Skip to main content

Advertisement

Log in

Creatine and Pyruvate Prevent the Alterations Caused by Tyrosine on Parameters of Oxidative Stress and Enzyme Activities of Phosphoryltransfer Network in Cerebral Cortex of Wistar Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Tyrosine accumulates in inborn errors of tyrosine catabolism, especially in tyrosinemia type II. In this disease caused by tyrosine aminotransferase deficiency, eyes, skin, and central nervous system disturbances are found. In the present study, we investigated the chronic effect of tyrosine methyl ester (TME) and/or creatine plus pyruvate on some parameters of oxidative stress and enzyme activities of phosphoryltransfer network in cerebral cortex homogenates of 21-day-old Wistar. Chronic administration of TME induced oxidative stress and altered the activities of adenylate kinase and mitochondrial and cytosolic creatine kinase. Total sulfhydryls content, GSH content, and GPx activity were significantly diminished, while DCFH oxidation, TBARS content, and SOD activity were significantly enhanced by TME. On the other hand, TME administration decreased the activity of CK from cytosolic and mitochondrial fractions but enhanced AK activity. In contrast, TME did not affect the carbonyl content and PK activity in cerebral cortex of rats. Co-administration of creatine plus pyruvate was effective in the prevention of alterations provoked by TME administration on the oxidative stress and the enzymes of phosphoryltransfer network, except in mitochondrial CK, AK, and SOD activities. These results indicate that chronic administration of TME may stimulate oxidative stress and alter the enzymes of phosphoryltransfer network in cerebral cortex of rats. In case this also occurs in the patients affected by these disorders, it may contribute, along with other mechanisms, to the neurological dysfunction of hypertyrosinemias, and creatine and pyruvate supplementation could be beneficial to the patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mitchell GA, Grompe M, Lambert M, Tanguay RM et al (2001) Hypertyrosinemia. In: Scriver CR, Beaudet AL, Sly WS (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 1977–1982

  2. Scott CR (2009) The genetic tyrosinemias. Am J Med Genet Part 142:121–126

    Google Scholar 

  3. Mamunes P, Prince PE, Thornton NH, Hunt PA, Hitchcock ES (1976) Intellectual deficits after transient tyrosinemia in the term neonate. Pediatrics 57:675–680

    CAS  PubMed  Google Scholar 

  4. Rice DN, Houston IB, Lyon IC et al (1989) Transient neonatal tyrosinaemia. J Inherit Metab Dis 12:13–22

    Article  CAS  PubMed  Google Scholar 

  5. Sgaravatti AM, Magnusson AS, de Oliveira AS et al (2009) Tyrosine administration decreases glutathione and stimulates lipid and protein oxidation in rat cerebral cortex. Metab Brain Dis 24:415–425

    Article  CAS  PubMed  Google Scholar 

  6. Rabinowitz LG, Williams RL, Anderson CE, Mazur A, Kaplan P (1995) Painful keratoderma and photophobia: hallmarks of tyrosinemia type II. J Pediatr 126:266–269

    Article  CAS  PubMed  Google Scholar 

  7. Macsai MS, Schwartz TL, Hinkle D, Hummel MB, Mulhern MG, Rootman D (2001) Tyrosinemia type II: nine cases of ocular signs and symptoms. Am J Ophthalmol 132:522–527

    Article  CAS  PubMed  Google Scholar 

  8. Valikhani M, Akhyani M, Jafari AK, Barzegari M, Toosi S (2005) Oculocutaneous tyrosinaemia or tyrosinaemia type 2: a case report. J Eur Acad Dermatol Venereol 20:591–594

    Article  Google Scholar 

  9. Shasi VK, Pratap RMP, Rao SL (1997) Inhibition of tyrosine aminotransferase by beta-N-oxalyl-l-alpha, beta-diaminopropionic acid, the Lathyrus sativus neurotoxin. J Neurochem 68:2477–2484

    Google Scholar 

  10. Sener RN (2005) Tyrosinemia-computed tomography, magnetic resonance imaging, diffusion magnetic resonance imaging, and proton spectroscopy findings in the brain. J Comput Assist Tomogr 29:323–325

    Article  PubMed  Google Scholar 

  11. Sgaravatti AM, Vargas BA, Zandoná BR et al (2008) Tyrosine promotes oxidative stress in cerebral cortex of young rats. Int J Dev Neurosci 26:551–559

    Article  CAS  PubMed  Google Scholar 

  12. de Andrade RB, Gemelli T, Rojas DB, Funchal C, Dutra-Filho CS, Wannmacher CMD (2012) Tyrosine impairs enzymes of energy metabolism in cerebral cortex of rats. Mol Cell Biochem 364:253–261

    Article  CAS  PubMed  Google Scholar 

  13. Morre MC, Hefti F, Wurtman RJ (1980) Regional tyrosine levels in rat brain after tyrosine administration. J Neural Transm 49:45–50

    Article  CAS  PubMed  Google Scholar 

  14. Bongiovanni R, Yamamoto BK, Simpson C, Jaskiw GE (2003) Pharmacokinetics of systemically administered tyrosine: a comparison of serum, brain tissue and microdialysate levels in the rat. J Neurochem 87:310–317

    Article  CAS  PubMed  Google Scholar 

  15. Halliwell B, Gutteridge JMC (2007) Measurement of reactive species. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine, 4th edn. Oxford University Press, Oxford, pp 268–340

    Google Scholar 

  16. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  PubMed  Google Scholar 

  17. Diplock AT (1994) Antioxidants and free radical scavengers. In: Rice-Evans CA, Burdon RH (eds) Free radical damage and its control, 1st edn. Elsevier, Amsterdam, pp 113–130

  18. Schulze A (2003) Creatine deficiency syndromes. Mol Cel Biochem 244:143–150

    Article  CAS  Google Scholar 

  19. Sestili P, Martinelli C, Bravi G et al (2006) Creatine supplementation affords cytoprotection in oxidatively injured cultured mammalian cells via direct antioxidant activity. Free Radic Biol Med 40:837–849

    Article  CAS  PubMed  Google Scholar 

  20. Bolaños JP, Moro MA, Lizasoain I, Almeida A (2009) Mitochondria and reactive oxygen and nitrogen species in neurological disorders and stroke: therapeutic implications. Adv Drug Deliv Rev 61:1299–1315

    Article  PubMed  Google Scholar 

  21. Tarnopolsky MA (2007) Clinical use of creatine in neuromuscular and neurometabolic disorders. Subcell Biochem 46:183–204

    Article  PubMed  Google Scholar 

  22. Ryou MG, Liu R, Ren M, Sun J, Mallet RT, Yang SH (2012) Pyruvate protects the brain against ischemia–reperfusion injury by activating the erythropoietin signaling pathway. Stroke 43:1101–1107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Ullah N, Naseer MI, Ullah I, Lee HY, Koh PO, Kim MO (2011) Protective effect of pyruvate against ethanol-induced apoptotic neurodegeneration in the developing rat brain. Neuropharmacology 61:1248–1255

    Article  CAS  PubMed  Google Scholar 

  24. Giandomenico AR, Cerniglia GE, Biaglow JE, Stevens CW, Koch CJ (1997) The importance of sodium pyruvate in assessing damage produced by hydrogen peroxide. Free Radic Biol Med 23:426–434

    Article  CAS  PubMed  Google Scholar 

  25. Jagtap JC, Chandele A, Chopde BA, Shastry P (2003) Sodium pyruvate protects against H2O2 mediated apoptosis in human neuroblastoma cell line-SK-N-MC. J Chem Neuroanat 26:109–118

    Article  CAS  PubMed  Google Scholar 

  26. Mazzio E, Soliman KFA (2003) Pyruvic acid cytoprotection against 1-methyl-4-phenylpyridinium, 6-hydroxydopamine and hydrogen peroxide toxicities in vitro. Neurosci Lett 337:77–80

    Article  CAS  PubMed  Google Scholar 

  27. Willemoes M, Kilstrup M (2005) Nucleoside triphosphate synthesis catalysed by adenylate kinase is ADP dependent. Arch Biochem Biophys 444:195–199

    Article  CAS  PubMed  Google Scholar 

  28. Dzeja PP, Terzic A (2003) Phosphotransfer networks and cellular energetic. J Exp Biol 206:2039–2047

    Article  CAS  PubMed  Google Scholar 

  29. Stöckler S, Holzbach U, Hanenfeld F, Marquardt I, Helms G, Requart M, Hänicke W, Frahm J (1994) Creatine deficiency in the brain: a new, treatable inborn error of metabolism. Pediatric Res 36:409–413

    Article  Google Scholar 

  30. Ryu JK, Choi HB, Mclarnon JB (2006) Combined minocycline plus pyruvate treatment enhances effects of each agent to inhibit inflammation, oxidative damage, and neuronal loss in an excitotoxic animal model of Huntington’s disease. Neurosci 141:1835–1848

    Article  CAS  Google Scholar 

  31. LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    Article  CAS  PubMed  Google Scholar 

  32. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  33. Reznick AZ, Packer L (1994) Oxidative damage of proteins: spectrophotometer for carbonyl assay. Methods Enzymol 233:357–363

    Article  CAS  PubMed  Google Scholar 

  34. Stadtman ER, Levine RL (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25:207–218

    Article  CAS  PubMed  Google Scholar 

  35. Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302:141–145

    Article  CAS  PubMed  Google Scholar 

  36. Marklund SL (1985) Pyrogallol autoxidation. In: Greenwald RA (ed) Handbook of methods for oxygen radical research, 1st edn. CRC, Boca Raton, pp 243–247

  37. Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–332

    Article  CAS  PubMed  Google Scholar 

  38. Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352

    CAS  PubMed  Google Scholar 

  39. Leong SF, Lai JFK, Lim L, Clark JB (1981) Energy-metabolising enzymes in brain regions of adult and aging rats. J Neurochem 37:1548–1556

    Article  CAS  PubMed  Google Scholar 

  40. Dzeja PP, Vitkevicius KT, Redfield MM, Burnettm JC, Terzic A (1999) Adenylate kinase-catalyzed phosphotransfer in the myocardium: increased contribution in heart failure. Circ Res 84:1137–1143

    Article  CAS  PubMed  Google Scholar 

  41. Hughes BP (1962) A method for estimation of serum creatine kinase and its use in comparing creatine kinase. Clin Chim Acta 7:597–603

    Article  CAS  PubMed  Google Scholar 

  42. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–267

    CAS  PubMed  Google Scholar 

  43. de Andrade RB, Gemelli T, Rojas DB, Funchal C, Dutra-Filho CS, Wannmacher CMD (2011) Tyrosine inhibits creatine kinase activity in cerebral cortex of young rats. Metab Brain Dis 26:221–227

    Article  CAS  PubMed  Google Scholar 

  44. Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421

    Article  CAS  PubMed  Google Scholar 

  45. Halliwell B, Gutteridge J (2007) Free radicals in biology and medicine, 3rd edn. Oxford Univ Press, Oxford

    Google Scholar 

  46. Macêdo LGRP, Carvalho-Silva M, Ferreira GK et al (2013) Effect of acute administration of l-tyrosine on oxidative stress parameters in brain of young rats. Neurochem Res 38:2625–2630

    Article  PubMed  Google Scholar 

  47. de Prá SDT, Ferreira GK, Carvalho-Silva M et al (2014) l-Tyrosine induces dna damage in brain and blood of rats. Neurochem Res 39:202–207

    Article  PubMed  Google Scholar 

  48. Guimbal C, Kilimann MW (1993) A Na(+)-dependent creatine transporter in rabbit brain, muscle, heart, and kidney CDNA cloning and functional expression. J Biol Chem 268:8418–8421

    CAS  PubMed  Google Scholar 

  49. Schloss P, Mayser W, Betz H (1994) The putative rat choline transporter CHOT1 transports creatine and is highly expressed in neural and muscle-rich tissues. Biochem Biophys Res Commun 198:637–645

    Article  CAS  PubMed  Google Scholar 

  50. Happe HK, Murrin LC (1995) In situ hybridization analysis of CHOT1, a creatine transporter, in the rat central nervous system. J Comp Neurol 351:94–103

    Article  CAS  PubMed  Google Scholar 

  51. Hemmer W, Wallimann T (1993) Functional aspects of creatine kinase in brain. Dev Neurosci 15:249–260

    Article  CAS  PubMed  Google Scholar 

  52. Saltarelli MD, Bauman AL, Moore KR, Bradley CC, Blakely RD (1996) Expression of the rat brain creatine transporter in situ and in transfected HeLa cells. Dev Neurosci 18:524–534

    Article  CAS  PubMed  Google Scholar 

  53. Hahn KA, Salomons GS, Tackels-Horne D et al (2002) X-linked mental retardation with seizures and carrier manifestations is caused by a mutation in the creatine-transporter gene (SLC6A8) located in Xq28Am. J Hum Genet 70:1349–1356

    Article  CAS  Google Scholar 

  54. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716

    Article  CAS  PubMed  Google Scholar 

  55. Persky AM, Brazeau GA (2001) Clinical pharmacology of the dietary supplement creatine monohydrate. Pharmacol Rev 53:161–176

    CAS  PubMed  Google Scholar 

  56. Wyss M, Schulze A (2002) Health implications of creatine: can oral creatine supplementation protect against neurological and atherosclerotic disease? Neuroscience 112:243–260

    Article  CAS  PubMed  Google Scholar 

  57. Klein AM, Ferrante RJ (2007) The neuroprotective role of creatine. Subcell Biochem 46:205–243

    Article  PubMed  Google Scholar 

  58. Koufen P, Stark G (2000) Free radical induced inactivation of creatine kinase: sites of interaction, protection, and recovery. Biochim Biophys Acta 1501:44–50

    Article  CAS  PubMed  Google Scholar 

  59. Brand K (1997) Aerobic glycolysis by proliferating cells: protection against oxidative stress at the expense of energy yield. J Bioenerg Biomembr 29:355–364

    Article  CAS  PubMed  Google Scholar 

  60. Andrae U, Singh J, Ziegler-Skylakakis K (1985) Pyruvate and related a-ketoacids protect mammalian cells in culture against hydrogen peroxide-induced cytotoxicity. Toxicol Lett 28:93–98

    Article  CAS  PubMed  Google Scholar 

  61. Kitamura Y, Ota T, Matsuoka Y, Tooyama I, Kimura H, Shimohama S, Normura Y, Gebicke-Haerter PJ, Taniguchi T (1999) Hydrogen peroxide induced apoptosis mediated by p53 protein in glial cells. Glia 25:154–164

    Article  CAS  PubMed  Google Scholar 

  62. Palomba L, Sestili P, Columbaro M, Falcieri E, Cantoni O (1999) Apoptosis and necrosis following exposure of U937 cells to increasing concentrations of hydrogen peroxide: the effect of the poly (ADP-ribose) polymerase inhibitor 3-aminobenzamide. Biochem Pharmacol 58:1743–1750

    Article  CAS  PubMed  Google Scholar 

  63. Mazzio EA, Soliman KF (2003) Cytoprotection of pyruvic acid and reduced beta-nicotinamide adenine dinucleotide against hydrogen peroxide toxicity in neuroblastoma cells. Neurochem Res 28:733–741

    Article  CAS  PubMed  Google Scholar 

  64. Maus M, Marin P, Israel M, Glowinski J, Prémont J (1999) Pyruvate and lactate protect striatal neurons against n-methyl-daspartate-induced neurotoxicity. Eur J Neurosci 11(9):v3215–v3224

    Article  Google Scholar 

  65. Saks VA, Khuchua ZA, Vasilyeva EV, Belikova O, Kuznetsov AV (1994) Metabolic compartmentation and substrate channelling in muscle cells. Role of coupled creatine kinases in in vivo regulation of cellular respiration-a synthesis. Mol Cell Biochem 134:155–192

    Article  Google Scholar 

  66. Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80:1107–1213

    CAS  PubMed  Google Scholar 

  67. Chaturvedi RK, Beal MF (2008) Mitochondrial approaches for neuroprotection. Ann NY Acad Sci 1147:395–412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Beal MF, Palomo T, Kostrzewa RM, Archer T (2000) Neuroprotective and neurorestorative strategies for neuronal injury. Neurotoxic Res 2:71–84

    Article  CAS  Google Scholar 

  69. Dzeja PP, Redfield MM, Burnett JC, Terzic A (2000) Failing energetics in failing hearts. Curr Cardiol Rep 2:212–217

    Article  CAS  PubMed  Google Scholar 

  70. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281:21–40

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Dzeja PP, Terzic A (1998) Phosphotransfer reactions in the regulation of ATP-sensitive K + channels. FASEB J 12:523–529

    CAS  PubMed  Google Scholar 

  72. Pucar D, Dzeja PP, Bast P et al (2004) Mapping hypoxia-induced bioenergetic rearrangements and metabolic signaling by 18O-assisted 31P NMR and 1H NMR spectroscopy. Mol Cell Biochem 256:281–289

    Article  PubMed  Google Scholar 

  73. Dzeja PP, Bortolon R, Perez-Terzic C, Holmuhamedov EL, Terzic A (2002) Energetic communication between mitochondria and nucleus directed by catalyzed phosphotransfer. PNAS 99:10156–10161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Carrasco AJ, Dzeja PP, Alekseev AE et al (2001) Adenylate kinase phosphotransfer communicates cellular energetic signals to ATP-sensitive potassium channels. PNAS 98:7623–7628

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Sas K, Robotka H, Toldi J, Vécsei L (2007) Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders. J Neurol Sci 257:221–239

    Article  CAS  PubMed  Google Scholar 

  76. Alekseev AE, Reyes S, Selivanov VA, Dzeja PP, Terzic A (2012) Compartmentation of membrane processes and nucleotide dynamics in diffusion-restricted cardiac cell microenvironment. J Mol Cell Cardiol 52:401–409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Dzeja P, Terzic A (2009) Adenylate kinase and AMP signaling networks: metabolic monitoring, signal communication and body energy sensing. Int J Mol Sci 10:1729–1772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from Conselho Nacional de Desenvolvimento Científico e Tecnoloógico (CNPq-Brazil) and Fundação de Amparo à Pesquisa do Rio Grande do Sul (FAPERGS, RS-Brazil).

Conflict of interest

The authors declare that there is no conflict of interest disclosure associated with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clovis Milton Duval Wannmacher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Andrade, R.B., Gemelli, T., Rojas, D.B. et al. Creatine and Pyruvate Prevent the Alterations Caused by Tyrosine on Parameters of Oxidative Stress and Enzyme Activities of Phosphoryltransfer Network in Cerebral Cortex of Wistar Rats. Mol Neurobiol 51, 1184–1194 (2015). https://doi.org/10.1007/s12035-014-8791-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8791-9

Keywords

Navigation