Skip to main content
Log in

Validation of 14-3-3 Protein as a Marker in Sporadic Creutzfeldt-Jakob Disease Diagnostic

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

At present, the testing of 14-3-3 protein in cerebrospinal fluid (CSF) is a standard biomarker test in suspected sporadic Creutzfeldt-Jakob disease (sCJD) diagnosis. Increasing 14-3-3 test referrals in CJD reference laboratories in the last years have led to an urgent need to improve established 14-3-3 test methods. The main result of our study was the validation of a commercially available 14-3-3 ELISA next to the commonly used Western blot method as a high-throughput screening test. Hereby, 14-3-3 protein expression was quantitatively analyzed in CSF of 231 sCJD and 2035 control patients. We obtained excellent sensitivity/specificity values of 88 and 96 % that are comparable to the established Western blot method. Since standard protocols and preanalytical sample handling have become more important in routine diagnostic, we investigated in a further step the reproducibility and stability of 14-3-3 as a biomarker for human prion diseases. Ring trial data from 2009 to 2013 revealed an increase of Fleiss’ kappa from 0.51 to 0.68 indicating an improving reliability of 14-3-3 protein detection. The stability of 14-3-3 protein under short-term and long-term storage conditions at various temperatures and after repeated freezing/thawing cycles was confirmed. Contamination of CSF samples with blood appears likely to be an important factor at a concentration of more than 2500 erythrocytes/μL. Hemolysis of erythrocytes with significant release of 14-3-3 protein started after 2 days at room temperature. We first define clear standards for the sample handling, short- and long-term storage of CSF samples as well as the handling of blood- contaminated samples which may result in artificially elevated CSF levels of 14-3-3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Broadie K, Rushton E, Skoulakis E, Davis R (1997) Leonardo, a Drosophila 14-3-3 protein involved in learning, regulates presynaptic function. Neuron 2:391–402

    Article  Google Scholar 

  2. van Hemert M, Steensma H, van Heusden G (2001) 14-3-3 proteins: key regulators of cell division, signalling and apoptosis. Bioessays 10:936–946

    Article  Google Scholar 

  3. Zerr I, Bodemer M, Gefeller O, Otto M, Poser S, Wiltfang J, Windl O, Kretzschmar HA, Weber T (1998) Detection of 14-3-3 protein in the cerebrospinal fluid supports the diagnosis of Creutzfeldt-Jakob disease. Ann Neurol 43:32–40

  4. Zerr I, Bodemer M, Weber T (1997) The 14-3-3 brain protein and transmissible spongiform encephalopathy [letter]. N Engl J Med 336:874

  5. Zerr I, Pocchiari M, Collins S, Brandel JP, de Pedro CJ, Knight RSG, Bernheimer H, Cardone F, Delasnerie-Lauprêtre N, Cuadrado Corrales N, Ladogana A, Fletcher A, Bodemer M, Awan T, Ruiz Bremón A, Budka H, Laplanche JL, Will RG, Poser S (2000) Analysis of EEG and CSF 14-3-3 proteins as aids to the diagnosis of Creutzfeldt-Jakob disease. Neurology 55:811–815

    Article  CAS  PubMed  Google Scholar 

  6. Zerr I, Kallenberg K, Summers DM, Romero C, Taratuto A, Ladogana A, Schuur M, Haik S, Collins SJ, Jansen GH, Stokin GB, Pimentel J, Hewer E, Collie DA, Smith P, Varges D, Heinemann U, Meissner B, Roberts H, Brandel JP, Van Dujin CM, Pocchiari M, Begue P, Cras P, Will RG, Sanchez-Juan P (2009) Updated clinical diagnostic criteria for sporadic Creutzfeldt-Jakob disease. Brain 132:2659–2668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gmitterová K, Heinemann U, Bodemer M, Krasnianski A, Meissner B, Kretzschmar HA, Zerr I (2008) 14-3-3 CSF levels in sporadic Creutzfeldt-Jakob disease differ across molecular subtypes. Neurobiol Aging 30:842–850

  8. WHO (1998) Human transmissible spongiform encephalopathies. Wkly Epidemiol Rec 47:361–365

    Google Scholar 

  9. Schmitz M, Lüllmann K, Zafar S, Ebert E, Wohlhage M, Oikonomou P, Schlomm M, Mitrova E, Beekes M, Zerr I (2014) Association of prion protein genotype and scrapie prion protein type with cellular prion protein charge isoform profiles in cerebrospinal fluid of humans with sporadic of familial prion diseases. Neurobiol Aging 35:1177–1188

  10. Schmitz M, Schlomm M, Hasan B, Beekes M, Mitrova E, Korth C, Brell A, Carimalo J, Gawinecka J, Varges D, Zerr I (2010) Codon 129 polymorphism and the E200K mutation do not affect the cellular prion protein isoform composition in the cerebrospinal fluid from patients with Creutzfeldt-Jakob disease. Eur J Neurosci 31:2024–2031

  11. Puoti G, Bizzi A, Forloni G, Safar JG, Tagliavini F, Gambetti P (2012) Sporadic human prion diseases: molecular insights and diagnosis. Lancet Neurol 11:618–628

  12. Stoeck K, Sanchez-Juan P, Gawinecka J, Green A, Ladogana A, Pocchiari M, Sanchez-Valle R, Mitrova E, Sklaviadis T, Kulczycki J, Slivarichova D, Saiz A, Calero M, Knight R, Aguzzi A, Laplanche JL, Peoc’h K, Schelzke G, Karch A, van Duijn CM, Zerr I (2012) Cerebrospinal fluid biomarker supported diagnosis of Creutzfeldt-Jakob disease and rapid dementias: a longitudinal multicentre study over 10 years. Brain 135:3051–3061

  13. Beaudry P, Cohen P, Brandel JP, Delasnerie-Laupretre N, Richard S, Launay JM, Laplanche JL (1999) 14-3-3 protein, neuron-specific enolase, and S-100 protein in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. Dement Geriatr Cogn Disord 10:40–46

    Article  CAS  PubMed  Google Scholar 

  14. Geschwind M, Martindale J, Miller D, De Armond SJ, Uyehara-Lock J, Gaskin D, Kramer JH, Barbaro NM, Miller BL (2003) Challenging the clinical utility of the 14-3-3 protein for the diagnosis of sporadic Creutzfeldt-Jakob disease. Arch Neurol 60:813–816

    Article  PubMed  Google Scholar 

  15. Cuadrado-Corrales N, Jiménez-Huete A, Albo C, Hortiguela R, Vega L, Cerrato L, Sierra-Moros M, Rábano A, de Pedro-Cuesta J, Calero M (2006) Impact of the clinical context on the 14-3-3 test for the diagnosis of sporadic CJD. BMC Neurol 6:25

    Article  PubMed  PubMed Central  Google Scholar 

  16. Green AJ (2002) Use of 14-3-3 in the diagnosis of Creutzfeldt-Jakob disease. Biochem Soc Symp 30:382–386

    Article  CAS  Google Scholar 

  17. Green AJ, Thompson EJ, Stewart GE, Zeidler M, McKenzie JM, MacLeod M-A, Ironside JW, Will RG, Knight RS (2001) Use of 14-3-3 and other brain-specific proteins in CSF in the diagnosis of variant Creutzfeldt-Jakob disease. J Neurol Neurosurg Psychiatry 70:744–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zerr I, Bodemer M, Räcker S, Grosche S, Poser S, Kretzschmar HA, Weber T (1995) Cerebrospinal fluid concentration of neuron-specific enolase in diagnosis of Creutzfeldt-Jakob disease. Lancet 345:1609–1610

    Article  CAS  PubMed  Google Scholar 

  19. Zerr I, Bodemer M, Westermann R, Schröter A, Jacobi C, Arlt S, Otto M, Poser S (2000) 14-3-3 proteins in neurological disorders. J Neurol 247(Suppl 3):III/14

  20. Matsui Y, Satoh K, Miyazaki T, Shirabe S, Atarashi R, Mutsukura K, Satoh A, Kataoka Y, Nishida N (2011) High sensitivity of an ELISA kit for dedection of the gamma-isoform of 14-3-3 proteins: usefulness in laboratory diagnosis of human prion disease. BMC Neurol 11, doi:10.1186/471-2377-11-120

  21. Atarashi R, Sano K,Fuse T, Yamaguchi N, Ishibashi D, Matsubara T, Nakagaki T, Yamanaka H, Shirabe S, Yamada M, Mizusawa H, Kitamoto T, Klug G, McGlade A, Collins SJ, Nishida N (2011) Ultrasensitive human prion detection in cerebrospinal fluid by real-time quaking-induced conversion.Nat Med 17:175–178

  22. Cramm M, Schmitz M, Karch A, Zafar S, Varges D, Mitrova E, Schroeder B, Raeber AJ, Kuhn F, Zerr I (2015) Characteristic CSF prion-seeding efficiency in humans with prion diseases. Mol Neurobiol 51:396–405

  23. Cramm M, Schmitz M, Zafar S, Karch A, Mitrova E, Schroeder B, Raeber A, Kuhn F, Satoh K, Collins S, Zerr I (2015) Stability and reproducibility underscore utility of RT-QuIC CSF analysis for diagnosis of human prion disease, in press

  24. McGuire LI, Peden AH, Orrú CD, Wilham JM, Appleford NE, Mallinson G, Andrews M, Head MW, Caughey B, Will RG, Knight RS, Green AJ (2012) Real time quaking-induced conversion analysis of cerebrospinal fluid in sporadic Creutzfeldt-Jakob disease. Ann Neurol 72:278–285

  25. Sano K, Satoh K, Atarashi R, Takashima H, Iwasaki Y, Yoshida M, Sanjo N, Murai H, Mizusawa H, Schmitz M, Zerr I, Kim YS, Nishida N (2013) Early detection of abnormal prion protein in genetic human prion diseases now possible using real-time QUIC assay. PLoS ONE 8:e54915

  26. Coulthart MB, Jansen GH, Olsen E, Godal DL, Connolly T, Choi BC, Wang Z, Cashman NR (2011) Diagnostic accuracy of cerebrospinal fluid protein markers for sporadic Creutzfeldt-Jakob disease in Canada: a 6-year prospective study. BMC Neurol 11:133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sanchez-Juan P, Green A, Ladogana A, Cuadrado-Corrales N, Sanchez-Valle R, Mitrova E, Stoeck K, Sklaviadis T, Kulczycki J, Hess K, Bodemer M, Slivarichova D, Saiz A, Calero M, Ingrosso L, Knight R, Janssens C, Van Duijn C, Zerr I (2006) CSF tests in the differential diagnosis of Creutzfeldt-Jakob disease. Neurology 67:637–643

  28. Ramont L, Thoannes H, Volondat A, Chastang F, Millet MC, Maquart FX (2005) Effects of hemolysis and storage condition on neuron-specific enolase (NSE) in cerebrospinal fluid and serum: implications in clinical practice. Clin Chem Lab Med 43:1215–1217

  29. Jensen M, Hartmann T, Engvall B, Wang R, Uljon SN, Sennvik K, Näslund J, Muehlhauser F, Nordstedt C, Beyreuther K, Lannfelt L (2000) Quantification of Alzheimer amyloid beta peptides ending at residues 40 and 42 by novel ELISA systems. Mol Med 6:291–302

  30. Schoonenboom NS, Mulder C, Vanderstichele H, Van Elk EJ, Kok A, Van Kamp GJ, Scheltens P, Blankenstein MA (2005) Effects of processing and storage conditions on amyloid beta (1–42) and tau concentrations in cerebrospinal fluid: implications for use in clinical practice. Clin Chem 51:189–195

  31. Vanderstichele H, Van Kerschaver E, Hesse C, Davidsson P, Buyse MA, Andreasen N, Minthon L, Wallin A, Blennow K, Vanmechelen E (2000) Standardization of measurement of beta-amyloid (1–42) in cerebrospinal fluid and plasma. Amyloid 7:245–258

  32. Vandermeeren M, Mercken M, Vanmechelen E, Six J, van de Voorde A, Martin JJ, Cras P (1993) Detection of tau proteins in normal and Alzheimer’s disease cerebrospinal fluid with a sensitisve sandwich enzyme-linked immunosorbent assay. J Neurochem 61:1828–1834

  33. Hsich G, Kenney K, Gibbs CJ Jr, Lee KH, Harrington MG (1996) The 14-3-3 brain protein in cerebrospinal fluid as a marker for transmissible spongifrom encephalopathies. N Engl J Med 335:924–930

  34. Lemstra AW, van Meegen MT, Vreyling JP, Meijerink PH, Jansen GH, Bulk S, Baas F, van Gool WA (2000) 14-3-3 testing in diagnosing Creutzfeldt-Jakob disease: a prospective study in 112 patients. Neurology 55:514–516

  35. Kenney K, Brechtel C, Takahashi H, Kurohara K, Anderson P, Gibbs CJ Jr (2000) An enzyme-linked immunosorbent assay to quantify 14-3-3 proteins in the cerebrospinal fluid of suspected Creutzfeldt-Jakob disease patients. Ann Neurol 48:395–398

  36. Collins S, Boyd A, Fletcher A, Gonzales M, McLean CA, Byron K, Masters CL (2000) Creutzfeldt-Jakob disease: diagnostic utility of 14-3-3 protein immunodetection in cerebrospinal fluid. J Clin Neurosci 7:203–208

  37. Van Everbroeck B, Quoilin S, Boons J, Martin JJ, Cras P (2003) A prospective study of CSF markers in 250 patients with possible Creutzfeldt-Jakob disease. J Neurol Neurosurg Psychiatry 74:1210–1214

    Article  PubMed  PubMed Central  Google Scholar 

  38. Castellani RJ, Colucci M, Xie Z, Zou W, Li C, Parchi P, Capellari S, Pastore M, Rahbar MH, Chen SG, Gambetti P (2004) Sensitivity of 14-3-3 protein test varies in subtypes of sporadic Creutzfeldt-Jakob disease. Neurology 63:436–442

    Article  CAS  PubMed  Google Scholar 

  39. Collins SJ, Sanchez-Juan P, Masters CL, Klug GM, van Duijn C, Poleggi A, Pocchiari M, Almonti S, Cuadrado-Corrales N, de Pedro-Cuesta J, Budka H, Gelpi E, Glatzel M, Tolnay M, Hewer E, Zerr I, Heinemann U, Kretzschmar HA, Jansen GH, Olsen E, Mitrova E, Alpérovitsch A, Brandel JP, Mackenzie J, Murray K, Will RG (2006) Determinants of diagnostic investigation sensitivities across the clinical spectrum of sporadic Creutzfeldt-Jakob disease. Brain 129:2278–2287

    Article  CAS  PubMed  Google Scholar 

  40. Baldeiras IE, Ribeiro MH, Pacheco P, Machado A, Santana I, Cunha L, Oliveira C (2009) Diagnostic value of CSF protein profile in a Portuguese population of sCJD patients. J Neurol 256:1540–1550

  41. Begué P, Martinetto H, Schultz M, Rojas E, Romero C, D’Giano C, Sevlever G, Somoza M, Taratuto A (2011) Creutzfeldt-Jakob disease surveillance in Argentina, 1997–2008. Neuroepidemiology 37:193–202

  42. Hamlin C, Puoti G, Berri S, Sting E, Harris C, Cohen M, Spear C, Bizzi A, Debanne SM, Rowland DY (2012) A comparison of tau and 14-3-3 protein in the diagnosis of Creutzfeldt-Jakob disease. Neurology 79:547–552

  43. Chohan G, Pennington C, Mackenzie J, Andrews M, Everington D, Will R, Knight R, Green A (2010) The role of cerebrospinal fluid 14-3-3 and other proteins in the diagnosis of sporadic Creutzfeldt-Jakob disease in the UK: a 10-year review. J Neurol Neurosurg Psychiatry 81:1243–1248

Download references

Acknowledgments

The study was performed within the recently established Clinical Dementia Center at the University Medical Center Göttingen and was supported by grants from the EU Joint Program–Neurodegenerative Disease Research [JPND-DEMTEST (Biomarker based diagnosis of rapid progressive dementias-optimization of diagnostic protocols, 01ED1201A)]. This study was also partly supported by the Robert Koch Institute through funds from the Federal Ministry of Health (grant no. 1369–341) and by a grant from the European Commission (Protecting the food chain from prions: shaping European priorities through basic and applied research (PRIORITY, No. 222887) Project number: FP7-KBBE-2007-2A). Thanks to Michele Equestre for technical assistance. The Australian National CJD Registry is funded by the Commonwealth Department of Health and S Collins is supported by a NHMRC Practitioner Fellowship (#APP1005816).

Conflict of Interests

On behalf of all authors, the corresponding author states that there are no conflicts of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Schmitz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplement 1

Determination of 14-3-3 protein level in CSF from neurodegenerative and non-neurodegenerative diseases. No significant differences in 14-3-3 protein level could be observed. (GIF 13 kb)

High Resolution Image

(TIFF 3982 kb)

Supplement 2

Comparison of diagnostic accuracy of 14-3-3 protein to tau and S100B protein. The diagnostic accuracy of 14-3-3 protein was analysed in comparison to tau and S100B which showed the lowest accuracy. The combination of different biomarker proteins increased the diagnostic accuracy further. (GIF 121 kb)

High Resolution Image

(TIFF 7263 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmitz, M., Ebert, E., Stoeck, K. et al. Validation of 14-3-3 Protein as a Marker in Sporadic Creutzfeldt-Jakob Disease Diagnostic. Mol Neurobiol 53, 2189–2199 (2016). https://doi.org/10.1007/s12035-015-9167-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9167-5

Keywords

Navigation