Skip to main content

Advertisement

Log in

Involvement of PI3K/Akt Signaling Pathway and Its Downstream Intracellular Targets in the Antidepressant-Like Effect of Creatine

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Creatine has been proposed to exert beneficial effects in the management of depression, but the cell signaling pathways implicated in its antidepressant effects are not well established. This study investigated the involvement of PI3K/Akt signaling pathway and its downstream intracellular targets in the antidepressant-like effect of creatine. The acute treatment of mice with creatine (1 mg/kg, po) increased the Akt and P70S6K phosphorylation, and HO-1, GPx and PSD95 immunocontents. The pretreatment of mice with LY294002 (10 nmol/mouse, icv, PI3K inhibitor), wortmannin (0.1 μg/mouse, icv, PI3K inhibitor), ZnPP (10 μg/mouse, icv, HO-1 inhibitor), or rapamycin (0.2 nmol/mouse, icv, mTOR inhibitor) prevented the antidepressant-like effect of creatine (1 mg/kg, po) in the TST. In addition, the administration of subeffective dose of either the selective GSK3 inhibitor AR-A014418 (0.01 μg/mouse, icv), the nonselective GSK3 inhibitor lithium chloride (10 mg/kg, po), or the HO-1 inductor CoPP (0.01 μg/mouse, icv), in combination with a subeffective dose of creatine (0.01 mg/kg, po) reduced the immobility time in the TST as compared with either drug alone. No treatment caused significant changes in the locomotor activity of mice. These results indicate that the antidepressant-like effect of creatine in the TST depends on the activation of Akt, Nrf2/HO-1, GPx, and mTOR, and GSK3 inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ARA014418:

N-(4-Methoxybenzyl)-N’-(5-nitro-1,3-thiazol-2-yl)urea

ARE:

Antioxidant response element

CoPP:

Protoporphyrin IX cobalt chloride

ERK 1/2:

Extracellular-signal-regulated kinases 1/2

DMSO:

Dimethyl sulfoxide

GPx:

Glutathione peroxidase

GSK3:

Glycogen synthase kinase-3

HO-1:

Heme oxygenase-1

icv :

Intracerebroventricular

mTOR:

Mammalian target of rapamycin

NMDA:

N-Methyl-D-aspartate

Nrf2:

Nuclear factor-erythroid-derived 2-related factor-2

PI3K:

Phosphatidylinositol 3-kinase

PKA:

cAMP-dependent protein kinase

PKC:

Protein kinase C

po :

per os

Rapamycin:

23,27-epoxy-3H-pyrido[2,1c][1,4] oxaazacyclohentriacontine solution

TST:

Tail suspension test

LY294002:

2-(4-Morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride

ZnPP:

Protoporphyrin IX zinc(II)

References

  1. Paykel ES (2006) Depression: major problem for public health. Epidemiol PsichiatriaSociale 15(1):4–10

    Google Scholar 

  2. Katz MM, Tekell JL, Bowden CL, Brannan S, Houston JP, Berman N, Frazer A (2004) Onset and early behavioral effects of pharmacologically different antidepressants and placebo in depression. Neuropsychopharmacology 29(3):566–579

    Article  CAS  PubMed  Google Scholar 

  3. Cooper R, Naclerio F, Allgrove J, Jimenez A (2012) Creatine supplementation with specific view to exercise/sports performance: an update. J Int Soc Sports Nutr 9(1):33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kondo DG, Sung YH, Hellem TL, Fiedler KK, Shi X, Jeong EK, Renshaw PF (2011) Open-label adjunctive creatine for female adolescents with SSRI-resistant major depressive disorder: a 31-phosphorus magnetic resonance spectroscopy study. J Affect Disord 135(1-3):354–361

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lyoo IK, Yoon S, Kim TS, Hwang J, Kim JE, Won W, Bae S, Renshaw PF (2012) A randomized, double-blind placebo-controlled trial of oral creatine monohydrate augmentation for enhanced response to a selective serotonin reuptake inhibitor in women with major depressive disorder. Am J Psychiatry 169(9):937–945

    Article  PubMed  PubMed Central  Google Scholar 

  6. Roitman S, Green T, Osher Y, Karni N, Levine J (2007) Creatine monohydrate in resistant depression: a preliminary study. Bipolar Disord 9(7):754–758

    Article  CAS  PubMed  Google Scholar 

  7. Cunha MP, Budni J, Pazini FL, Oliveira A, Rosa JM, Lopes MW, Leal RB, Rodrigues AL (2014) Involvement of PKA, PKC, CAMK-II and MEK1/2 in the acute antidepressant-like effect of creatine in mice. Pharmacol Rep 66(4):653–659

    Article  CAS  PubMed  Google Scholar 

  8. Cunha MP, Machado DG, Capra JC, Jacinto J, Bettio LE, Rodrigues AL (2012) Antidepressant-like effect of creatine in mice involves dopaminergic activation. J Psychopharmacol 26(11):1489–1501

    Article  PubMed  Google Scholar 

  9. Cunha MP, Pazini FL, Oliveira A, Bettio LE, Rosa JM, Machado DG, Rodrigues AL (2013) The activation of alpha1-adrenoceptors is implicated in the antidepressant-like effect of creatine in the tail suspension test. Prog Neuro-Psychopharmacol Biol Psychiatry 44:39–50

    Article  CAS  Google Scholar 

  10. Cunha MP, Pazini FL, Oliveira A, Machado DG, Rodrigues AL (2013) Evidence for the involvement of 5-HT1A receptor in the acute antidepressant-like effect of creatine in mice. Brain Res Bull 95:61–69

    Article  CAS  PubMed  Google Scholar 

  11. Cunha MP, Pazini FL, Ludka FK, Rosa JM, Oliveira A, Budni J, Ramos-Hryb AB, Lieberknecht V, Bettio LE, Martin-de-Saavedra MD, Lopez MG, Tasca CI, Rodrigues AL (2015) The modulation of NMDA receptors and L-arginine/nitric oxide pathway is implicated in the anti-immobility effect of creatine in the tail suspension test. Amino Acids 47(4):795–811

    Article  CAS  PubMed  Google Scholar 

  12. Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85(3):367–370

    Article  CAS  PubMed  Google Scholar 

  13. Cunha MP, Martin-de-Saavedra MD, Romero A, Egea J, Ludka FK, Tasca CI, Farina M, Rodrigues AL, Lopez MG (2014) Both creatine and its product phosphocreatine reduce oxidative stress and afford neuroprotection in an in vitro Parkinson’s model. ASN Neuro 6 (6). doi:10.1177/1759091414554945

  14. Cunha MP, Martin-de-Saavedra MD, Romero A, Parada E, Egea J, Del Barrio L, Rodrigues AL, Lopez MG (2013) Protective effect of creatine against 6-hydroxydopamine-induced cell death in human neuroblastoma SH-SY5Y cells: involvement of intracellular signaling pathways. Neuroscience 238:185–194

    Article  CAS  PubMed  Google Scholar 

  15. D’Sa C, Duman RS (2002) Antidepressants and neuroplasticity. Bipolar Disord 4(3):183–194

    Article  PubMed  Google Scholar 

  16. Hsiung SC, Adlersberg M, Arango V, Mann JJ, Tamir H, Liu KP (2003) Attenuated 5-HT1A receptor signaling in brains of suicide victims: involvement of adenylyl cyclase, phosphatidylinositol 3-kinase, Akt and mitogen-activated protein kinase. J Neurochem 87(1):182–194

    Article  CAS  PubMed  Google Scholar 

  17. Karege F, Perroud N, Burkhardt S, Schwald M, Ballmann E, La Harpe R, Malafosse A (2007) Alteration in kinase activity but not in protein levels of protein kinase B and glycogen synthase kinase-3beta in ventral prefrontal cortex of depressed suicide victims. Biol Psychiatry 61(2):240–245

    Article  CAS  PubMed  Google Scholar 

  18. Leibrock C, Ackermann TF, Hierlmeier M, Lang F, Borgwardt S, Lang UE (2013) Akt2 deficiency is associated with anxiety and depressive behavior in mice. Cell Physiol Biochem: Int J Exp Cell Physiol Biochem Pharmacol 32(3):766–777

    Article  CAS  Google Scholar 

  19. Krishnan V, Han MH, Mazei-Robison M, Iniguez SD, Ables JL, Vialou V, Berton O, Ghose S, Covington HE 3rd, Wiley MD, Henderson RP, Neve RL, Eisch AJ, Tamminga CA, Russo SJ, Bolanos CA, Nestler EJ (2008) AKT signaling within the ventral tegmental area regulates cellular and behavioral responses to stressful stimuli. Biol Psychiatry 64(8):691–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, Aghajanian G, Duman RS (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329(5994):959–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Frame S, Cohen P, Biondi RM (2001) A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol Cell 7(6):1321–1327

    Article  CAS  PubMed  Google Scholar 

  22. Budni J, Lobato KR, Binfare RW, Freitas AE, Costa AP, Martin-de-Saavedra MD, Leal RB, Lopez MG, Rodrigues AL (2012) Involvement of PI3K, GSK-3beta and PPARgamma in the antidepressant-like effect of folic acid in the forced swimming test in mice. J Psychopharmacol 26(5):714–723. doi:10.1177/0269881111424456

    Article  PubMed  Google Scholar 

  23. Gould TD, Einat H, Bhat R, Manji HK (2004) AR-A014418, a selective GSK-3 inhibitor, produces antidepressant-like effects in the forced swim test. Int J Neuropsychopharmacol 7(4):387–390

    Article  CAS  PubMed  Google Scholar 

  24. Liu RJ, Fuchikami M, Dwyer JM, Lepack AE, Duman RS, Aghajanian GK (2013) GSK-3 inhibition potentiates the synaptogenic and antidepressant-like effects of subthreshold doses of ketamine. Neuropsychopharmacology 38(11):2268–2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Salazar M, Rojo AI, Velasco D, de Sagarra RM, Cuadrado A (2006) Glycogen synthase kinase-3beta inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf2. J Biol Chem 281(21):14841–14851

    Article  CAS  PubMed  Google Scholar 

  26. Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116

    Article  CAS  PubMed  Google Scholar 

  27. Martin-de-Saavedra MD, Budni J, Cunha MP, Gomez-Rangel V, Lorrio S, Del Barrio L, Lastres-Becker I, Parada E, Tordera RM, Rodrigues AL, Cuadrado A, Lopez MG (2013) Nrf2 participates in depressive disorders through an anti-inflammatory mechanism. Psychoneuroendocrinology 38(10):2010–2022

    Article  CAS  PubMed  Google Scholar 

  28. Duman RS, Li N, Liu RJ, Duric V, Aghajanian G (2012) Signaling pathways underlying the rapid antidepressant actions of ketamine. Neuropharmacology 62(1):35–41

    Article  CAS  PubMed  Google Scholar 

  29. Laursen SE, Belknap JK (1986) Intracerebroventricular injections in mice. Some methodological refinements. J Pharmacol Methods 16(4):355–357

    Article  CAS  PubMed  Google Scholar 

  30. Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates, 1st edn. Academic Press, San Diego

    Google Scholar 

  31. Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83(2):346–356

    Article  CAS  PubMed  Google Scholar 

  32. Deldicque L, Theisen D, Bertrand L, Hespel P, Hue L, Francaux M (2007) Creatine enhances differentiation of myogenic C2C12 cells by activating both p38 and Akt/PKB pathways. Am J Physiol Cell Physiol 293(4):C1263–C1271

    Article  CAS  PubMed  Google Scholar 

  33. Park SW, Lee JG, Seo MK, Lee CH, Cho HY, Lee BJ, Seol W, Kim YH (2014) Differential effects of antidepressant drugs on mTORsignalling in rat hippocampal neurons. Int J Neuropsychopharmacol 17(11):1831–1846

    Article  CAS  PubMed  Google Scholar 

  34. Moretti M, Budni J, Freitas AE, Rosa PB, Rodrigues AL (2014) Antidepressant-like effect of ascorbic acid is associated with the modulation of mammalian target ofrapamycin pathway. J Psychiatr Res 48(1):16–24

    Article  PubMed  Google Scholar 

  35. Allen PJ, D’Anci KE, Kanarek RB, Renshaw PF (2010) Chronic creatine supplementation alters depression-like behavior in rodents in a sex-dependent manner. Neuropsychopharmacology 35(2):534–546

    Article  CAS  PubMed  Google Scholar 

  36. Réus GZ, Vieira FG, Abelaira HM, Michels M, Tomaz DB, dos Santos MA, Carlessi AS, Neotti MV, Matias BI, Luz JR, Dal-Pizzol F, Quevedo J (2014) MAPK signaling correlates with the antidepressant effects of ketamine. J Psychiatr Res 55:15–21

    Article  PubMed  Google Scholar 

  37. Cowen DS, Johnson-Farley NN, Travkina T (2005) 5-HT receptors couple to activation of Akt, but not extracellular-regulated kinase (ERK), in cultured hippocampal neurons. J Neurochem 93(4):910–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nakano M, Osada K, Misonoo A, Fujiwara K, Takahashi M, Ogawa Y, Haga T, Kanai S, Tanaka D, Sasuga Y, Yanagida T, Asakura M, Yamaguchi N (2010) Fluvoxamine and sigma-1 receptor agonists dehydroepiandrosterone (DHEA)-sulfate induces the Ser473-phosphorylation of Akt-1 in PC12 cells. Life Sci 86(9-10):309–314

    Article  CAS  PubMed  Google Scholar 

  39. Huang W, Zhao Y, Zhu X, Cai Z, Wang S, Yao S, Qi Z, Xie P (2013) Fluoxetine upregulates phosphorylated-AKT and phosphorylated-ERK1/2 proteins in neural stem cells: evidence for a crosstalk between AKT and ERK1/2 pathways. J Mol Neurosci 49(2):244–249

    Article  CAS  PubMed  Google Scholar 

  40. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296(5573):1655–1657

    Article  CAS  PubMed  Google Scholar 

  41. Bettio LE, Cunha MP, Budni J, Pazini FL, Oliveira A, Colla AR, Rodrigues AL (2012) Guanosine produces an antidepressant-like effect through the modulation of NMDA receptors, nitric oxide-cGMP and PI3K/mTOR pathways. Behav Brain Res 234(2):137–148

    Article  CAS  PubMed  Google Scholar 

  42. Tokarska-Schlattner M, Epand RF, Meiler F, Zandomeneghi G, Neumann D, Widmer HR, Meier BH, Epand RM, Saks V, Wallimann T, Schlattner U (2012) Phosphocreatine interacts with phospholipids, affects membrane properties and exerts membrane-protective effects. PLoS One 7(8), e43178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Beaulieu JM, Gainetdinov RR, Caron MG (2009) Akt/GSK3 signaling in the action of psychotropic drugs. Annu Rev Pharmacol Toxicol 49:327–347

    Article  CAS  PubMed  Google Scholar 

  44. Kaidanovich-Beilin O, Milman A, Weizman A, Pick CG, Eldar-Finkelman H (2004) Rapid antidepressive-like activity of specific glycogen synthase kinase-3 inhibitor and its effect on beta-catenin in mouse hippocampus. Biol Psychiatry 55(8):781–784

    Article  CAS  PubMed  Google Scholar 

  45. Rosa AO, Kaster MP, Binfare RW, Morales S, Martin-Aparicio E, Navarro-Rico ML, Martinez A, Medina M, Garcia AG, Lopez MG, Rodrigues AL (2008) Antidepressant-like effect of the novel thiadiazolidinone NP031115 in mice. Prog Neuro-Psychopharmacol Biol Psychiatry 32(6):1549–1556

    Article  CAS  Google Scholar 

  46. Martin D, Rojo AI, Salinas M, Diaz R, Gallardo G, Alam J, De Galarreta CM, Cuadrado A (2004) Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. J Biol Chem 279(10):8919–8929

    Article  CAS  PubMed  Google Scholar 

  47. Gozzelino R, Jeney V, Soares MP (2010) Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol 50:323–354

    Article  CAS  PubMed  Google Scholar 

  48. Lin HY, Yeh WL, Huang BR, Lin C, Lai CH, Lin H, Lu DY (2012) Desipramine protects neuronal cell death and induces heme oxygenase-1 expression in Mes23.5 dopaminergic neurons. PLoS One 7(11), e50138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shin TK, Kang MS, Lee HY, Seo MS, Kim SG, Kim CD, Lee WS (2009) Fluoxetine and sertraline attenuate postischemic brain injury in mice. Korean J Physiol Pharmacol 13(3):257–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tai YH, Tsai RY, Lin SL, Yeh CC, Wang JJ, Tao PL, Wong CS (2009) Amitriptyline suppresses neuroinflammation-dependent interleukin-10-p38 mitogen-activated protein kinase-heme oxygenase-1 signaling pathway in chronic morphine-infused rats. Anesthesiology 110(6):1379–1389

    Article  CAS  PubMed  Google Scholar 

  51. Hoeffer CA, Klann E (2010) mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci 33(2):67–75

    Article  CAS  PubMed  Google Scholar 

  52. Beaulieu JM, Tirotta E, Sotnikova TD, Masri B, Salahpour A, Gainetdinov RR, Borrelli E, Caron MG (2007) Regulation of Akt signaling by D2 and D3 dopamine receptors in vivo. J Neurosci 27(4):881–885

    Article  CAS  PubMed  Google Scholar 

  53. Strittmatter F, Walther S, Roosen A, Rutz B, Schlenker B, Limmer S, Waidelich R, Stief CG, Gratzke C, Hennenberg M (2012) Activation of protein kinase B/Akt by alpha1-adrenoceptors in the human prostate. Life Sci 90(11-12):446–453

    Article  CAS  PubMed  Google Scholar 

  54. McGirr A, Berlim MT, Bond DJ, Fleck MP, Yatham LN, Lam RW (2014) A systematic review and meta-analysis of randomized, double-blind, placebo-controlled trials of ketamine in the rapid treatment of major depressive episodes. Psychological Medicine:1–12

  55. Okouchi M, Okayama N, Alexander JS, Aw TY (2006) NRF2-dependent glutamate-L-cysteine ligase catalytic subunit expression mediates insulin protection against hyperglycemia- induced brain endothelial cell apoptosis. Curr Neurovasc Res 3(4):249–261

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; #308723/2013-9), Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES), Rede Instituto Brasileiro de Neurociência (IBN-Net/CNPq; #01.06.0842-00), Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC) Project/PRONEX Program (CNPq/FAPESC; #1262/2012-9). Funding for this study had no further role in study design in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio P. Cunha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cunha, M.P., Budni, J., Ludka, F.K. et al. Involvement of PI3K/Akt Signaling Pathway and Its Downstream Intracellular Targets in the Antidepressant-Like Effect of Creatine. Mol Neurobiol 53, 2954–2968 (2016). https://doi.org/10.1007/s12035-015-9192-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9192-4

Keywords

Navigation