Skip to main content

Advertisement

Log in

The Glutathione System: A New Drug Target in Neuroimmune Disorders

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Glutathione (GSH) has a crucial role in cellular signaling and antioxidant defenses either by reacting directly with reactive oxygen or nitrogen species or by acting as an essential cofactor for GSH S-transferases and glutathione peroxidases. GSH acting in concert with its dependent enzymes, known as the glutathione system, is responsible for the detoxification of reactive oxygen and nitrogen species (ROS/RNS) and electrophiles produced by xenobiotics. Adequate levels of GSH are essential for the optimal functioning of the immune system in general and T cell activation and differentiation in particular. GSH is a ubiquitous regulator of the cell cycle per se. GSH also has crucial functions in the brain as an antioxidant, neuromodulator, neurotransmitter, and enabler of neuron survival. Depletion of GSH leads to exacerbation of damage by oxidative and nitrosative stress; hypernitrosylation; increased levels of proinflammatory mediators and inflammatory potential; dysfunctions of intracellular signaling networks, e.g., p53, nuclear factor-κB, and Janus kinases; decreased cell proliferation and DNA synthesis; inactivation of complex I of the electron transport chain; activation of cytochrome c and the apoptotic machinery; blockade of the methionine cycle; and compromised epigenetic regulation of gene expression. As such, GSH depletion has marked consequences for the homeostatic control of the immune system, oxidative and nitrosative stress (O&NS) pathways, regulation of energy production, and mitochondrial survival as well. GSH depletion and concomitant increase in O&NS and mitochondrial dysfunctions play a role in the pathophysiology of diverse neuroimmune disorders, including depression, myalgic encephalomyelitis/chronic fatigue syndrome and Parkinson’s disease, suggesting that depleted GSH is an integral part of these diseases. Therapeutical interventions that aim to increase GSH concentrations in vivo include N-acetyl cysteine; Nrf-2 activation via hyperbaric oxygen therapy; dimethyl fumarate; phytochemicals, including curcumin, resveratrol, and cinnamon; and folate supplementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Marí M, Morales A, Colell A, García-Ruiz C, Fernández-Checa JC (2009) Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal 11:2685–700, PMID: 19558212

    PubMed Central  PubMed  Google Scholar 

  2. Lushchak VI (2012) Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids 2012:736837, PMID: 22500213

    PubMed Central  PubMed  Google Scholar 

  3. Haddad JJ, Harb HL (2005) l-Gamma-glutamyl-l-cysteinyl-glycine (glutathione; GSH) and GSH-related enzymes in the regulation of pro- and anti-inflammatory cytokines: a signaling transcriptional scenario for redox(y) immunologic sensor(s)? Mol Immunol 42:987–1014, PMID: 15829290

    CAS  PubMed  Google Scholar 

  4. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84, PMID: 16978905

    CAS  PubMed  Google Scholar 

  5. Oja SS, Jenei Z, Janáky R, Saransaari P, Varga V (1994) Thiol reagents and brain glutamate receptors. Proc West Pharmacol Soc 37:59–62

    CAS  PubMed  Google Scholar 

  6. Makarov P, Kropf S, Wiswedel I, Augustin W, Schild L (2006) Consumption of redox energy by glutathione metabolism contributes to hypoxia/reoxygenation-induced injury in astrocytes. Mol Cell Biochem 286:95–101, PMID: 16583144

    CAS  PubMed  Google Scholar 

  7. Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine. Clarendon Press, Oxford

    Google Scholar 

  8. Cooper AJ, Pulsinelli WA, Duffy TE (1980) Glutathione and ascorbate during ischemia and postischemic reperfusion in rat brain. J Neurochem 35:1242–5, PMID: 7452315

    CAS  PubMed  Google Scholar 

  9. Kumar C, Igbaria A, D’Autreaux B, Planson AG, Junot C, Godat E, Bachhawat AK, Delaunay-Moisan A, Toledano MB (2011) Glutathione revisited: a vital function in iron metabolism and ancillary role in thiol-redox control. EMBO J 30:2044–56. doi:10.1038/emboj.2011.105, PMID: 21478822

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P (2008) Redox regulation of cell survival. Antioxid Redox Signal 10:1343–74. doi:10.1089/ars.2007.1957, PMID: 18522489

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1–16

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Zhang H, Forman HJ (2009) Redox regulation of gamma-glutamyl transpeptidase. Am J Respir Cell Mol Biol 41:509–15

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Cooper AJL, Hanigan MH (2010) 4.17—Enzymes involved in processing glutathione conjugates. In: Comprehensive toxicology 4:323–66. 2nd edition

  14. McIlwain CC, Townsend DM, Tew KD (2006) Glutathione S-transferase polymorphisms: cancer incidence and therapy. Oncogene 25:1639–48, PMID: 16550164

    CAS  PubMed  Google Scholar 

  15. Coles BF, Morel F, Rauch C, Huber WW, Yang M, Teitel CH, Green B, Lang NP, Kadlubar FF (2001) Effect of polymorphism in the human glutathione S-transferase A1 promoter on hepatic GSTA1 and GSTA2 expression. Pharmacogenetics 11:663–9, PMID: 11692074

    CAS  PubMed  Google Scholar 

  16. Fernandes AP, Holmgren A (2004) Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system. Antioxid Redox Signal 6:63–74, PMID: 14713336

    CAS  PubMed  Google Scholar 

  17. Johnson WM, Wilson-Delfosse AL, Mieyal JJ (2012) Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients 4:1399–440. doi:10.3390/nu4101399, PMID: 23201762

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Peltoniemi M, Kaarteenaho-Wiik R, Säily M, Sormunen R, Pääkkö P, Holmgren A, Soini Y, Kinnula VL (2004) Expression of glutaredoxin is highly cell specific in human lung and is decreased by transforming growth factor-beta in vitro and in interstitial lung diseases in vivo. Hum Pathol 35:1000–7, PMID: 15297967

    CAS  PubMed  Google Scholar 

  19. Pai HV, Starke DW, Lesnefsky EJ, Hoppel CL, Mieyal JJ (2007) What is the functional significance of the unique location of glutaredoxin 1 (GRx1) in the intermembrane space of mitochondria? Antioxid Redox Signal 9:2027–33, PMID: 17845131

    CAS  PubMed  Google Scholar 

  20. Hinchman CA, Ballatori N (1994) Glutathione conjugation and conversion to mercapturic acids can occur as an intrahepatic process. J Toxicol Environ Health 41:387–409

    CAS  PubMed  Google Scholar 

  21. Kalyanaraman B, Karoui H, Singh RJ, Felix CC (1996) Detection of thiyl radical adducts formed during hydroxyl radical- and peroxynitrite-mediated oxidation of thiols—a high resolution ESR spin-trapping study at Q-band (35 Ghz). Anal Biochem 241:75–81

    CAS  PubMed  Google Scholar 

  22. Gardner JM, Aust SD (2009) Quantification of hydroxyl radical produced during phacoemulsification. J Cataract Refract Surg 35:2149–53, PMID: 19969222

    PubMed  Google Scholar 

  23. Calabrese V, Cornelius C, Rizzarelli E, Owen JB, Dinkova-Kostova AT, Butterfield DA (2009) Nitric oxide in cell survival: a Janus molecule. Antioxid Redox Signal 11:2717–39

    CAS  PubMed  Google Scholar 

  24. Siems W, Crifo C, Capuozzo E, Uchida K, Grune T, Salerno C (2010) Metabolism of 4-hydroxy-2-nonenal in human polymorphonuclear leukocytes. Arch Biochem Biophys 503:248–52

    CAS  PubMed  Google Scholar 

  25. Zhu X, Gallogly MM, Mieyal JJ, Anderson VE, Sayre LM (2009) Covalent cross-linking of glutathione and carnosine to proteins by 4-oxo-2-nonenal. Chem Res Toxicol 22:1050–9

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Jones DP, Park Y, Gletsu-Miller N, Liang Y, Yu T, Accardi CJ, Ziegler TR (2011) Dietary sulfur amino acid effects on fasting plasma cysteine/cystine redox potential in humans. Nutrition 27:199–205, PMID: 20471805

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Jones DP (2002) Redox potential of GSH/GSSG couple: assay and biological significance. Methods Enzymol 348:93–112

    CAS  PubMed  Google Scholar 

  28. Holmgren A, Sengupta R (2010) The use of thiols by ribonucleotide reductase. Free Radical Biol Med 49:1617–28

    CAS  Google Scholar 

  29. Yang Y, Sharma R, Sharma A, Awasthi S, Awasthi YC (2003) Lipid peroxidation and cell cycle signaling: 4-hydroxynonenal, a key molecule in stress mediated signaling. Acta Biochim Pol 50:319–36

    CAS  PubMed  Google Scholar 

  30. Zhang D, Lu H, Li J, Shi X, Huang C (2006) Essential roles of ERKs and p38K in up-regulation of GST A1 expression by Maotai content in human hepatoma cell line Hep3B. Mol Cell Biochem 293:161–71, PMID: 16786188

    CAS  PubMed  Google Scholar 

  31. Yang Y, Cheng JZ, Singhal SS, Saini M, Pandya U, Awasthi S, Awasthi YC (2001) Role of glutathione S-transferases in protection against lipid peroxidation. Overexpression of hGSTA2-2 in K562 cells protects against hydrogen peroxide-induced apoptosis and inhibits JNK and caspase 3 activation. J Biol Chem 276:19220–30, PMID: 11279091

    CAS  PubMed  Google Scholar 

  32. Sakai M, Muramatsu M (2007) Regulation of glutathione transferase P: a tumor marker of hepatocarcinogenesis. Biochem Biophys Res Commun 357:575–8, PMID: 17434454

    CAS  PubMed  Google Scholar 

  33. Li Y, Cohenford MA, Dutta U, Dain JA (2008) The structural modification of DNA nucleosides by nonenzymatic glycation: an in vitro study based on the reactions of glyoxal and methylglyoxal with 2′-deoxyguanosine. Anal Bioanal Chem 390:679–88

    CAS  PubMed  Google Scholar 

  34. Karlson EW, Watts J, Signorovitch J, Bonetti M, Wright E, Cooper GS, McAlindon TE, Costenbader KH, Massarotti EM, Fitzgerald LM, Jajoo R, Husni ME, Fossel AH, Pankey H, Ding WZ, Knorr R, Condon S, Fraser PA (2007) Effect of glutathione S-transferase polymorphisms and proximity to hazardous waste sites on time to systemic lupus erythematosus diagnosis: results from the Roxbury Lupus Project. Arthritis Rheum 56:244–54, PMID: 17195228

    CAS  PubMed  Google Scholar 

  35. Gravina P, Spoletini I, Masini S, Valentini A, Vanni D, Paladini E, Bossu P, Caltagirone C, Federici G, Spalletta G, Bernardini S (2011) Genetic polymorphisms of glutathione S-transferases GSTM1, GSTT1, GSTP1 and GSTA1 as risk factors for schizophrenia. Psychiatry Res 187:454–6

    CAS  PubMed  Google Scholar 

  36. Nafissi S, Saadat I, Saadat M (2011) Genetic polymorphisms of glutathione S-transferase Z1 in an Iranian population. Mol Biol Rep 38:3391–4. doi:10.1007/s11033-010-0447-x, PMID: 21107728

    CAS  PubMed  Google Scholar 

  37. Williams TA, Mars AE, Buyske SG, Stenroos ES, Wang R, Factura-Santiago MF, Lambert GH, Johnson WG (2007) Risk of autistic disorder in affected offspring of mothers with a glutathione S-transferase P1 haplotype. Arch Pediatr Adolesc Med 161:356–61, PMID: 17404132

    PubMed  Google Scholar 

  38. Rezaei Z, Saadat I, Saadat M (2012) Association between three genetic polymorphisms of glutathione S-transferase Z1 (GSTZ1) and susceptibility to bipolar disorder. Psychiatry Res 30:166–8. doi:10.1016/j.psychres.2011.09.002, PMID: 22374552

    Google Scholar 

  39. Lynch T, Price A (2007) The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician 76:391–6

    PubMed  Google Scholar 

  40. Wu Y, Zhang X, Bardag-Gorce F, Robel RC, Aguilo J, Chen L, Zeng Y, Hwang K, French SW, Lu SC, Wan YJ (2004) Retinoid X receptor alpha regulates glutathione homeostasis and xenobiotic detoxification processes in mouse liver. Mol Pharmacol 65:550–7, PMID: 14978233

    CAS  PubMed  Google Scholar 

  41. Coles BF, Kadlubar FF (2003) Detoxification of electrophilic compounds by glutathione S-transferase catalysis: determinants of individual response to chemical carcinogens and chemotherapeutic drugs? Biofactors 17:115–30

    CAS  PubMed  Google Scholar 

  42. Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88

    CAS  PubMed  Google Scholar 

  43. Huang KP, Huang FL (2002) Glutathionylation of proteins by glutathione disulfide S-oxide. Biochem Pharmacol 64:1049–56, PMID: 12213604

    CAS  PubMed  Google Scholar 

  44. Poole LB, Karplus PA, Claiborne A (2004) Protein sulfenic acids in redox signaling. Annu Rev Pharmacol Toxicol 44:325–47, PMID: 14744249

    CAS  PubMed  Google Scholar 

  45. Holmgren A, Lu J (2010) Thioredoxin and thioredoxin reductase: current research with special reference to human disease. Biochem Biophys Res Commun 396:120–4

    CAS  PubMed  Google Scholar 

  46. Townsend DM (2008) S-glutathionylation: indicator of cell stress and regulator of the unfolded protein response. Mol Interv 7:313–24

    Google Scholar 

  47. Mieyal JJ, Gallogly MM, Qanungo S, Sabens EA, Shelton MD (2008) Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid Redox Signal 10:1941–88

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Manevich Y, Feinstein SI, Fisher AB (2004) Activation of the antioxidant enzyme 1-CYS peroxiredoxin requires glutathionylation mediated by heterodimerization with pi GST. Proc Natl Acad Sci U S A 101:3780–5, PMID: 15004285

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Townsend DM, Manevich Y, He L, Hutchens S, Pazoles CJ, Tew KD (2009) Novel role for glutathione S-transferase pi Regulator of protein S-glutathionylation following oxidative and nitrosative stress. J Biol Chem 284:436–45. doi:10.1074/jbc.M805586200, PMID: 18990698

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Mieyal JJ, Starke DW, Gravina SA, Hocevar BA (1991) Thioltransferase in human red blood cells: kinetics and equilibrium. Biochemistry 30:8883–91

    CAS  PubMed  Google Scholar 

  51. Lind C, Gerdes R, Schuppe-Koistinen I, Cotgreave IA (1998) Studies on the mechanism of oxidative modification of human glyceraldehyde-3-phosphate dehydrogenase by glutathione: catalysis by glutaredoxin. Biochem Biophys Res Commun 247:481–6, PMID: 9642155

    CAS  PubMed  Google Scholar 

  52. Reddy S, Jones AD, Cross CE, Wong PS, Van Der Vliet A (2000) Inactivation of creatine kinase by S-glutathionylation of the active-site cysteine residue. Biochem J 347:821–7, PMID: 10769188

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Pineda-Molina E, Klatt P, Vázquez J, Marina A, García de Lacoba M, Pérez-Sala D, Lamas S (2001) Glutathionylation of the p50 subunit of NF-kappaB: a mechanism for redox-induced inhibition of DNA binding. Biochemistry 40:14134–42, PMID: 11714266

    CAS  PubMed  Google Scholar 

  54. Reynaert NL, van der Vliet A, Guala AS, McGovern T, Hristova M, Pantano C, Heintz NH, Heim J, Ho YS, Matthews DE, Wouters EF, Janssen–Heininger YM (2006) Dynamic redox control of NF-kappaB through glutaredoxin-regulated S-glutathionylation of inhibitory kappaB kinase beta. Proc Natl Acad Sci U S A 103:13086–91, PMID: 16916935

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Rao RK, Clayton LW (2002) Regulation of protein phosphatase 2A by hydrogen peroxide and glutathionylation. Biochem Biophys Res Commun 293:610–6

    CAS  PubMed  Google Scholar 

  56. Taylor ER, Hurrell F, Shannon RJ, Lin TK, Hirst J, Murphy MP (2003) Reversible glutathionylation of complex I increases mitochondrial superoxide formation. J Biol Chem 278:19603–10

    CAS  PubMed  Google Scholar 

  57. Chen YR, Chen CL, Pfeiffer DR, Zweier JL (2007) Mitochondrial complex II in the post-ischemic heart: oxidative injury and the role of protein S-glutathionylation. J Biol Chem 282:32640–54

    CAS  PubMed  Google Scholar 

  58. Humphries KM, Juliano C, Taylor SS (2002) Regulation of cAMP-dependent protein kinase activity by glutathionylation. J Biol Chem 277:43505–11

    CAS  PubMed  Google Scholar 

  59. Okamoto T, Akaike T, Sawa T, Miyamoto Y, van der Vliet A, Maeda H (2001) Activation of matrix metalloproteinases by peroxynitrite-induced protein S-glutathiolation via disulfide S-oxide formation. J Biol Chem 276:29596–602

    CAS  PubMed  Google Scholar 

  60. Fratelli M, Demol H, Puype M, Casagrande S, Eberini I, Salmona M, Bonetto V, Mengozzi M, Duffieux F, Miclet E, Bachi A, Vanekerckhove J, Gianazza E, Ghezzi P (2002) Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human T lymphocytes. Proc Natl Acad Sci U S A 99:3505–10

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Brown GC, Borutaite V (2004) Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols. Biochim Biophys Acta 1658:44–49, PMID: 15282173

    CAS  PubMed  Google Scholar 

  62. Martínez-Ruiz A, Lamas S (2004) S-nitrosylation: a potential new paradigm in signal transduction. Cardiovasc Res 62:43–52, PMID: 15023551

    PubMed  Google Scholar 

  63. Jourd'heuil D, Jourd’heuil FL, Feelisch M (2003) Oxidation and nitrosation of thiols at low micromolar exposure to nitric oxide. Evidence for a free radical mechanis. J Biol Chem 278:15720–6

    PubMed  Google Scholar 

  64. Mannick JB, Schonhoff CM (2002) Nitrosylation: the next phosphorylation? Arch Biochem Biophys 408:1–6, PMID: 12485597

    CAS  PubMed  Google Scholar 

  65. Hogg N (2002) The biochemistry and physiology of S-nitrosothiols. Ann Rev Pharmacol Toxicol 42:585–600, PMID: 11807184

    CAS  Google Scholar 

  66. Martínez-Ruiz A, Lamas S (2007) Signalling by NO-induced protein S-nitrosylation and S-glutathionylation: convergences and divergences. Cardiovasc Res 75:220–8, PMID: 17451659

    PubMed  Google Scholar 

  67. Giustarini D, Rossi R, Milzani A, Colombo R, Dalle-Donne I (2004) S-glutathionylation: from redox regulation of protein functions to human diseases. J Cell Mol Med 8:201–12, PMID: 15256068

    CAS  PubMed  Google Scholar 

  68. Aracena-Parks P, Goonasekera SA, Gilman C, Dirksen RT, Hidalgo C, Hamilton SL (2006) Identification of cysteines involved in S-nitrosylation, S-glutathionylation, and oxidation to disulfides in RyR1. J Biol Chem 281:40354

    CAS  PubMed  Google Scholar 

  69. Yang Y, Loscalzo J (2005) S-nitrosoprotein formation and localization in endothelial cells. Proc Natl Acad Sci U S A 102:117–22, PMID: 15618409

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Qanungo S, Starke DW, Pai HV, Mieyal JJ, Nieminen AL (2007) Glutathione supplementation potentiates hypoxic apoptosis by S-glutathionylation of p65-NFkappaB. J Biol Chem 282:18427–36

    CAS  PubMed  Google Scholar 

  71. Pineda-Molina E, Klatt P, Vazquez J, Marina A, Garcia DL (2001) Glutathionylation of the p50 subunit of NF-kappaB: a mechanism for redox-induced inhibition of DNA binding. Biochemistry 40:14134–42

    CAS  PubMed  Google Scholar 

  72. Morris G, Maes M (2013) A neuro-immune model of myalgic encephalomyelitis/chronic fatigue syndrome. Metab Brain Dis 28:523–40. doi:10.1007/s11011-012-9324-8, PMID: 22718491

    CAS  PubMed  Google Scholar 

  73. Morris G, Maes M (2012) Increased nuclear factor-κB and loss of p53 are key mechanisms in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Med Hypotheses 79:607–13. doi:10.1016/j.mehy.2012.07.034, PMID: 22951418

    CAS  PubMed  Google Scholar 

  74. Marshall HE, Stamler JS (2001) Inhibition of NF-kappa B by S-nitrosylation. Biochemistry 40:1688–93, PMID: 11327828

    CAS  PubMed  Google Scholar 

  75. Marshall HE, Hess DT, Stamler JS (2004) S-nitrosylation: physiological regulation of NF-kappaB. Proc Natl Acad Sci U S A 101:8841–2, PMID: 15187230

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Into T, Inomata M, Nakashima M, Shibata K, Häcker H, Matsushita K (2008) Regulation of MyD88-dependent signaling events by S nitrosylation retards toll-like receptor signal transduction and initiation of acute-phase immune responses. Mol Cell Biol 28:1338–47, PMID: 18086890

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Haddad JJ (2002) The involvement of l-gamma-glutamyl-l-cysteinyl-glycine (glutathione/GSH) in the mechanism of redox signaling mediating MAPK(p38)-dependent regulation of pro-inflammatory cytokine production. Biochem Pharmacol 63:305–20, PMID: 11841806

    CAS  PubMed  Google Scholar 

  78. Haddad JJ (2011) A redox microenvironment is essential for MAPK-dependent secretion of pro-inflammatory cytokines: modulation by glutathione (GSH/GSSG) biosynthesis and equilibrium in the alveolar epithelium. Cell Immunol 270:53–61. doi:10.1016/j.cellimm.2011.04.001, PMID: 21550026

    CAS  PubMed  Google Scholar 

  79. Gosset P, Wallaert B, Tonnel AB, Fourneau C (1999) Thiol regulation of the production of TNF-α, IL-6 and IL-8 by human alveolar macrophages. Eur Respir J 14:98–105

    CAS  PubMed  Google Scholar 

  80. Jeannin P, Delneste Y, Lecoanet-Henchoz S, Gauchat JF, Life P, Holmes D, Bonnefoy JY (1995) Thiols decrease human interleukin (IL) 4 production and IL-4-induced immunoglobulin synthesis. J Exp Med 182:1785–92, PMID: 7500023

    CAS  PubMed  Google Scholar 

  81. Neuschwander-Tetri BA, Bellezzo JM, Britton RS, Bacon BR, Fox ES (1996) Thiol regulation of endotoxin-induced release of tumor necrosis factor a from isolated rat Kupffer cells. Biochem J 320:1005–10

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Chen CY, Huang YL, Lin TH (1998) Association between oxidative stress and cytokine production in nickel-treated rats. Arch Biochem Biophys 356:127–32

    CAS  PubMed  Google Scholar 

  83. Helbling B, von Overbeck J, Lauterburg BH (1996) Decreased release of glutathione into the systemic circulation of patients with HIV infection. Eur J Clin Invest 26:38–44, PMID: 8682153

    CAS  PubMed  Google Scholar 

  84. Brigelius-Flohé R, Banning A, Kny M, Böl G (2004) Redox events in interleukin-1 signaling. Arch Biochem Biophys 423:66–73

    PubMed  Google Scholar 

  85. Palamara AT, Perno CF, Aquaro S, Bue MC, Dini L, Garaci E (1996) Glutathione inhibits HIV replication by acting at late stages of the virus life cycle. AIDS Res Hum Retroviruses 12:1537–41

    CAS  PubMed  Google Scholar 

  86. Novaes R, Freire-de-Lima CG, de Albuquerque RC, Affonso-Mitidieri OR, Espindola O, Lima MA, de Andrada Serpa MJ, Echevarria-Lima J (2013) Modulation of glutathione intracellular levels alters the spontaneous proliferation of lymphocyte from HTLV-1 infected patients. Immunobiol 218:1166–74. doi:10.1016/j.imbio.2013.04.002, PMID: 23669236

    CAS  Google Scholar 

  87. Fraternale A, Paoletti MF, Casabianca A, Orlandi C, Schiavano GF, Chiarantini L, Clayette P, Oiry J, Vogel JU, Cinatl J Jr, Magnani M (2008) Inhibition of murine AIDS by pro-glutathione (GSH) molecules. Antiviral Res 77:120–7. doi:10.1016/j.antiviral.2007.11.004

    CAS  PubMed  Google Scholar 

  88. Cai J, Chen Y, Seth S, Furukawa S, Compans RW, Jones DP (2003) Inhibition of influenza infection by glutathione. Free Radic Biol Med 34:928–36, PMID: 12654482

    CAS  PubMed  Google Scholar 

  89. Palamara AT, Perno CF, Ciriolo MR, Dini L, Balestra E, D’Agostini C, Di Francesco P, Favalli C, Rotilio G, Garaci E (1995) Evidence for antiviral activity of glutathione: in vitro inhibition of herpes simplex virus type 1 replication. Antiviral Res 27:237–53

    CAS  PubMed  Google Scholar 

  90. Garaci E, Palamara AT, Ciriolo MR, D’Agostini C, Abdel-Latif MS, Aquaro S, Lafavia E, Rotilio G (1997) Intracellular GSH content and HIV replication in human macrophages. J Leukoc Biol 62:54–59

    CAS  PubMed  Google Scholar 

  91. Wang J, Chen Y, Gao N, Wang Y, Tian Y, Wu J, Zhang J, Zhu J, Fan D, An J (2013) Inhibitory effect of glutathione on oxidative liver injury induced by dengue virus serotype 2 infections in mice. PLoS One 8:e55407. doi:10.1371/journal.pone.0055407

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Tian Y, Jiang W, Gao N, Zhang J, Chen W, Fan D, Zhou D, An J (2010) Inhibitory effects of glutathione on dengue virus production. Biochem Biophys Res Commun 397:420–4. doi:10.1016/j.bbrc.2010.05.108

    CAS  PubMed  Google Scholar 

  93. Angelini G, Gardella S, Ardy M, Ciriolo MR, Filomeni G, Di Trapani G, Clarke F, Sitia R, Rubartelli A (2002) Antigen-presenting dendritic cells provide the reducing extracellular microenvironment required for T lymphocyte activation. Proc Natl Acad Sci U S A 99:1491–6, PMID: 11792859

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Ishii T, Hishinuma I, Bannai S, Sugita Y (1981) Mechanism of growth promotion of mouse lymphoma L1210 cells in vitro by feeder layer or 2-mercaptoethanol. J Cell Physiol 107:283–93, PMID: 7251686

    CAS  PubMed  Google Scholar 

  95. Yan Z, Garg SK, Kipnis J, Banerjee R (2009) Extracellular redox modulation by regulatory T cells. Nat Chem Biol 5:721–3. doi:10.1038/nchembio.212, PMID: 19718041

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Sido B, Braunstein J, Breitkreutz R, Herfarth C, Meuer SC (2000) Thiol-mediated redox regulation of intestinal lamina propria T lymphocytes. J Exp Med 192:907–12, PMID: 10993921

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Garg SK, Yan Z, Vitvitsky V, Banerjee R (2011) Differential dependence on cysteine from transsulfuration versus transport during T cell activation. Antioxid Redox Signal 15:39–47. doi:10.1089/ars.2010.3496, PMID: 20673163

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Yan Z, Banerjee R (2010) Redox remodeling as an immunoregulatory strategy. Biochem 49:1059–66. doi:10.1021/bi902022n, PMID: 20070126

    CAS  Google Scholar 

  99. Yan Z, Garg SK, Kipnis J, Banerjee R (2009) Extracellular redox modulation by regulatory T cells. Nat Chem Biol 5:721–3. doi:10.1038/nchembio.212, PMID: 19718041

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Zahedi Avval F, Holmgren A (2009) Molecular mechanisms of thioredoxin and glutaredoxin as hydrogen donors for mammalian S phase ribonucleotide reductase. J Biol Chem 284:8233–40. doi:10.1074/jbc.M809338200, PMID: 19176520

    PubMed  Google Scholar 

  101. Suthanthiran M, Anderson ME, Sharma VK, Meister A (1990) Glutathione regulates activation-dependent DNA synthesis in highly purified normal human T lymphocytes stimulated via the CD2 and CD3 antigens. Proc Natl Acad Sci U S A 87:3343–47, PMID: 1970635

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Messina JP, Lawrence DA (1989) Cell cycle progression of glutathione-depleted human peripheral blood mononuclear cells is inhibited at S phase. J Immunol 143:1974–81

    CAS  PubMed  Google Scholar 

  103. Yan Z, Garg SK, Banerjee R (2010) Regulatory T cells interfere with glutathione metabolism in dendritic cells and T cells. J Biol Chem 285:41525–32. doi:10.1074/jbc.M110.189944, PMID: 21037289

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Kamide Y, Utsugi M, Dobashi K, Ono A, Ishizuka T, Hisada T, Koga Y, Uno K, Hamuro J, Mori M (2011) Intracellular glutathione redox status in human dendritic cells regulates IL-27 production and T-cell polarization. Allergy 66:1183–92. doi:10.1111/j.1398-9995.2011.02611.x, PMID: 21545428

    CAS  PubMed  Google Scholar 

  105. Murata Y, Ohteki T, Koyasu S, Hamuro J (2002) IFN-gamma and pro-inflammatory cytokine production by antigen-presenting cells is dictated by intracellular thiol redox status regulated by oxygen tension. Eur J Immunol 32:2866–73, PMID: 12355439

    CAS  PubMed  Google Scholar 

  106. Palomares T, Alonso-Varona A, Alvarez A, Castro B, Calle Y, Bilbao P (1997) Interleukin-2 increases intracellular glutathione levels and reverses the growth inhibiting effects of cyclophosphamide on B16 melanoma cells. Clin Exp Metastasis 15:329–37, PMID: 9174132

    CAS  PubMed  Google Scholar 

  107. Gmünder H, Roth S, Eck HP, Gallas H, Mihm S, Dröge W (1990) Interleukin-2 mRNA expression, lymphokine production and DNA synthesis in glutathione-depleted T cells. Cell Immunol 130:520–8, PMID: 2208308

    PubMed  Google Scholar 

  108. Yamauchi A, Bloom ET (1997) Control of cell cycle progression in human natural killer cells through redox regulation of expression and phosphorylation of retinoblastoma gene product protein. Blood 89:4092–9, PMID: 9166850

    CAS  PubMed  Google Scholar 

  109. Liang CM, Lee N, Cattell D, Liang SM (1989) Glutathione regulates interleukin-2 activity on cytotoxic T-cells. J Biol Chem 264:13519–23

    CAS  PubMed  Google Scholar 

  110. Chen J, Stewart V, Spyrou G, Hilberg F, Wagner EF, Alt FW (1994) Generation of normal T and B lymphocytes by c-jun deficient embryonic stem cells. Immunity 1:65–72

    CAS  PubMed  Google Scholar 

  111. Pallardó FV, Markovic J, García JL, Viña J (2009) Role of nuclear glutathione as a key regulator of cell proliferation. Mol Aspects Med 30:77–85. doi:10.1016/j.mam.2009.01.001, PMID: 19232542

    PubMed  Google Scholar 

  112. Markovic J, García-Gimenez JL, Gimeno A, Viña J, Pallardó FV (2010) Role of glutathione in cell nucleus. Free Radic Res 44(7):721–33. doi:10.3109/10715762.2010.485989

    CAS  PubMed  Google Scholar 

  113. Diaz Vivancos P, Wolff T, Markovic J, Pallardó FV, Foyer CH (2010) A nuclear glutathione cycle within the cell cycle. Biochem J 431:169–78

    CAS  PubMed  Google Scholar 

  114. García-Giménez JL, Markovic J, Dasí F, Queval G, Schnaubelt D, Foyer CH, Pallardó FV (2013) Nuclear glutathione. Biochim Biophys Acta 1830:3304–16. doi:10.1016/j.bbagen.2012.10.005, PMID: 23069719

    PubMed  Google Scholar 

  115. Ashtiani HRA, Bakhshandi AK, Rahbar M, Mirzaei A, Malekpour A, Rastegar H (2011) Glutathione, cell proliferation and differentiation. Afr J Biotechnol 10:6348–63

    CAS  Google Scholar 

  116. Cuadrado A, Garcia-Fernandez LF, Gonzalez L, Suarez Y, Losada A, Alcaide V, Martinez T, Fernandez-Sousa JM, Sanchez-Puelles JM, Munoz A (2003) Aplidin induces apoptosis in human cancer cells via glutathione depletion and sustained activation of the epidermal growth factor receptor, Src, JNK, and p38 MAPK. J Biol Chem 278:241–50, PMID: 12414812

    CAS  PubMed  Google Scholar 

  117. Day RM, Suzuki YJ (2006) Cell proliferation, reactive oxygen and cellular glutathione. Dose Response 3:425–42. doi:10.2203/dose-response.003.03.010, PMID: 18648617

    PubMed Central  PubMed  Google Scholar 

  118. Circu ML, Aw TY (2008) Glutathione and apoptosis. Free Radic Res 42:689–706. doi:10.1080/10715760802317663, PMID: 18671159

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Franco R, Cidlowski JA (2009) Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ 16:1303–14. doi:10.1038/cdd.2009.107, PMID: 19662025

    CAS  PubMed  Google Scholar 

  120. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–95, PMID: 15734681

    CAS  PubMed  Google Scholar 

  121. Bertout JA, Patel SA, Simon MC (2008) The impact of O2 availability on human cancer. Nat Rev Cancer 8:967–75

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Orrenius S, Gogvadze V, Zhivotovsky B (2007) Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol 47:143–83, PMID: 17029566

    CAS  PubMed  Google Scholar 

  123. Kaludercic N, Takimoto E, Nagayama T, Feng N, Lai EW, Bedja D, Chen K, Gabrielson KL, Blakely RD, Shih JC, Pacak K, Kass DA, Di Lisa F, Paolocci N (2010) Monoamine oxidase A-mediated enhanced catabolism of norepinephrine contributes to adverse remodeling and pump failure in hearts with pressure overload. Circ Res 106:193–202. doi:10.1161/CIRCRESAHA.109.198366, PMID: 19910579

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Starkov AA, Fiskum G, Chinopoulos C, Lorenzo BJ, Browne SE, Patel MS, Beal MF (2004) Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species. J Neurosci 24(36):7779–88, PubMed PMID: 15356189

    CAS  PubMed  Google Scholar 

  125. Kuroda J, Ago T, Matsushima S, Zhai P, Schneider MD, Sadoshima J (2010) NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc Natl Acad Sci U S A 107:15565–70. doi:10.1073/pnas.1002178107, PMID: 20713697

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Adam-Vizi V, Chinopoulos C (2006) Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci 27:639–45, PMID: 17056127

    CAS  PubMed  Google Scholar 

  127. Andreyev AY, Kushnareva YE, Starkov AA (2005) Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc) 70:200–14, PMID: 15807660

    CAS  Google Scholar 

  128. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13. doi:10.1042/BJ20081386, PMID: 19061483

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Cox AG, Winterbourn CC, Hampton MB (2009) Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem J 425:313–25. doi:10.1042/BJ20091541, PMID: 20025614

    PubMed  Google Scholar 

  130. Aon MA, Cortassa S, O’Rourke B (2010) Redox-optimized ROS balance: a unifying hypothesis. Biochim Biophys Acta 1797:865–77. doi:10.1016/j.bbabio.2010.02.016, PMID: 20175987

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Aon MA, Stanley BA, Sivakumaran V, Kembro JM, O’Rourke B, Paolocci N, Cortassa S (2012) Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: an experimental-computational study. J Gen Physiol 139:479–91. doi:10.1085/jgp.201210772, PMID: 22585969

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Sheeran FL, Rydström J, Shakhparonov MI, Pestov NB, Pepe S (2010) Diminished NADPH transhydrogenase activity and mitochondrial redox regulation in human failing myocardium. Biochim Biophys Acta 1797:1138–48. doi:10.1016/j.bbabio.2010.04.002, PMID: 20388492

    CAS  PubMed  Google Scholar 

  133. Drechsel DA, Patel M (2010) Respiration-dependent H2O2 removal in brain mitochondria via the thioredoxin/peroxiredoxin system. J Biol Chem 285:27850–58. doi:10.1074/jbc.M110.101196, PMID: 20558743

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Go YM, Jones DP (2008) Redox compartmentalization in eukaryotic cells. Biochim Biophys Acta 1780:1273–90. doi:10.1016/j.bbagen.2008.01.011, PMID: 18267127

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Hu J, Dong L, Outten CE (2008) The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrix. J Biol Chem 283:29126–34. doi:10.1074/jbc.M803028200, PMID: 18708636

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Kakkar P, Singh BK (2007) Mitochondria: a hub of redox activities and cellular distress control. Mol Cell Biochem 305:235–53

    CAS  PubMed  Google Scholar 

  137. Koehler CM, Beverly K, Leverich EP (2006) Redox pathways in the mitochondrion. Antioxid Redox Signal 8:813–22

    CAS  PubMed  Google Scholar 

  138. Pedrajas JR, Kosmidou E, Miranda-Vizuete A, Gustafsson JA, Wright AP, Spyrou G (1999) Identification and functional characterization of a novel mitochondrial thioredoxin system in Saccharomyces cerevisiae. J Biol Chem 274:6366–73

    CAS  PubMed  Google Scholar 

  139. Chae HZ, Kang SW, Rhee SG (1999) Isoforms of mammalian peroxiredoxin that reduce peroxides in presence of thioredoxin. Methods Enzymol 300:219–26

    CAS  PubMed  Google Scholar 

  140. Orlowski M, Karkowsky A (1976) Glutathione metabolism and some possible functions of glutathione in the nervous system. Int Rev Neurobiol 19:75–121, PMID: 13046

    CAS  PubMed  Google Scholar 

  141. Hjelle OP, Rinvik E, Huster D, Reichelt W, Ottersen OP (1998) In: Shaw CA (ed) Glutathione in the nervous system. Taylor & Francis, Washington, pp pp. 63–88

    Google Scholar 

  142. Nakanishi S (1992) Molecular diversity of glutamate receptors and implications for brain function. Science 258:597–603, PMID: 1329206

    CAS  PubMed  Google Scholar 

  143. Récasens M, Mayat E, Vignes M (1992) The multiple excitatory amino acid receptor subtypes and their putative interactions. Mol Neuropharmacol 2:15–31

    Google Scholar 

  144. Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–95, PMID: 7901908

    CAS  PubMed  Google Scholar 

  145. Beal MF (1995) Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol 38:357–66, PMID: 7668820

    CAS  PubMed  Google Scholar 

  146. Ogita K, Shuto M, Maeda H, Minami T, Yoneda Y (1998) Possible modulation by glutathione of glutamatergic neurotransmission. In: Shaw CA (ed) Glutathione in the nervous system. Taylor & Francis, Washington, pp pp. 137–161

    Google Scholar 

  147. Varga V, Janáky R, Saransaari P, Oja SS (1994) Endogenous gamma-l-glutamyl and beta-l-aspartyl peptides and excitatory aminoacidergic neurotransmission in the brain. Neuropeptides 27:19–26, PMID: 7969817

    CAS  PubMed  Google Scholar 

  148. Oja SS, Janáky R, Varga V, Saransaari P (2000) Modulation of glutamate receptor functions by glutathione. Neurochem Int 37:299–306, PMID: 10812215

    CAS  PubMed  Google Scholar 

  149. Varga V, Jenei Z, Janáky R, Saransaari P, Oja SS (1997) Glutathione is an endogenous ligand of rat brain N-methyl-d-aspartate (NMDA) and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors. Neurochem Res 22:1165–71, PMID: 9251108

    CAS  PubMed  Google Scholar 

  150. Matsuda T, Shimizu E, Ikehira H, Iyo M, Hashimoto K (2008) Negative correlation between brain glutathione level and negative symptoms in schizophrenia: a 3 T 1H-MRS study. PLoS One 3:e1944, PMID: 18398470

    PubMed Central  PubMed  Google Scholar 

  151. Janáky R, Ogita K, Pasqualotto BA, Bains JS, Oja SS, Yoneda Y, Shaw CA (1999) Glutathione and signal transduction in the mammalian CNS. J Neurochem 73:889–902, PMID: 10461878

    PubMed  Google Scholar 

  152. Varga V, Janáky R, Marnela KM, Gulyás J, Kontro P, Oja SS (1989) Displacement of excitatory amino acid receptor ligands by acidic oligopeptides. Neurochem Res 14:1223–7, PMID: 2576463

    CAS  PubMed  Google Scholar 

  153. Jenei Z, Janáky R, Varga V, Saransaari P, Oja SS (1998) Interference of S-alkyl derivatives of glutathione with brain ionotropic glutamate receptors. Neurochem Res 23:1085–91, PMID: 9704598

    CAS  PubMed  Google Scholar 

  154. Gilbert KR, Aizenman E, Reynolds IJ (1991) Oxidized glutathione modulates N-methyl-d-aspartate- and depolarization-induced increases in intracellular Ca2+ in cultured rat forebrain neurons. Neurosci Lett 133:11–4, PMID: 1838798

    CAS  PubMed  Google Scholar 

  155. Cooper AJL (1997) Role of astrocytes in maintaining cerebral glutathione homeostasis and in protecting the brain against xenobiotics and oxidative stress. In: Shaw CA (ed) Glutathione in the nervous system. Taylor and Francis, Washington, pp 91-1–115

    Google Scholar 

  156. Levy DI, Sucher NJ, Lipton SA (1991) Glutathione prevents N-methyl-d-aspartate receptor-mediated neurotoxicity. Neuroreport 2:345–47, PMID: 1832987

    CAS  PubMed  Google Scholar 

  157. Owe SG, Marcaggi P, Attwell D (2006) The ionic stoichiometry of the GLAST glutamate transporter in salamander retinal glia. J Physiol 577:591–9, PMID: 17008380

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC (1995) Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci 15:1835–53, PMID: 7891138

    CAS  PubMed  Google Scholar 

  159. Tanaka K (2000) Functions of glutamate transporters in the brain. Neurosci Res 37:15–9, PMID: 10802340

    CAS  PubMed  Google Scholar 

  160. Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276:1699–1702, PMID: 9180080

    CAS  PubMed  Google Scholar 

  161. Takaki J, Fujimori K, Miura M, Suzuki T, Sekino Y, Sato K (2012) l-glutamate released from activated microglia downregulates astrocytic l-glutamate transporter expression in neuroinflammation: the ‘collusion’ hypothesis for increased extracellular l-glutamate concentration in neuroinflammation. J Neuroinflammation 9:275. doi:10.1186/1742-2094-9-275. PMID: 23259598

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Bassi MT, Gasol E, Manzoni M, Pineda M, Riboni M, Martin R, Zorzano A, Borsani G, Palacin M (2001) Identification and characterisation of human xCT that co-expresses, with 4 F2 heavy chain, the amino acid transport activity system xc. Pflugers Arch 442:286–96

    CAS  PubMed  Google Scholar 

  163. Sato H, Shiiya A, Kimata M, Maebara K, Tamba M, Sakakura Y, Makino N, Sugiyama F, Yagami K, Moriguchi T, Takahashi S, Bannai S (2005) Redox imbalance in cystine/glutamate transporter-deficient mice. J Biol Chem 280:37423–9, PMID: 16144837

    CAS  PubMed  Google Scholar 

  164. Allen JW, Shanker G, Aschner M (2001) Methylmercury inhibits the in vitro uptake of the glutathione precursor, cystine, in astrocytes, but not in neurons. Brain Res 894:131–40

    CAS  PubMed  Google Scholar 

  165. Qin S, Colin C, Hinners I, Gervais A, Cheret C, Mallat M (2006) System Xc- and apolipoprotein E expressed by microglia have opposite effects on the neurotoxicity of amyloid-beta peptide 1-40. J Neurosci 26:3345–56, PMID: 16554485

    CAS  PubMed  Google Scholar 

  166. Barger SW, Goodwin ME, Porter MM, Beggs ML (2007) Glutamate release from activated microglia requires the oxidative burst and lipid peroxidation. J Neurochem 101:1205–13

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Kidd PM (2003) Glutathione: Systemic protectant against oxidative and free radical damage. Alt Med Rev 2:155–76

    Google Scholar 

  168. Gardner JM, Aust SD (2009) Quantification of hydroxyl radical produced during phacoemulsification. J Cataract Refract Surg 35:2149–53

    PubMed  Google Scholar 

  169. Sagone AL Jr, Husney RM, O’Dorisio MS, Metz EN (1984) Mechanisms for the oxidation of reduced gluthathione by stimulated granulocytes. Blood 63:96–104

    CAS  PubMed  Google Scholar 

  170. Calabrese V, Cornelius C, Rizzarelli E, Owen JB, Dinkova-Kostova AT, Butterfield DA (2009) Nitric oxide in cell survival: a Janus molecule. Antioxid Redox Signal 11:2717–39

    CAS  PubMed  Google Scholar 

  171. Chang HL, Dedon PC, Deen WM (2008) Kinetic analysis of intracellular concentrations of reactive nitrogen species. Chem Res Toxicol 21:2134–47

    Google Scholar 

  172. Siems W, Crifo C, Capuozzo E, Uchida K, Grune T, Salerno C (2010) Metabolism of 4-hydroxy-2-nonenal in human polymorphonuclear leukocytes. Arch Biochem Biophys 503:248–52

    CAS  PubMed  Google Scholar 

  173. Zhu X, Gallogly MM, Mieyal JJ, Anderson VE, Sayre LM (2009) Covalent cross-linking of glutathione and carnosine to proteins by 4-oxo-2-nonenal. Chem Res Toxicol 22:1050–9

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Lushchak VI (2011) Adaptive response to oxidative stress: bacteria, fungi, plants and animals. Comp Biochem Physiol C Toxicol Pharmacol 153:175–190

    PubMed  Google Scholar 

  175. Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicol 101:13–30

    CAS  Google Scholar 

  176. Belrose JC, Xie YF, Gierszewski LJ, MacDonald JF, Jackson MF (2012) Loss of glutathione homeostasis associated with neuronal senescence facilitates TRPM2 channel activation in cultured hippocampal pyramidal neurons. Mol Brain 5:11. doi:10.1186/1756-6606-5-11, PMID: 22487454

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Dringen R, Hirrlinger J (2003) Glutathione pathways in the brain. Biol Chem 384:505–16

    CAS  PubMed  Google Scholar 

  178. Lu GD, Shen HM, Chung MC, Ong CN (2007) Critical role of oxidative stress and sustained JNK activation in aloe-emodin-mediated apoptotic cell death in human hepatoma cells. Carcinogenesis 28:1937–45, PMID: 17698970

    CAS  PubMed  Google Scholar 

  179. Neuschwander-Tetri BA, Bellezzo JM, Britton RS, Bacon BR, Fox ES (1996) Thiol regulation of endotoxin-induced release of tumour necrosis factor alpha from isolated rat Kupffer cells. Biochem J 320:1005–10, PMID: 9003392

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Nikulina MA, Andersen HU, Karlsen AE, Darville MI, Eizirik DL, Mandrup-Poluson T (2000) Glutathione depletion inhibits interleukin 1 beta-stimulated nitric oxide production by reducing inducible nitric oxide synthase gene expression. Cytokine+ 12:1391–4

    CAS  PubMed  Google Scholar 

  181. Peristeris P, Clark BD, Gatti S, Faggini R, Mantovani A, Mengozzi M, Orencole SF, Sironi M, Ghezzi P (1992) N-acetylcysteine and glutathione as inhibitors of tumour necrosis factor production. Cell Immunol 140:390–9

    CAS  PubMed  Google Scholar 

  182. Robinson MK, Roderick ML, Jacobs DO, Rounds JD, Collins KH, Saporoschetz IB, Mannick JA, Wilmore DW (1993) Glutathione depletion in rats impairs T-cell and macrophage immune function. Arch Surg 128:29–35

    CAS  PubMed  Google Scholar 

  183. Komatsu H, Hoshino A, Funayama M, Kawahara K, Obala F (2003) Oxidative modulation of the glutathione-redox couple enhances lipopolysaccharide-induced interleukin 12 P40 production by a mouse macrophage cell line, J774A.1. Free Radic Res 37:293–9

    CAS  PubMed  Google Scholar 

  184. Grimble RF (2006) The effects of sulfur amino acid intake on immune function in humans. J Nutr 136:1660S–5S, PMID: 16702336

    CAS  PubMed  Google Scholar 

  185. Peterson JD, Herzenberg LA, Vasquez K, Waltenbaugh C (1998) Glutathione levels in antigen-presenting cells modulate Th1 versus Th2 response patterns. Proc Natl Acad Sci U S A 95:3071–6, PMID: 9501217

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Won HY, Sohn JH, Min HJ, Lee K, Woo HA, Ho YS, Park JW, Rhee SG, Hwang ES (2010) Glutathione peroxidase 1 deficiency attenuates allergen-induced airway inflammation by suppressing Th2 and Th17 cell development. Antioxid Redox Signal 13:575–87. doi:10.1089/ars.2009.2989, PMID: 20367278

    CAS  PubMed  Google Scholar 

  187. Li W, Busu C, Circu ML, Aw TY (2012) Glutathione in cerebral microvascular endothelial biology and pathobiology: implications for brain homeostasis. Int J Cell Biol 2012:434971. doi:10.1155/2012/434971, PMID: 22745639

    PubMed Central  PubMed  Google Scholar 

  188. Velu CS, Niture SK, Doneanu CE, Pattabiraman N, Srivenugopal KS (2007) Human p53 is inhibited by glutathionylation of cysteines present in the proximal DNA-binding domain during oxidative stress. Biochem 46:7765–80, PMID: 17555331

    CAS  Google Scholar 

  189. Qanungo S, Starke DW, Pai HV, Mieyal JJ, Nieminen AL (2007) Glutathione supplementation potentiates hypoxic apoptosis by S-glutathionylation of p65-NFkappaB. J Biol Chem 282:18427–36, PMID: 17468103

    CAS  PubMed  Google Scholar 

  190. Staal FJ (1998) Glutathione and HIV infection: reduced reduced, or increased oxidized? Eur J Clin Invest 28:194–6, PMID: 9568464

    CAS  PubMed  Google Scholar 

  191. Kurdi M, Sivakumaran V, Duhé RJ, Aon MA, Paolocci N, Booz GW (2012) Depletion of cellular glutathione modulates LIF-induced JAK1-STAT3 signaling in cardiac myocytes. Int J Biochem Cell Biol 44:2106–15. doi:10.1016/j.biocel.2012.08.016, PMID: 22939972

    CAS  PubMed Central  PubMed  Google Scholar 

  192. Zeevalk GD, Manzino L, Sonsalla PK, Bernard LP (2007) Characterization of intracellular elevation of glutathione (GSH) with glutathione monoethyl ester and GSH in brain and neuronal cultures: relevance to Parkinson’s disease. Exp Neurol 203(2):512–20, PMID: 17049515

    CAS  PubMed Central  PubMed  Google Scholar 

  193. Shen H, Liu Z (2006) JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Rad Biol Med 40:928–39

    CAS  PubMed  Google Scholar 

  194. Hunot S, Vila M, Teismann P, Davis RJ, Hirsch EC, Przedborski S, Rakic P, Flavell RA (2004) JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A 101:665–70

    CAS  PubMed Central  PubMed  Google Scholar 

  195. Garcia-Gimenez JL, Markovic J, Dasi F, Queval G, Schnaubelt D, Foyer CH, Pallardo FV (2013) Nuclear glutathione. Biochim Biophys Acta 1830:3304–16

    CAS  PubMed  Google Scholar 

  196. Markovic J, Mora NJ, Broseta AM, Gimeno A, de-la Concepción N, Vina J, Pallardo FV (2009) The depletion of nuclear glutathione impairs cell proliferation in 3 t3 fibroblasts. PLoS One 4:e6413. doi:10.1371/journal.pone.0006413

    PubMed Central  PubMed  Google Scholar 

  197. Takahashi T, Tabuchi T, Tamaki Y, Kosaka K, Takikawa Y, Satoh T (2009) Carnosic acid and carnosol inhibit adipocyte differentiation in mouse 3 T3-L1 cells through induction of phase2 enzymes and activation of glutathione metabolism. Biochem Biophys Res Commun 382:549–54. doi:10.1016/j.bbrc.2009.03.059, PMID: 19289108

    CAS  PubMed  Google Scholar 

  198. Messina JP, Lawrence DA (1989) Cell cycle progression of glutathione-depleted human peripheral blood mononuclear cells is inhibited at S phase. J Immunol 143:1974–81, PMID: 2789253

    CAS  PubMed  Google Scholar 

  199. Markovic J, Borrás C, Ortega A, Sastre J, Viña J, Pallardó FV (2007) Glutathione is recruited into the nucleus in early phases of cell proliferation. J Biol Chem 282:20416–24, PMID: 17452333

    CAS  PubMed  Google Scholar 

  200. Atkuri KR, Cowan TM, Kwan T, Ng A, Herzenberg LA, Herzenberg LA, Enns GM (2009) Inherited disorders affecting mitochondrial function are associated with glutathione deficiency and hypocitrullinemia. Proc Natl Acad Sci U S A 106:3941–5. doi:10.1073/pnas.0813409106, PMID: 19223582

    CAS  PubMed Central  PubMed  Google Scholar 

  201. Vali S, Mythri RB, Jagatha B, Padiadpu J, Ramanujan KS, Andersen JK, Gorin F, Bharath MM (2007) Integrating glutathione metabolism and mitochondrial dysfunction with implications for Parkinson’s disease: a dynamic model. Neuroscience 149:917–30, PMID: 17936517

    CAS  PubMed  Google Scholar 

  202. Hargreaves IP, Sheena Y, Land JM, Heales SJ (2005) Glutathione deficiency in patients with mitochondrial disease: implications for pathogenesis and treatment. J Inherit Metab Dis 28:81–8, PMID: 15702408

    CAS  PubMed  Google Scholar 

  203. Pastore A, Petrillo S, Tozzi G, Carrozzo R, Martinelli D, Dionisi-Vici C, Di Giovamberardino G, Ceravolo F, Klein MB, Miller G, Enns GM, Bertini E, Piemonte F (2013) Glutathione: a redox signature in monitoring EPI-743 therapy in children with mitochondrial encephalomyopathies. Mol Genet Metab 109:208–14. doi:10.1016/j.ymgme.2013.03.011, PMID: 23583222

    CAS  PubMed  Google Scholar 

  204. Salmi H, Leonard JV, Rahman S, Lapatto R (2012) Plasma thiol status is altered in children with mitochondrial diseases. Scand J Clin Lab Invest 72:152–7. doi:10.3109/00365513.2011.646299, PMID: 22208644

    CAS  PubMed  Google Scholar 

  205. Atkuri KR, Mantovani JJ, Herzenberg LA, Herzenberg LA (2007) N-acetylcysteine—a safe antidote for cysteine/glutathione deficiency. Curr Opin Pharmacol 7:355–9, PMID: 17602868

    CAS  PubMed  Google Scholar 

  206. Waly MI, Hornig M, Trivedi M, Hodgson N, Kini R, Ohta A, Deth R (2012) Prenatal and postnatal epigenetic programming: implications for GI, immune, and neuronal function in autism. Autism Res Treat 2012:190930. doi:10.1155/2012/190930, PMID: 22934169

    PubMed Central  PubMed  Google Scholar 

  207. Kang PT, Zhang L, Chen CL, Chen J, Green KB, Chen YR (2012) Protein thiyl radical mediates S-glutathionylation of complex I. Free Radic Biol Med 53:962–73. doi:10.1016/j.freeradbiomed.2012.05.025, PMID: 22634394

    CAS  PubMed Central  PubMed  Google Scholar 

  208. Townsend DM, Manevich Y, He L, Hutchens S, Pazoles CJ, Tew KD (2009) Novel role for glutathione S-transferase piRegulator of protein S-glutathionylation following oxidative and nitrosative stress. J Biol Chem 284:436–45. doi:10.1074/jbc.M805586200, PMID: 18990698

    CAS  PubMed Central  PubMed  Google Scholar 

  209. Borutaite V, Brown GC (2007) Mitochondrial regulation of caspase activation by cytochrome oxidase and tetramethylphenylenediamine via cytosolic cytochrome c redox state. J Biol Chem 282:31124–30, PMID: 17690099

    CAS  PubMed  Google Scholar 

  210. Vaughn AE, Deshmukh M (2008) Glucose metabolism inhibits apoptosis in neurons and cancer cells by redox inactivation of cytochrome c. Nat Cell Biol 10:1477–83. doi:10.1038/ncb1807, PMID: 19029908

    CAS  PubMed Central  PubMed  Google Scholar 

  211. Kizhakkayil J, Thayyullathil F, Chathoth S, Hago A, Patel M, Galadari S (2012) Glutathione regulates caspase-dependent ceramide production and curcumin-induced apoptosis in human leukemic cells. Free Radic Biol Med 52:1854–64. doi:10.1016/j.freeradbiomed.2012.02.026, PMID: 22387197

    CAS  PubMed  Google Scholar 

  212. Martín SF, Sawai H, Villalba JM, Hannun YA (2007) Redox regulation of neutral sphingomyelinase-1 activity in HEK293 cells through a GSH-dependent mechanism. Arch Biochem Biophys 459:295–300, PMID: 17169322

    PubMed  Google Scholar 

  213. Lou H, Kaplowitz N (2007) Glutathione depletion down-regulates tumor necrosis factor alpha-induced NF-kappaB activity via IkappaB kinase-dependent and -independent mechanisms. J Biol Chem 282:29470–81, PMID: 17690092

    CAS  PubMed  Google Scholar 

  214. Franco R, Cidlowski JA (2009) Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ 16:1303–14. doi:10.1038/cdd.2009.107, PMID: 19662025

    CAS  PubMed  Google Scholar 

  215. Allen EM, Mieyal JJ (2012) Protein-thiol oxidation and cell death: regulatory role of glutaredoxins. Antioxid Redox Signal 17:1748–63. doi:10.1089/ars.2012.4644, PMID: 22530666

    CAS  PubMed Central  PubMed  Google Scholar 

  216. Franco R, Panayiotidis MI, Cidlowski JA (2007) Glutathione depletion is necessary for apoptosis in lymphoid cells independent of reactive oxygen species formation. J Biol Chem 282:30452–65, PMID: 17724027

    CAS  PubMed Central  PubMed  Google Scholar 

  217. Ji L, Shen K, Jiang P, Morahan G, Wang Z (2011) Critical roles of cellular glutathione homeostasis and jnk activation in andrographolide-mediated apoptotic cell death in human hepatoma cells. Mol Carcinog 50:580–91. doi:10.1002/mc.20741, PMID: 21319226

    CAS  PubMed  Google Scholar 

  218. Yue P, Zhou Z, Khuri FR, Sun SY (2006) Depletion of intracellular glutathione contributes to JNK-mediated death receptor 5 upregulation and apoptosis induction by the novel synthetic triterpenoid methyl-2-cyano-3, 12-dioxooleana-1, 9-dien-28-oate (CDDO-Me). Cancer Biol Ther 5:492–7, PMID: 16582599

    CAS  PubMed  Google Scholar 

  219. Haouzi D, Lekehal M, Tinel M, Vadrot N, Caussanel L, Lettéron P, Moreau A, Feldmann G, Fau D, Pessayre D (2001) Prolonged, but not acute, glutathione depletion promotes Fas-mediated mitochondrial permeability transition and apoptosis in mice. Hepatology 33:1181–8

    CAS  PubMed  Google Scholar 

  220. Armstrong JS, Jones DP (2002) Glutathione depletion enforces the mitochondrial permeability transition and causes cell death in Bcl-2 overexpressing HL60 cells. FASEB J 16:1263–5, PMID: 12060676

    CAS  PubMed  Google Scholar 

  221. Chernyak BV (1997) Redox regulation of the mitochondrial permeability transition pore. Biosci Rep 17:293–302, PMID: 9337484

    CAS  PubMed  Google Scholar 

  222. Sato T, Machida T, Takahashi S, Iyama S, Sato Y, Kuribayashi K, Takada K, Oku T, Kawano Y, Okamoto T, Takimoto R, Matsunaga T, Takayama T, Takahashi M, Kato J, Niitsu Y (2004) Fas-mediated apoptosome formation is dependent on reactive oxygen species derived from mitochondrial permeability transition in Jurkat cells. J Immunol 173:285–96, PMID: 15210786

    CAS  PubMed  Google Scholar 

  223. D’Alessio M, De Nicola M, Coppola S, Gualandi G, Pugliese L, Cerella C, Cristofanon S, Civitareale P, Ciriolo MR, Bergamaschi A, Magrini A, Ghibelli L (2005) Oxidative Bax dimerization promotes its translocation to mitochondria independently of apoptosis. FASEB J 19:1504–6, PMID: 15972297

    PubMed  Google Scholar 

  224. Kanno T, Nishizaki T (2001) Sphingosine induces apoptosis in hippocampal neurons and astrocytes by activating caspase-3/-9 via a mitochondrial pathway linked to SDK/14-3-3 protein/Bax/cytochrome c. J Cell Physiol 226:2329–37. doi:10.1002/jcp.22571, PMID: 21660956

    Google Scholar 

  225. Guha P, Dey A, Sen R, Chatterjee M, Chattopadhyay S, Bandyopadhyay SK (2011) Intracellular GSH depletion triggered mitochondrial Bax translocation to accomplish resveratrol-induced apoptosis in the U937 cell line. J Pharmacol Exp Ther 336:206–14. doi:10.1124/jpet.110.171983, PMID: 20876229

    CAS  PubMed  Google Scholar 

  226. Giorgi C, Baldassari F, Bononi A, Bonora M, De Marchi E, Marchi S, Missiroli S, Patergnani S, Rimessi A, Suski JM, Wieckowski MR, Pinton P (2012) Mitochondrial Ca(2+) and apoptosis. Cell Calcium 52:36–43. doi:10.1016/j.ceca.2012.02.008, PMID: 22480931

    CAS  PubMed Central  PubMed  Google Scholar 

  227. Jin M, Yaung J, Kannan R, He S, Ryan SJ, Hinton DR (2005) Hepatocyte growth factor protects RPE cells from apoptosis induced by glutathione depletion. Invest Ophthalmol Vis Sci 46:4311–19, PMID: 16249513

    PubMed  Google Scholar 

  228. Robillard JM, Gordon GR, Choi HB, Christie BR, MacVicar BA (2011) Glutathione restores the mechanism of synaptic plasticity in aged mice to that of the adult. PLoS One 6:e20676. doi:10.1371/journal.pone.0020676, PMID: 21655192

    CAS  PubMed Central  PubMed  Google Scholar 

  229. Steullet P, Neijt HC, Cuénod M, Do KQ (2006) Synaptic plasticity impairment and hypofunction of NMDA receptors induced by glutathione deficit: relevance to schizophrenia. Neuroscience 137:807–19, PMID: 16330153

    CAS  PubMed  Google Scholar 

  230. Abramov AY, Canevari L, Duchen MR (2003) Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J Neurosci 23:5088–95, PMID: 12832532

    CAS  PubMed  Google Scholar 

  231. Dallas M, Boycott HE, Atkinson L, Miller A, Boyle JP, Pearson HA, Peers C (2007) Hypoxia suppresses glutamate transport in astrocytes. J Neurosci 27:3946–55, PMID: 17428968

    CAS  PubMed  Google Scholar 

  232. Murphy TH, Miyamoto M, Sastre A, Schnaar RL, Coyle JT (1989) Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 2:1547–58, PMID: 2576375

    CAS  PubMed  Google Scholar 

  233. Juurlink BH (1997) Response of glial cells to ischemia: roles of reactive oxygen species and glutathione. Neurosci Biobehav Rev 21:151–66, PMID: 9062938

    CAS  PubMed  Google Scholar 

  234. Stewart VC, Stone R, Gegg ME, Sharpe MA, Hurst RD, Clark JB, Heales SJ (2002) Preservation of extracellular glutathione by an astrocyte derived factor with properties comparable to extracellular superoxide dismutase. J Neurochem 83:984–91, PMID: 12421371

    CAS  PubMed  Google Scholar 

  235. Dringen R, Pfeiffer B, Hamprecht B (1999) Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. J Neurosci 19:562–9, PMID: 9880576

    CAS  PubMed  Google Scholar 

  236. Dringen R, Gutterer JM, Gros C, Hirrlinger J (2001) Aminopeptidase N mediates the utilization of the GSH precursor CysGly by cultured neurons. J Neurosci Res 66:1003–8, PMID: 11746430

    CAS  PubMed  Google Scholar 

  237. Aoyama K, Watabe M, Nakaki T (2008) Regulation of neuronal glutathione synthesis. J Pharmacol Sci 108:227–38, PMID: 19008644

    CAS  PubMed  Google Scholar 

  238. Lertratanangkoon K, Wu CJ, Savaraj N, Thomas ML (1997) Alterations of DNA methylation by glutathione depletion. Cancer Lett 120:149–56, PMID: 9461031

    CAS  PubMed  Google Scholar 

  239. Campos AC, Molognoni F, Melo FH, Galdieri LC, Carneiro CR, D’Almeida V, Correa M, Jasiulionis MG (2007) Oxidative stress modulates DNA methylation during melanocyte anchorage blockade associated with malignant transformation. Neoplasia 9:1111–21, PMID: 18084618

    CAS  PubMed Central  PubMed  Google Scholar 

  240. Hartnett L, Egan LJ (2012) Inflammation, DNA methylation and colitis-associated cancer. Carcinogenesis 33:723–31. doi:10.1093/carcin/bgs006, PMID: 22235026

    CAS  PubMed  Google Scholar 

  241. Wachsman JT (1997) DNA methylation and the association between genetic and epigenetic changes: relation to carcinogenesis. Mutat Res 375:1–8, PMID: 9129674

    CAS  PubMed  Google Scholar 

  242. Weitzman SA, Turk PW, Milkowski DH, Kozlowski K (1994) Free radical adducts induce alterations in DNA cytosine methylation. Proc Natl Acad Sci U S A 91:1261–4, PMID: 8108398

    CAS  PubMed Central  PubMed  Google Scholar 

  243. Kuchino Y, Mori F, Kasai H, Inoue H, Iwai S, Miura K, Ohtsuka E, Nishimura S (1987) Misreading of DNA templates containing 8-hydroxydeoxyguanosine at the modified base and at adjacent residues. Nature 327:77–9, PMID: 3574469

    CAS  PubMed  Google Scholar 

  244. Hitchler MJ, Domann FE (2007) An epigenetic perspective on the free radical theory of development. Free Radic Biol Med 43:1023–36, PMID: 17761298

    CAS  PubMed Central  PubMed  Google Scholar 

  245. McCaddon A, Regland B, Hudson P, Davies G (2002) Functional vitamin B(12) deficiency and Alzheimer disease. Neurology 58:1395–9, PMID: 12011287

    CAS  PubMed  Google Scholar 

  246. Deth R, Muratore C, Benzecry J, Power-Charnitsky VA, Waly M (2008)) How environmenta and genetic factors combine to cause autism: a redox/methylation hypothesis. Neurotoxicol 29:190–201, PMID: 1803-1821

    CAS  Google Scholar 

  247. Looney JM, Childs HM (1934) The lactic acid and glutathione content of the blood of schizophrenic patients. J Clin Invest 13:963–8, PMID: 16694262

    CAS  PubMed Central  PubMed  Google Scholar 

  248. Rybka J, Kędziora-Kornatowska K, Banaś-Leżańska P, Majsterek I, Carvalho LA, Cattaneo A, Anacker C, Kędziora J (2013) Interplay between the pro-oxidant and antioxidant systems and proinflammatory cytokine levels, in relation to iron metabolism and the erythron in depression. Free Radic Biol Med 63:187–194. doi:10.1016/j.freeradbiomed.2013.05.019, PMID: 23707456

    CAS  PubMed  Google Scholar 

  249. Maes M, Mihaylova I, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E (2011) Lower whole blood glutathione peroxidase (GPX) activity in depression, but not in myalgic encephalomyelitis/chronic fatigue syndrome: another pathway that may be associated with coronary artery disease and neuroprogression in depression. Neuro Endocrinol Lett 32:133–40, PMID: 21552194

    PubMed  Google Scholar 

  250. Kaddurah-Daouk R, Yuan P, Boyle SH, Matson W, Wang Z, Zeng ZB, Zhu H, Dougherty GG, Yao JK, Chen G, Guitart X, Carlson PJ, Neumeister A, Zarate C, Krishnan RR, Manji HK, Drevets W (2012) Cerebrospinal fluid metabolome in mood disorders-remission state has a unique metabolic profile. Sci Rep 2:667, PMID: 22993692

    PubMed Central  PubMed  Google Scholar 

  251. Stefanescu C, Ciobica A (2012) The relevance of oxidative stress status in first episode and recurrent depression. J Affect Disorder 20;143(1-3):34–8. doi:10.1016/j.jad.2012.05.022

    Google Scholar 

  252. Gibson SA, Korade Ž, Shelton RC (2012) Oxidative stress and glutathione response in tissue cultures from persons with major depression. J Psychiatr Res 46:1326–32. doi:10.1016/j.jpsychires.2012.06.008, PMID: 22841833

    PubMed Central  PubMed  Google Scholar 

  253. Gawryluk JW, Wang JF, Andreazza AC, Shao L, Yatham LN, Young LT (2011) Prefrontal cortex glutathione S-transferase levels in patients with bipolar disorder, major depression and schizophrenia. Int J Neuropsychopharmacol 14:1069–74. doi:10.1017/S1461145711000617, PMID: 21733244

    CAS  PubMed  Google Scholar 

  254. Gawryluk JW, Wang JF, Andreazza AC, Shao L, Young LT (2011) Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol 14:123–30. doi:10.1017/S1461145710000805, PMID: 20633320

    CAS  PubMed  Google Scholar 

  255. Rose S, Melnyk S, Pavliv O, Bai S, Nick TG, Frye RE, James SJ (2012) Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Transl Psychiatry 2:e134. doi:10.1038/tp.2012.61, PMID: 22781167

    CAS  PubMed Central  PubMed  Google Scholar 

  256. Mathew SJ, Murrough JW, Mao X, Pillemer S, Shungu DC (2010) Proton magnetic resonance spectroscopy measurement of brain glutathione supports increased oxidative stress in major depressive Ddsorder. 49th American College of Neuropsychopharmacology Annual Meeting, Miami, Fl., December 5. Poster Session 1: 153

  257. Do KQ, Trabesinger AH, Kirsten-Krüger M, Lauer CJ, Dydak U, Hell D, Holsboer F, Boesiger P, Cuénod M (2000) Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur J Neurosci 12:3721–8, PMID: 11029642

    CAS  PubMed  Google Scholar 

  258. Matsuzawa D, Obata T, Shirayama Y, Nonaka H, Kanazawa Y, Yoshitome E, Takanashi J, Matsuda T, Shimizu E, Ikehira H, Iyo M, Hashimoto K (2008) Negative correlation between brain glutathione level and negative symptoms in schizophrenia: a 3 T 1H-MRS study. PLoS One 3:e1944, PMID: 18398470

    PubMed Central  PubMed  Google Scholar 

  259. Berk M, Johansson S, Wray NR, Williams L, Olsson C, Haavik J, Bjerkeset O (2011) Glutamate cysteine ligase (GCL) and self reported depression: an association study from the HUNT. J Affect Disord 131:207–13. doi:10.1016/j.jad.2010.12.019, PMID: 21277635

    CAS  PubMed  Google Scholar 

  260. Maes M, Van de Vyvere J, Vandoolaeghe E, Bril T, Demedts P, Wauters A, Neels H (1996) Alterations in iron metabolism and the erythron in major depression: further evidence for a chronic inflammatory process. J Affect Disord 40:23–33. doi:10.1016/0165-0327(96)00038-9. PMID: 8882911

    CAS  PubMed  Google Scholar 

  261. Edwards R, Peet M, Shay J, Horrobin D (1998) Omega-3 polyunsaturated fatty acid levels in the diet and in red blood cell membranes of depressed patients. J Affect Disord 48:149–55. doi:10.1016/S0165-0327(97)00166-3. PMID: 9543204

    CAS  PubMed  Google Scholar 

  262. Peet M, Murphy B, Shay J, Horrobin D (1998) Depletion of omega-3 fatty acid levels in red blood cell membranes of depressive patients. Biol Psychiatry 43:315–9, PMID: 9513745

    CAS  PubMed  Google Scholar 

  263. Richards RS, Wang L, Jelinek H (2007) Erythrocyte oxidative damage in chronic fatigue syndrome. Arch Med Res 38:94–8

    CAS  PubMed  Google Scholar 

  264. Raftos JE, Whillier S, Kuchel PW (2010) Glutathione synthesis and turnover in the human erythrocyte: alignment of a model based on detailed enzyme kinetics with experimental data. J Biol Chem 285:23557–67. doi:10.1074/jbc.M109.067017, PMID: 20498365

    CAS  PubMed Central  PubMed  Google Scholar 

  265. Tavazzi B, Amorini AM, Fazzina G, Di Pierro D, Tuttobene M, Giardina B, Lazzarino G (2001) Oxidative stress induces impairment of human erythrocyte energy metabolism through the oxygen radical-mediated direct activation of AMP-deaminase. J Biol Chem 276:48083–92, PMID: 11675377

    CAS  PubMed  Google Scholar 

  266. Pandey KB, Rizvi SI (2010) Markers of oxidative stress in erythrocytes and plasma during aging in humans. Oxid Med Cell Longev 3:2–12. doi:10.4161/oxim.3.1.10476, PMID: 20716923

    PubMed Central  PubMed  Google Scholar 

  267. Morris G, Maes M (2013) Case definitions and diagnostic criteria for myalgic encephalomyelitis and chronic fatigue syndrome: from clinical-consensus to evidence-based case definitions. Neuro-Endocrinol Lett 34:185–99, PMID: 23685416

    PubMed  Google Scholar 

  268. Shungu DC, Weiduschat N, Murrough JW, Mao X, Pillemer S, Dyke JP, Medow MS, Natelson BH, Stewart JM, Mathew SJ (2012) Increased ventricular lactate in chronic fatigue syndrome. III. Relationships to cortical glutathione and clinical symptoms implicate oxidative stress in disorder pathophysiology. NMR Biomed 25:1073–87. doi:10.1002/nbm.2772, PMID: 22281935

    CAS  PubMed Central  PubMed  Google Scholar 

  269. Puri BK, Agour M, Gunatilake KD, Fernando KA, Gurusinghe AI, Treasaden IH (2009) An in vivo proton neurospectroscopy study of cerebral oxidative stress in myalgic encephalomyelitis (chronic fatigue syndrome). Prostaglandins Leukot Essent Fatty Acids 81:303–5. doi:10.1016/j.plefa.2009.10.002, PMID: 19906518

    CAS  PubMed  Google Scholar 

  270. Kennedy G, Spence VA, McLaren M, Hill A, Underwood C, Belch JJ (2005) Oxidative stress levels are raised in chronic fatigue syndrome and are associated with clinical symptoms. Free Radic Biol Med 39:584–9, PMID: 16085177

    CAS  PubMed  Google Scholar 

  271. Richards RS, Roberts TK, Dunstan RH, McGregor NR, Butt HL (2000) Free radicals in chronic fatigue syndrome: cause or effect? Redox Rep 5:146–7

    CAS  PubMed  Google Scholar 

  272. Fulle S, Mecocci P, Fanó G, Vecchiet I, Vecchini A, Racciotti D, Cherubini A, Pizzigallo E, Vecchiet L, Senin U, Beal MF (2000) Specific oxidative alterations in vastus lateralis muscle of patients with the diagnosis of chronic fatigue syndrome. Free Radic Biol Med 29:1252–9, PMID: 11118815

    CAS  PubMed  Google Scholar 

  273. Logan AC, Wong C (2001) Chronic fatigue syndrome: oxidative stress and dietary modifications. Altern Med Rev 6:450–9, PMID: 11703165

    CAS  PubMed  Google Scholar 

  274. Jammes Y, Steinberg JG, Mambrini O, Brégeon F, Delliaux S (2005) Chronic fatigue syndrome: assessment of increased oxidative stress and altered muscle excitability in response to incremental exercise. J Intern Med 257:299–310, PMID: 15715687

    CAS  PubMed  Google Scholar 

  275. Bested AC, Saunders PR, Logan AC (2001) Chronic fatigue syndrome: neurological findings may be related to blood–brain barrier permeability. Med Hypotheses 57:231–7, PMID: 11461179

    CAS  PubMed  Google Scholar 

  276. Kim HG, Cho JH, Yoo SR, Lee JS, Han JM, Lee NH, Ahn YC, Son CG (2013) Antifatigue effects of Panax ginseng C.A. Meyer: a randomised, double-blind, placebo-controlled trial. PLoS One 8:e61271

    CAS  PubMed Central  PubMed  Google Scholar 

  277. Kim HG, Yoo SR, Park HJ, Son CG (2013) Indirect moxibustion (CV4 and CV8) ameliorates chronic fatigue: a randomized, double-blind, controlled study. J Altern Complement Med 19:134–40. doi:10.1089/acm.2011.0503, PMID: 22757691

    PubMed Central  PubMed  Google Scholar 

  278. Ding W, Liu Y (2011) Genistein attenuates genioglossus muscle fatigue under chronic intermittent hypoxia by down-regulation of oxidative stress level and up-regulation of antioxidant enzyme activity through ERK1/2 signaling pathway. Oral Dis 17:677–84. doi:10.1111/j.1601-0825.2011.01822.x, PMID: 21729219

    PubMed  Google Scholar 

  279. Liu CZ, Lei B (2012) Effect of acupuncture on serum malonaldehyde content, superoxide dismutase and glutathione peroxidase activity in chronic fatigue syndrome rats. Zhen Ci Yan Jiu 37:38–40, PMID: 22574567

    PubMed  Google Scholar 

  280. Sachdeva AK, Kuhad A, Tiwari V, Chopra K (2009) Epigallocatechin gallate ameliorates chronic fatigue syndrome in mice: behavioral and biochemical evidence. Behav Brain Res 205:414–20. doi:10.1016/j.bbr.2009.07.020, PMID: 19643148

    CAS  PubMed  Google Scholar 

  281. Kumar A, Garg R (2009) Protective effects of antidepressants against chronic fatigue syndrome-induced behavioral changes and biochemical alterations. Fundam Clin Pharmacol 23:89–95. doi:10.1111/j.1472-8206.2008.00638.x, PMID: 19207541

    CAS  PubMed  Google Scholar 

  282. Kumar A, Garg R (2008) Kumar P (2008) Nitric oxide modulation mediates the protective effect of trazodone in a mouse model of chronic fatigue syndrome. Pharmacol Rep 60(5):664–72, PubMed PMID: 19066412

    CAS  PubMed  Google Scholar 

  283. Dhir A, Kulkarni SK (2008) Venlafaxine reverses chronic fatigue-induced behavioral, biochemical and neurochemical alterations in mice. Pharmacol, Biochem Behav 89:563–71. doi:10.1016/j.pbb.2008.02.011, PMID: 18336891

    CAS  Google Scholar 

  284. Singal A, Kaur S, Tirkey N, Chopra K (2005) Green tea extract and catechin ameliorate chronic fatigue-induced oxidative stress in mice. J Med Food 8:47–52, PMID: 15857209

    CAS  PubMed  Google Scholar 

  285. Singh A, Garg V, Gupta S, Kulkarni SK (2002) Role of antioxidants in chronic fatigue syndrome in mice. Indian J Exp Biol 40:1240–4, PMID:13677625

    CAS  PubMed  Google Scholar 

  286. Morris G, Maes M (2013) Myalgic encephalomyelitis/chronic fatigue syndrome and encephalomyelitis disseminata/multiple sclerosis show remarkable levels of similarity in phenomenology and neuroimmune characteristics. BMC Med 11:205. doi:10.1186/1741-7015-11-205, PMID: 24229326

    CAS  PubMed Central  PubMed  Google Scholar 

  287. Morris G, Maes M (2014) Mitochondrial dysfunctions in myalgic encephalomyelitis/chronic fatigue syndrome explained by activated immuno-inflammatory, oxidative and nitrosative stress pathways. Metab Brain Dis 29(1):19–36

    CAS  PubMed  Google Scholar 

  288. Kubera M, Obuchowicz E, Goehler L, Brzeszcz J, Maes M (2011) In animal models, psychosocial stress-induced (neuro)inflammation, apoptosis and reduced neurogenesis are associated to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry 35(3):744–59. doi:10.1016/j.pnpbp.2010.08.026, PubMed PMID: 20828592

    CAS  PubMed  Google Scholar 

  289. Vialou V, Feng J, Robison AJ, Nestler EJ (2013) Epigenetic mechanisms of depression and antidepressant action. Annu Rev Pharmacol Toxicol 53:59–87. doi:10.1146/annurev-pharmtox-010611-134540, PMID: 23020296

    CAS  PubMed Central  PubMed  Google Scholar 

  290. Menzies V, Lyon DE, Archer KJ, Zhou Q, Brumelle J, Jones KH, Gao G, York TP, Jackson-Cook C (2013) Epigenetic alterations and an increased frequency of micronuclei in women with fibromyalgia. Nurs Res Pract 2013:795784. doi:10.1155/2013/795784, PMID: 24058735

    PubMed Central  PubMed  Google Scholar 

  291. Rönnbäck L, Hansson E (2004) On the potential role of glutamate transport in mental fatigue. J Neuroinflammation 1:22, PMID: 15527505

    PubMed Central  PubMed  Google Scholar 

  292. Moylan S, Maes M, Wray NR, Berk M (2013) The neuroprogressive nature of major depressive disorder: pathways to disease evolution and resistance, and therapeutic implications. Mol Psychiatry 18:595–606. doi:10.1038/mp.2012.33, PMID: 22525486

    CAS  PubMed  Google Scholar 

  293. Anderson G, Maes M (2013) Oxidative/nitrosative stress and immuno-inflammatory pathways in depression: treatment implications. Curr Pharm Des [Epub ahead of print] PubMed PMID: 24180395.

  294. Keane PC, Kurzawa M, Blain PG, Morris CM (2011) Mitochondrial dysfunction in Parkinson’s disease. Parkinsons Dis 2011:716871. doi:10.4061/2011/716871, PMID: 21461368

    CAS  PubMed Central  PubMed  Google Scholar 

  295. Hsu M, Srinivas B, Kumar J, Subramanian R, Andersen J (2005) Glutathione depletion resulting in selective mitochondrial complex I inhibition in dopaminergic cells is via an NO-mediated pathway not involving peroxynitrite: implications for Parkinson’s disease. J Neurochem 92:1091–103, PMID: 15715660

    CAS  PubMed  Google Scholar 

  296. Auchère F, Santos R, Planamente S, Lesuisse E, Camadro JM (2008) Glutathione-dependent redox status of frataxin-deficient cells in a yeast model of Friedreich’s ataxia. Hum Mol Genet 17:2790–802. doi:10.1093/hmg/ddn178, PMID: 18562474

    PubMed  Google Scholar 

  297. Friedlich AL, Smith MA, Zhu X, Takeda A, Nunomura A, Moreira PI, Perry G (2009) Oxidative stress in Parkinson’s disease. Open Pathology J 3:38–42

    CAS  Google Scholar 

  298. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283:65–87. doi:10.1016/j.tox.2011.03.001, PMID: 21414382

    CAS  PubMed  Google Scholar 

  299. Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–208, PMID: 15892631

    CAS  PubMed  Google Scholar 

  300. Morris G, Maes M (2014) Mitochondrial dysfunctions in myalgic encephalomyelitis/chronic fatigue syndrome explained by activated immuno-inflammatory, oxidative and nitrosative stress pathways. Metab Brain Dis 29:19–36. doi:10.1007/s11011-013-9435-x, PMID: 24557875

    CAS  PubMed  Google Scholar 

  301. Sadowska AM, Manuel-Y-Keenoy B, De Backer WA (2007) Antioxidant and anti-inflammatory efficacy of NAC in the treatment of COPD: discordant in vitro and in vivo dose-effects: a review. Pulm Pharmacol Ther 20:9–22, PMID: 16458553

    CAS  PubMed  Google Scholar 

  302. Cotgreave IA (1997) N-acetylcysteine: pharmacological considerations and experimental and clinical applications. Adv Pharmacol 38:205–27, PMID: 8895810

    CAS  PubMed  Google Scholar 

  303. Jain A, Mårtensson J, Stole E, Auld PA, Meister A (1991) Glutathione deficiency leads to mitochondrial damage in brain. Proc Natl Acad Sci U S A 88:1913–7, PMID: 2000395

    CAS  PubMed Central  PubMed  Google Scholar 

  304. Zeevalk GD, Razmpour R, Bernard LP (2008) Glutathione and Parkinson’s disease: is this the elephant in the room? Biomed Pharmacother 62:236–49

    CAS  PubMed  Google Scholar 

  305. De Flora S, Bennicelli C, Camoirano A, Serra D, Romano M, Rossi GA, Morelli A, De Flora A (1985) In vivo effects of N-acetylcysteine on glutathione metabolism and on the biotransformation of carcinogenic and/or mutagenic com-pounds. Carcinogenesis 6:1735–45

    PubMed  Google Scholar 

  306. Hoffer E, Baum Y, Tabak A, Taitelman U (1996) N-acetylcysteine increases the glutathione content and protects rat alveolar type II cells against paraquat-induced cytotoxicity. Toxicol Lett 84:7–12

    CAS  PubMed  Google Scholar 

  307. Corcoran GB, Wong BK (1986) Role of glutathionein prevention of acetaminophen-induced hepatotoxicity by N-acetyl-l-cysteine in vivo: studies with N-acetyl-d-cysteine in mice. J Pharmacol Exp Ther 238:54–61

    CAS  PubMed  Google Scholar 

  308. Atkuri KR, Mantovani JJ, Herzenberg LA, Herzenberg LA (2007) N-Acetylcysteine—a safe antidote for cysteine/glutathione deficiency. Curr Opin Pharmacol 7:355–9

    CAS  PubMed  Google Scholar 

  309. Samuni Y, Goldstein S, Dean OM, Berk M (2013) The chemistry and biological activities of N-acetylcysteine. Biochim Biophys Acta 1830:4117–29. doi:10.1016/j.bbagen.2013.04.016

    CAS  PubMed  Google Scholar 

  310. Arranz L, Fernández C, Rodríguez A, Ribera JM, De la Fuente M (2008) The glutathione precursor N-acetylcysteine improves immune function in postmenopausal women. Free Radic Biol Med 45:1252–62. doi:10.1016/j.freeradbiomed.2008.07.014

    CAS  PubMed  Google Scholar 

  311. Banner W Jr, Koch M, Capin DM, Hopf SB, Chang S, Tong TG (1986) Experimental chelation therapy in chromium, lead, and boron intoxication with N-acetylcysteine and other compounds. Toxicol Appl Pharmacol 83:142–7

    CAS  PubMed  Google Scholar 

  312. de Quay B, Malinverni R, Lauterburg BH (1992) Glutathione depletion in HIV-infected patients: role of cysteine deficiency and effect of oral N-acetylcysteine. AIDS 6:815–9

    PubMed  Google Scholar 

  313. Akerlund B, Jarstrand C, Lindeke B, Sonnerborg A, Akerblad AC, Rasool O (1996) Effect of n-acetylcysteine (NAC) treatment onHIV-1 infection: a double-blind placebo-controlled trial. Eur J Clin Pharmacol 50:457–61

    CAS  PubMed  Google Scholar 

  314. Herzenberg LA, De Rosa SC, Dubs JG, Roederer M, Anderson MT, Ela SW, Deresinski SC, Herzenberg LA (1997) Glutathione deficiency is associated with impaired survival in HIV disease. Proc Natl Acad Sci U S A 94:1967–72

    CAS  PubMed Central  PubMed  Google Scholar 

  315. Chen F, Lewis W, Hollander JM, Baseler W, Finkel MS (1985) N-acetylcysteine reverses cardiac myocyte dysfunction in HIV-Tat proteinopathy. J Appl Physiol 113:105–13. doi:10.1152/japplphysiol.00068.2012

    Google Scholar 

  316. Berk M, Copolov DL, Dean O, Lu K, Jeavons S, Schapkaitz I, Anderson-Hunt M, Bush AI (2008) N-acetyl cysteine for depressive symptoms in bipolar disorder—a double-blind randomized placebo-controlled trial. Biol Psychiatry 64:468–75. doi:10.1016/j.biopsych.2008.04.022, PMID: 18534556

    CAS  PubMed  Google Scholar 

  317. Magalhães PV, Dean OM, Bush AI, Copolov DL, Malhi GS, Kohlmann K, Jeavons S, Schapkaitz I, Anderson-Hunt M, Berk M (2011) N-acetylcysteine for major depressive episodes in bipolar disorder. Rev Bras Psiquiatr 33:374–8, PMID: 22189927

    PubMed  Google Scholar 

  318. Berk M, Dean O, Cotton SM, Gama CS, Kapczinski F, Fernandes BS, Kohlmann K, Jeavons S, Hewitt K, Allwang C, Cobb H, Bush AI, Schapkaitz I, Dodd S, Malhi GS (2011) The efficacy of N-acetylcysteine as an adjunctive treatment in bipolar depression: an open label trial. J Affect Disord 135:389–94. doi:10.1016/j.jad.2011.06.005

    CAS  PubMed  Google Scholar 

  319. Farokhnia M, Azarkolah A, Adinehfar F, Khodaie-Ardakani MR, Hosseini SM, Yekehtaz H, Tabrizi M, Rezaei F, Salehi B, Sadeghi SM, Moghadam M, Gharibi F, Mirshafiee O, Akhondzadeh S (2013) N-acetylcysteine as an adjunct to risperidone for treatment of negative symptoms in patients with chronic schizophrenia: a randomized, double-blind, placebo-controlled study. Clin Neuropharmacol 36:185–92

    CAS  PubMed  Google Scholar 

  320. Ghanizadeh A, Moghimi-Sarani E (2013) A randomized double blind placebo controlled clinical trial of N-acetylcysteine added to risperidone for treating autistic disorders. BMC Psychiatry 13:196. doi:10.1186/1471-244X-13-196

    PubMed Central  PubMed  Google Scholar 

  321. Child DF, Hudson PR, Jones H, Davies GK, De P, Mukherjee S, Brain AM, Williams CP, Harvey JN (2004) The effect of oral folic acid on glutathione, glycaemia and lipids in type 2 diabetes. Diabetes Nutr Metab 17:95–102

    CAS  PubMed  Google Scholar 

  322. Chanson A, Rock E, Martin JF, Liotard A, Brachet P (2007) Preferential response of glutathione-related enzymes to folate-dependent changes in the redox state of rat liver. Eur J Nutr 46:204–12

    CAS  PubMed  Google Scholar 

  323. Papakostas GI, Shelton RC, Zajecka JM, Etemad B, Rickels K, Clain A, Baer L, Dalton ED, Sacco GR, Schoenfeld D, Pencina M, Meisner A, Bottiglieri T, Nelson E, Mischoulon D, Alpert JE, Barbee JG, Zisook S, Fava M (2012) l-Methylfolate as adjunctive therapy for SSRI-resistant major depression: results of two randomized, double-blind, parallel-sequential trials. Am J Psychiatry 169:1267–74

    PubMed  Google Scholar 

  324. Reynolds EH (2002) Folic acid, ageing, depression, and dementia. BMJ 324:1512–5, PMID: 12077044

    CAS  PubMed Central  PubMed  Google Scholar 

  325. Passeri M, Cucinotta D, Abate G, Senin U, Ventura A, Stramba BM, Diana R, La Greca P, Le Grazie C (1993) Oral 5′-methyltetrahydrofolic acid in senile organic mental disorders with depression: results of a double-blind multicenter study. Aging 5:63–71

    CAS  PubMed  Google Scholar 

  326. Fava M, Borus JS, Alpert JE, Nierenberg AA, Rosenbaum JF, Bottiglieri T (1997) Folate, vitamin B12, and homocysteine in major depressive disorder. Am J Psychiatry 154:426–8

    CAS  PubMed  Google Scholar 

  327. Guaraldi GP, Fava M, Mazzi F, la Greca P (1993) An open trial of methyltetrahydrofolate in elderly depressed patients. Ann Clin Psychiatry 5:101–5

    CAS  PubMed  Google Scholar 

  328. Stahl SM (2007) Novel therapeutics for depression: l-methylfolate as a trimonoamine modulator and antidepressant-augmenting agent. CNS Spectr 12:739–44, PMID: 17934378

    PubMed  Google Scholar 

  329. Liu J (2008) The effects and mechanisms of mitochondrial nutrient alpha-lipoic acid on improving age-associated mitochondrial and cognitive dysfunction: an overview. Neurochem Res 33:194–203

    CAS  PubMed  Google Scholar 

  330. Valdecantos MP, Pérez-Matute P, González-Muniesa P, Prieto-Hontoria PL, Moreno-Aliaga MJ, Martínez JA (2012) Lipoic acid improves mitochondrial function in nonalcoholic steatosis through the stimulation of sirtuin 1 and sirtuin 3. Obesity (Silver Spring) 20:1974–83

    CAS  Google Scholar 

  331. Schmelzer C, Lindner I, Rimbach G, Niklowitz P, Menke T, Döring F (2008) Functions of coenzyme Q10 in inflammation and gene expression. Biofactors 32:179–83

    CAS  PubMed  Google Scholar 

  332. Maes M, Mihaylova I, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E (2009) Lower plasma Coenzyme Q10 in depression: a marker for treatment resistance and chronic fatigue in depression and a risk factor to cardiovascular disorder in that illness. Neuro-Endocrinol Lett 30:462–9

    CAS  PubMed  Google Scholar 

  333. Aboul-Fotouh S (2013) Coenzyme Q10 displays antidepressant-like activity with reduction of hippocampal oxidative/nitrosative DNA damage in chronically stressed rats. Pharmacol, Biochem Behav 104:105–12

    CAS  Google Scholar 

  334. Forester BP, Zuo CS, Ravichandran C, Harper DG, Du F, Kim S, Cohen BM, Renshaw PF (2012) Coenzyme Q10 effects on creatine kinase activity and mood in geriatric bipolar depression. J Geriatr Psychiatry Neurol 25:43–50. doi:10.1177/0891988712436688, PMID: 22467846

    PubMed  Google Scholar 

  335. Jeong YY, Park HJ, Cho YW, Kim EJ, Kim GT, Mun YJ, Lee JD, Shin JH, Sung NJ, Kang D, Han J (2012) Aged red garlic extract reduces cigarette smoke extract-induced cell death in human bronchial smooth muscle cells by increasing intracellular glutathione levels. Phytother Res 26:18–25. doi:10.1002/ptr.3502

    CAS  PubMed  Google Scholar 

  336. Rodríguez-Ramiro I, Ramos S, Bravo L, Goya L, Martín MÁ (2011) Procyanidin B2 and a cocoa polyphenolic extract inhibit acrylamide-induced apoptosis in human Caco-2 cells by preventing oxidative stress and activation of JNK pathway. J Nutr Biochem 22:1186–94. doi:10.1016/j.jnutbio.2010.10.005

    PubMed  Google Scholar 

  337. Kansanen E, Kuosmanen SM, Leinonen H, Levonen AL (2013) The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol 1:45–9, PMID: 24024136

    CAS  PubMed Central  PubMed  Google Scholar 

  338. Maes M, Fišar Z, Medina M, Scapagnini G, Nowak G, Berk M (2012) New drug targets in depression: inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates–Nrf2 activators and GSK-3 inhibitors. Inflammopharmacol 20:127–50

    CAS  Google Scholar 

  339. Nguyen T, Sherratt PJ, Pickett CB (2003) Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol 43:233–60

    CAS  PubMed  Google Scholar 

  340. Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y, Yamamoto M, Talalay P (2002) Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci U S A 99:11908–13

    CAS  PubMed Central  PubMed  Google Scholar 

  341. Harvey CJ, Thimmulappa RK, Singh A, Blake DJ, Ling G, Wakabayashi N, Fujii J, Myers A, Biswal S (2009) Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radic Biol Med 46:443–53. doi:10.1016/j.freeradbiomed.2008.10.040

    CAS  PubMed Central  PubMed  Google Scholar 

  342. Tsai CC, Chen HS, Chen SL, Ho YP, Ho KY, Wu YM, Hung CC (2005) Lipid peroxidation: a possible role in the induction and progression of chronic periodontitis. J Periodontal Res 40:378–84

    CAS  PubMed  Google Scholar 

  343. Dias VV, Brissos S, Cardoso C, Andreazza AC, Kapczinski F (2009) Serum homocysteine levels and cognitive functioning in euthymic bipolar patients. J Affect Disord 113:285–90

    CAS  PubMed  Google Scholar 

  344. Godman CA, Chheda KP, Hightower LE, Perdrizet G, Shin DG, Giardina C (2010) Hyperbaric oxygen induces a cytoprotective and angiogenic response in human microvascular endothelial cells. Cell Stress Chaperones 15:431–42

    CAS  PubMed Central  PubMed  Google Scholar 

  345. Thom SR (1985) Oxidative stress is fundamental to hyperbaric oxygen therapy. J Appl Physiol 106:988–95. doi:10.1152/japplphysiol.91004.2008, PMID: 18845776

    Google Scholar 

  346. Soejima Y, Ostrowski RP, Manaenko A, Fujii M, Tang J, Zhang JH (2012) Hyperbaric oxygen preconditioning attenuates hyperglycemia enhanced hemorrhagic transformation after transient MCAO in rats. Med Gas Res 2:9

    CAS  PubMed Central  PubMed  Google Scholar 

  347. Avtan SM, Kaya M, Orhan N, Arslan A, Arican N, Toklu AS, Gürses C, Elmas I, Kucuk M, Ahishali B (2011) The effects of hyperbaric oxygen therapy on blood-brain barrier permeability in septic rats. Brain Res 1412:63–72. doi:10.1016/j.brainres.2011.07.020

    CAS  PubMed  Google Scholar 

  348. Haapaniemi T, Sirsjö A, Nylander G, Larsson J (1995) Hyperbaric oxygen treatment attenuates glutathione depletion and improves metabolic restitution in postischemic skeletal muscle. Free Radic Res 23:91–101

    CAS  PubMed  Google Scholar 

  349. Purucker E, Lutz J (1992) Effect of hyperbaric oxygen treatment and perfluorochemical administration on glutathione status of the lung. Adv Exp Med Biol 317:131–6

    CAS  PubMed  Google Scholar 

  350. Li Q, Li J, Zhang L, Wang B, Xiong L (2007) Preconditioning with hyperbaric oxygen induces tolerance against oxidative injury via increased expression of heme oxygenase-1 in primary cultured spinal cord neurons. Life Sci 80:1087–93. doi:10.1016/j.lfs.2006.11.043

    CAS  PubMed  Google Scholar 

  351. Rothfuss A, Speit G (2002) Investigations on the mechanism of hyperbaric oxygen (HBO)-induced adaptive protection against oxidative stress. Mutat Res 508:157–65

    CAS  PubMed  Google Scholar 

  352. Speit G, Dennog C, Eichhorn U, Rothfuss A, Kaina B (2000) Induction of heme oxygenase-1 and adaptive protection against the induction of DNA damage after hyperbaric oxygen treatment. Carcinogenesis 21:1795–9

    CAS  PubMed  Google Scholar 

  353. Surh YJ, Kundu JK, Na HK (2008) Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Med 74:1526–39

    CAS  PubMed  Google Scholar 

  354. Biswas SK, McClure D, Jimenez LA, Megson IL, Rahman I (2005) Curcumin induces glutathione biosynthesis and inhibits NF-kappaB activation and interleukin-8 release in alveolar epithelial cells: mechanism of free radical scavenging activity. Antioxid Redox Signal 7:32–41

    CAS  PubMed  Google Scholar 

  355. Kode A, Rajendrasozhan S, Caito S, Yang SR, Megson IL, Rahman I (2008) Resveratrol induces glutathione synthesis by activation of Nrf2 and protects against cigarette smokemediated oxidative stress in human lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 294:L478–488

    CAS  PubMed  Google Scholar 

  356. Garg R, Gupta S, Maru GB (2008) Dietary curcumin modulates transcriptional regulators of phase I and phase II enzymes in benzo[a]pyrene-treated mice: mechanism of its anti-initiating action. Carcinogenesis 29:1022–32

    CAS  PubMed  Google Scholar 

  357. Natarajan VT, Singh A, Kumar AA (2010) Transcriptional upregulation of Nrf2-dependent phase II detoxification genes in the involved epidermis of vitiligo vulgaris. J Invest Dermatol 130:2781–9

    CAS  PubMed  Google Scholar 

  358. Shen G, Xu C, Hu R (2006) Modulation of nuclear factor E2-related factor 2-mediated gene expression in mice liver and small intestine by cancer chemopreventive agent curcumin. Mol Cancer Ther 5:39–51

    CAS  PubMed  Google Scholar 

  359. McNally SJ, Harrison EM, Ross JA, Garden OJ, Wigmore SJ (2007) Curcumin induces heme oxygenase 1 through generation of reactive oxygen species, p38 activation and phosphatase inhibition. Int J Mol Med 19:165–72

    CAS  PubMed  Google Scholar 

  360. Rushworth SA, Ogborne RM, Charalambos CA, O’Connell MA (2006) Role of protein kinase C δ in curcumin-induced antioxidant response element-mediated gene expression in human monocytes. Biochem Biophys Res Commun 341:1007–16

    CAS  PubMed  Google Scholar 

  361. Sanmukhani J, Satodia V, Trivedi J, Patel T, Tiwari D, Panchal B, Goel A, Tripathi CB (2013) Efficacy and safety of curcumin in major depressive disorder: a randomized controlled trial. Phytother Res doi:. doi:10.1002/ptr.5025

    Google Scholar 

  362. Kulkarni S, Dhir A, Akula KK (2009) Potentials of curcumin as an antidepressant. Sci World J 9:1233–41. doi:10.1100/tsw.2009.137

    CAS  Google Scholar 

  363. Gupta A, Vij G, Sharma S, Tirkey N, Rishi P, Chopra K (2009) Curcumin, a polyphenolic antioxidant, attenuates chronic fatigue syndrome in murine water immersion stress model. Immunobiol 214:33–9

    CAS  Google Scholar 

  364. Martin D, Rojo AI, Salinas M, Diaz R, Gallardo G, Alam J, De Galarreta CM, Cuadrado A (2004) Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. J Biol Chem 279:8919–29

    CAS  PubMed  Google Scholar 

  365. Kong AN, Yu R, Hebbar V, Chen C, Owuor E, Hu R, Ee R, Mandlekar S (2001) Signal transduction events elicited by cancer prevention compounds. Mutat Res 480–481:231–41

    PubMed  Google Scholar 

  366. Wondrak GT, Cabello CM, Villeneuve NF, Zhang S, Ley S, Li Y, Sun Z, Zhang DD (2008) Cinnamoyl-based Nrf2-activators targeting human skin cell photo-oxidative stress. Free Radic Biol Med 45:385–95

    CAS  PubMed Central  PubMed  Google Scholar 

  367. Moriya J, Chen R, Yamakawa J, Sasaki K, Ishigaki Y, Takahshi T (2011) Resveratrol improves hippocampal atrophy in chronic fatigue mice by enhancing neurogenesis and inhibiting apoptosis of granular cells. Biol Pharm Bull 34:354–9

    CAS  PubMed  Google Scholar 

  368. Niu K, Hozawa A, Kuriyama S, Ebihara S, Guo HM, Nakaya N, Ohmori-Matsuda K, Takahashi H, Masamune Y, Asada M, Sasaki S, Arai H, Awata S, Nagatomi R, Tsuji I (2009) Green tea consumption is associated with depressive symptoms in the elderly. Am J Clin Nutr 90:1615–22

    CAS  PubMed  Google Scholar 

  369. Han SG, Han SS, Toborek M, Hennig B (2012) EGCG protects endothelial cells against PCB 126-induced inflammation through inhibition of AhR and induction of Nrf2-regulated genes. Toxicol Appl Pharmacol 261:181–8

    CAS  PubMed Central  PubMed  Google Scholar 

  370. Steele ML, Fuller S, Patel M, Kersaitis C, Ooi L, Münch G (2013) Effect of Nrf2 activators on release of glutathione, cysteinylglycine and homocysteine by human U373 astroglial cells. Redox Biol 1:441–5. doi:10.1016/j.redox.2013.08.006

    CAS  PubMed Central  PubMed  Google Scholar 

  371. Lin SX, Lisi L, Russo CD, Polak PE, Sharp A, Weinberg G, Kalinin S, Feinstein DL (2011) The anti-inflammatory effects of dimethyl fumarate in astrocytes involve glutathione and haem oxygenase-1. ASN Neuro 3:e00055. doi:10.1042/AN20100033

    PubMed Central  PubMed  Google Scholar 

  372. Lukashev M, Zeng M, Goelz S, Lee D, Linker R, Drukach B, VanDam A (2007) Activation of Nrf2 and modulation of disease progression in EAE models by BG-12 (dimethyl fumarate) suggests a novel mechanism of action combining anti-inflammatory and neuroprotective modalities. Mult Scler 13:149

    Google Scholar 

  373. Linker RA, Gold R (2013) Dimethyl fumarate for treatment of multiple sclerosis: mechanism of action, effectiveness, and side effects. Curr Neurol Neurosci Rep 13:394. doi:10.1007/s11910-013-0394-8

    PubMed  Google Scholar 

  374. Moharregh-Khiabani D, Linker RA, Gold R, Stangel M (2009) Fumaric Acid and its esters: an emerging treatment for multiple sclerosis. Curr Neuropharmacol 7:60–64. doi:10.2174/157015909787602788

    CAS  PubMed Central  PubMed  Google Scholar 

  375. Kappos L, Gold R, Miller DH, Macmanus DG, Havrdova E, Limmroth V, Polman CH, Schmierer K, Yousry TA, Yang M, Eraksoy M, Meluzinova E, Rektor I, Dawson KT, Sandrock AW, O’Neil GN, BG-12 Phase IIb Study Investigators (2008) Efficacy and safety of oral fumarate in patients with relapsing-remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled phase IIb study. Lancet 372:1463–72

    Google Scholar 

  376. Dodd S, Maes M, Anderson G, Dean O, Moylan S, Berk M (2013) Putative neuroprotective agents in major psychoses. Prog Neuropsychopharmacol Biol Psychiatry 42:135–145

    CAS  PubMed  Google Scholar 

Download references

Funding

No specific funding was obtained for this specific review.

Conflict of Interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Maes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morris, G., Anderson, G., Dean, O. et al. The Glutathione System: A New Drug Target in Neuroimmune Disorders. Mol Neurobiol 50, 1059–1084 (2014). https://doi.org/10.1007/s12035-014-8705-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8705-x

Keywords

Navigation