as a spectrum disorder: implications from novel clinical and basic neuroscience. Epilepsia 52(Suppl 1):1–6

    Article  PubMed Central  PubMed  Google Scholar 

  8. Bouilleret V, Hogan RE, Velakoulis D et al (2009) Morphometric abnormalities and hyperanxiety in genetically epileptic rats: a model of psychiatric comorbidity? Neuroimaging 45:267–274

    Article  Google Scholar 

  9. Jupp B, Williams J, Binns D et al (2012) Hypometabolism precedes limbic atrophy and spontaneous recurrent seizures in a rat model of TLE. Epilepsia 53:1233–1244

    Article  PubMed  Google Scholar 

  10. Helmstaedter C, Elger CE (2009) Chronic temporal lobe epilepsy: a neurodevelopmental or progressively dementing disease? Brain 132:2822–2830

    Article  CAS  PubMed  Google Scholar 

  11. Scher WL, Brandt C (2010) Prevention or modification of epileptogenesis after brain insults: experimental approaches and translational research. Pharmacol Rev 62:668–700

    Article  Google Scholar 

  12. Galanopoulou AS, Buckmaster PS, Staley KJ et al (2012) Identification of new epilepsy treatments: issues in preclinical methodology. Epilepsia 53:571–582

    Article  PubMed Central  PubMed  Google Scholar 

  13. Langlois JA, Rutland-Brown W, Wald MM (2005) The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil 21:375–378

    Article  Google Scholar 

  14. Christine H, James WYC (2012) Treatment of post-traumatic epilepsy. Curr Treat Options Neurol 14:293–306

    Article  Google Scholar 

  15. McKee AC, Cantu RC, Nowinski CJ et al (2009) Chronic traumatic encephalopathy in athletes. J Neuropathol Exp Neurol 68:709–735

    Article  PubMed Central  PubMed  Google Scholar 

  16. Bales JW, Wagner AK, Kline AE, Dixon CE (2009) Persistent cognitive dysfunction after traumatic brain injury: a dopamine hypothesis. Neurosci Biobehav Rev 33:981–1003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Rockhill CM, Jaffe K, Zhou C et al (2012) Health care costs associated with traumatic brain injury and psychiatric illness in adults. J Neurotrauma 29:1038–1046

    Article  PubMed  Google Scholar 

  18. Warriner EM, Velikonja D (2006) Psychiatric disturbances after traumatic brain injury: neurobehavioral and personality changes. Curr Psychiatry Rep 8:73–80

    Article  PubMed  Google Scholar 

  19. McIntosh TK (1994) Neurochemical sequelae of traumatic brain injury: therapeutic implications. Cerebrovasc Brain Metab Rev 6:109–162

    CAS  PubMed  Google Scholar 

  20. Johnston MV (2005) Excitotoxicity in perinatal brain injury. Brain Pathol 15:234–240

    Article  CAS  PubMed  Google Scholar 

  21. Hall ED, Vaishnav RA, Mustafa AG (2010) Antioxidant therapies for traumatic brain injury. Neurotherapeutics 7:51–61

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Whitney NP, Eidem TM, Peng H et al (2009) Inflammation mediates varying effects in neurogenesis: relevance to the pathogenesis of brain injury and neurodegenerative disorders. J Neurochem 108:1343–1359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Park E, Bell JD, Baker AJ (2008) Traumatic brain injury: can the consequences be stopped? CMAJ 178:1163–1170

    Article  PubMed Central  PubMed  Google Scholar 

  24. Schoch KM, Madathil SK, Saatman KE (2012) Genetic manipulation of cell death and neuroplasticity pathways in traumatic brain injury. Neurotherapeutics 9:323–337

    Article  PubMed Central  PubMed  Google Scholar 

  25. Tran HT, LaFerla FM, Holtzman DM, Brody DL (2011) Controlled cortical impact traumatic brain injury in 3xTg-AD mice causes acute intra-axonal amyloid-{beta} accumulation and independently accelerates the development of tau abnormalities. J Neurosci 31:9513–9525

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Uryu K, Chen X-H, Martinez D et al (2007) Multiple proteins implicated in neurodegenerative diseases accumulate in axons after brain trauma in humans. Exp Neurol 208:185–192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Sivanandam TM, Thakur MK (2012) Traumatic brain injury: a risk factor for Alzheimer's disease. Neurosci Biobehav Rev 36:1376–1381

    Article  PubMed  Google Scholar 

  28. Lee PC, Bordelon Y, Bronstein J, Ritz B (2012) Traumatic brain injury, paraquat exposure, and their relationship to Parkinson disease. Neurology 79:2061–2066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Mazanetz MP, Fischer PM (2007) Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nat Rev Drug Discov 6:464–479

    Article  CAS  PubMed  Google Scholar 

  30. Palop J, Mucke L (2009) Epilepsy and cognitive impairments in Alzheimer disease. Arch Neurol 66:435–440

    Article  PubMed Central  PubMed  Google Scholar 

  31. Engel T, Goñi-Oliver P, Lucas J et al (2006) Chronic lithium administration to FTDP-17 tau and GSK-3beta overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. J Neurochem 99:1445–1455

    Article  CAS  PubMed  Google Scholar 

  32. Irizarry MC, Jin S, He F et al (2012) Incidence of new-onset seizures in mild to moderate Alzheimer disease. Arch Neurol 69:368–372

    Article  PubMed Central  PubMed  Google Scholar 

  33. Lee S, Hall GF, Shea TB (2011) Potentiation of tau aggregation by cdk5 and GSK3β. J Alzheimers Dis 26:355–364

    Article  CAS  PubMed  Google Scholar 

  34. Liang Z, Liu F, Iqbal K et al (2009) Dysregulation of tau phosphorylation in mouse brain during excitotoxic damage. J Alzheimers Dis 17:531–539

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Morris M, Koyama A, Masliah E, Mucke L (2011) Tau reduction does not prevent motor deficits in two mouse models of Parkinson's disease. PLoS ONE 6:e29257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Ballatore C, Lee VM, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nat Rev Neurosci 8:663–672

    Article  CAS  PubMed  Google Scholar 

  37. Martin L, Latypova X, Terro F (2011) Post-translational modifications of tau protein: implications for Alzheimer's disease. Neurochem Int 58:458–471

    Article  CAS  PubMed  Google Scholar 

  38. Brunden KR, Trojanowski JQ, Lee VMY (2009) Advances in tau-focused drug discovery for Alzheimer's disease and related taupathies. Nat Rev Drug Discov 8:783–793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Noble W, Planel E, Zehr C et al (2005) Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc Natl Acad Sci U S A 102:6990–6995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Leroy K, Ando K, Héraud C et al (2010) Lithium treatment arrests the development of neurofibrillary tangles in mutant tau transgenic mice with advanced neurofibrillary pathology. J Alzheimers Dis 19:705–719

    CAS  PubMed  Google Scholar 

  41. Serenó L, Coma M, Rodríguez M et al (2009) A novel GSK-3beta inhibitor reduces Alzheimer's pathology and rescues neuronal loss in vivo. Neurobiol Dis 35:359–367

    Article  PubMed  Google Scholar 

  42. Hanger DP, Anderton BH, Noble W (2009) Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med 15:112–119

    Article  CAS  PubMed  Google Scholar 

  43. Cruz J, Tseng HC, Goldman JA et al (2003) Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 40:471–483

    Article  CAS  PubMed  Google Scholar 

  44. Braithwaite SP, Stock JB, Lombroso PJ, Nairn AC (2012) Protein phosphatases and Alzheimer's disease. Prog Mol Biol Transl Sci 106:343–379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Gong CX, Shaikh S, Wang JZ et al (1995) Phosphatase activity toward abnormally phosphorylated tau: decrease in Alzheimer disease brain. J Neurochem 65:732–738

    Article  CAS  PubMed  Google Scholar 

  46. Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2005) Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur J Neurosci 22:1942–1950

    Article  PubMed  Google Scholar 

  47. Hanyu Y, Imai KK, Kawasaki Y et al (2009) Schizosaccharomyces pombe cell division cycle under limited glucose requires Ssp1 kinase, the putative CaMK, and Sds23, a PP2A-related phosphatase inhibitor. Genes Cells 14:539–554

    Article  CAS  PubMed  Google Scholar 

  48. Dickey AS, Strack S (2011) PKA/AKAP1 and PP2A/Bβ2 regulate neuronal morphogenesis via Drp1 phosphorylation and mitochondrial bioenergetics. J Neurosci 31:15716–15726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Liu XP, Zheng HY, Qu M et al (2012) Upregulation of astrocytes protein phosphatase-2A stimulates astrocytes migration via inhibiting p38 MAPK in tg2576 mice. Glia 60:1279–1288

    Article  PubMed  Google Scholar 

  50. Jeong HS, Park KC, Kim DS (2012) PP2A and DUSP6 are involved in sphingosylphosphorylcholine-induced hypopigmentation. Mol Cell Biochem 367:43–49

    Article  CAS  PubMed  Google Scholar 

  51. Gavett BE, Stern RA, Cantu RC et al (2010) Mild traumatic brain injury: a risk factor for neurodegeneration. Alzheimers Res Ther 2:18

    Article  PubMed Central  PubMed  Google Scholar 

  52. Xiong Y, Mahmood A, Chopp M (2013) Animal models of traumatic brain injury. Nat Rev Neurosci 14:128–142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Magnoni S, Esparza TJ, Conte V et al (2012) Tau elevations in the brain extracellular space correlate with reduced amyloid-β levels and predict adverse clinical outcomes after severe traumatic brain injury. Brain 135:1268–1280

    Article  PubMed Central  PubMed  Google Scholar 

  54. Gendron TF, Petrucelli L (2009) The role of tau in neurodegeneration. Mol Neurodegener 4:13

    Article  PubMed Central  PubMed  Google Scholar 

  55. Guillozet AL, Weintraub S, Mash DC et al (2003) Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment. JAMA Neurol 60:729–736

    Google Scholar 

  56. Morris M, Maeda S, Vossel K, Mucke L (2011) The many faces of tau. Neuron 70:410–426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Deters N, Ittner LM, Gotz J (2009) Substrate-specific reduction of PP2A activity exaggerates tau pathology. Biochem Biophys Res Commun 379:400–405

    Article  CAS  PubMed  Google Scholar 

  58. Walaas SI, Hemmings HC, Greengard P, Nairn AC (2011) Beyond the dopamine receptor: regulation and roles of serine/threonine protein phosphatases. Front Neuroanat 5:1–17

    Google Scholar 

  59. Roberson ED, Scearce-Levie K, Palop J et al (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer's disease mouse model. Science 316:750–754

    Article  CAS  PubMed  Google Scholar 

  60. Zhao S, Fu J, Liu X et al (2012) Activation of Akt/GSK-3beta/beta-catenin signaling pathway is involved in survival of neurons after traumatic brain injury in rats. Neurol Res 34:400–407

    Article  CAS  PubMed  Google Scholar 

  61. Kabadi SV, Stoica BA, Hanscom M et al (2012) CR8, a selective and potent CDK inhibitor, provides neuroprotection in experimental traumatic brain injury. Neurotherapeutics 9:405–421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Wu PR, Tsai PI, Chen GC et al (2011) DAPK activates MARK1/2 to regulate microtubule assembly, neuronal differentiation, and tau toxicity. Cell Death Differ 18:1507–1520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Medders KE, Kaul M (2011) Mitogen-activated protein kinase p38 in HIV infection and associated brain injury. J Neuroimmune Pharm 6:202–215

    Article  Google Scholar 

  64. Honig A, Arts BM, Ponds RW, Riedel WJ (1999) Lithium induced cognitive side-effects in bipolar disorder: a qualitative analysis and implications for daily practice. Int Clin Psychopharmacol 14:167–171

    CAS  PubMed  Google Scholar 

  65. Pachet AK, Wisniewski AMA (2003) The effects of lithium on cognition: an updated review. Psychopharmacology (Berlin) 170:225–234

    Article  CAS  Google Scholar 

  66. Hilton GD, Stoica BA, Byrnes KR, Faden AI (2008) Roscovitine reduces neuronal loss, glial activation, and neurologic deficits after brain trauma. J Cereb Blood Flow Metab 28:1845–1859

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Kabadi SV, Stoica BA, Byrnes KR et al (2011) Selective CDK inhibitor limits neuroinflammation and progressive neurodegeneration after brain trauma. J Cereb Blood Flow Metab 32:137–149

    Article  PubMed Central  PubMed  Google Scholar 

  68. Janssens V, Goris J (2001) Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J 353:417–439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Sontag E, Luangpirom A, Hladik C et al (2004) Altered expression levels of the protein phosphatase 2A AB[alpha]C enzyme are associated with Alzheimer disease pathology. J Neuropathol Exp Neurol 63:287

    CAS  PubMed  Google Scholar 

  70. Xu Y, Chen Y, Zhang P et al (2008) Structure of a protein phosphatase 2A holoenzyme: insights into B55-mediated Tau dephosphorylation. Mol Cell 31:873–885

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Shi YY (2009) Serine/threonine phosphatases: mechanism through structure. Cell 139:468–484

    Article  CAS  PubMed  Google Scholar 

  72. Vogelsberg-Ragaglia V, Schuck T, Trojanowski JQ, Lee VM (2001) PP2A mRNA expression is quantitatively decreased in Alzheimer's disease hippocampus. Exp Neurol 168:402–412

    Article  CAS  PubMed  Google Scholar 

  73. Iqbal K, del Alonso A, Chen S et al (2005) Tau pathology in Alzheimer disease and other tauopathies. Acta Bioenerg 1739:198–210

    CAS  Google Scholar 

  74. Ramírez-Munguía N, Vera G, Tapia R (2003) Epilepsy, neurodegeneration, and extracellular glutamate in the hippocampus of awake and anesthetized rats treated with okadaic acid. Neurochem Res 28:1517–1524

    Article  PubMed  Google Scholar 

  75. Zhang Z, Simpkins JW (2010) An okadaic acid-induced model of tauopathy and cognitive deficiency. Brain Res 1359:233–246

    Article  CAS  PubMed  Google Scholar 

  76. Tian FF, Zeng C, Ma YF et al (2010) Potential roles of Cdk5/p35 and tau protein in hippocampal mossy fiber sprouting in the PTZ kindling model. Clin Lab 56:127–136

    CAS  PubMed  Google Scholar 

  77. Corcoran NM, Hovens CM (2010) Activating PP2A as a therapeutic intervention strategy in Alzheimer's disease. In: Martinez (ed) Emerging drugs and targets for Alzheimer's disease, 1st edn. Royal Society of Chemistry, London, pp 195–209

    Chapter  Google Scholar 

  78. Curia G, Levitt M, Fender JS et al (2011) Impact of injury location and severity on posttraumatic epilepsy in the rat: role of frontal neocortex. Cereb Cortex 21:1574–1592

    Article  PubMed Central  PubMed  Google Scholar 

  79. Jones NC, Nguyen T, Corcoran NM et al (2011) Targeting hyperphosphorylated tau with sodium selenate suppresses seizures in rodent models. Neurobiol Dis 45:897–901

    Article  PubMed  Google Scholar 

  80. Brinkmann V, Billich A, Baumruker T et al (2010) Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov 9:883–897

    Article  CAS  PubMed  Google Scholar 

  81. Yang Y, Huang Q, Lu YJ et al (2012) Reactivating PP2A by FTY 720 as a novel therapy for AML with C-KIT tyrosine kinase domain mutation. J Cell Biochem 113:1314–1322

    Article  CAS  PubMed  Google Scholar 

  82. Foster CA, Howard LM, Schweitzer A et al (2007) Brain penetration of the oral immunomodulatory drug FTY 720 and its phosphorylation in the central nervous system during experimental autoimmune encephalomyelitis: consequences for mode of action in multiple sclerosis. J Pharmacol Exp Ther 323:469–475

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, P., Shultz, S.R., Hovens, C.M. et al. Hyperphosphorylated Tau is Implicated in Acquired Epilepsy and Neuropsychiatric Comorbidities. Mol Neurobiol 49, 1532–1539 (2014). https://doi.org/10.1007/s12035-013-8601-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8601-9

Keywords

Navigation