Skip to main content

Advertisement

Log in

Lipoic Acid Stimulates cAMP Production in Healthy Control and Secondary Progressive MS Subjects

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Lipoic acid (LA) exhibits antioxidant and anti-inflammatory properties; supplementation reduces disease severity and T lymphocyte migration into the central nervous system in a murine model of multiple sclerosis (MS), and administration in secondary progressive MS (SPMS) subjects reduces brain atrophy compared to placebo. The mechanism of action (MOA) of LA’s efficacy in suppression of MS pathology is incompletely understood. LA stimulates production of the immunomodulator cyclic AMP (cAMP) in vitro. To determine whether cAMP could be involved in the MOA of LA in vivo, we performed a clinical trial to examine whether LA stimulates cAMP production in healthy control and MS subjects, and whether there are differences in the bioavailability of LA between groups. We administered 1200 mg of oral LA to healthy control, relapsing remitting MS (RRMS) and SPMS subjects, and measured plasma LA and cAMP levels in peripheral blood mononuclear cells (PBMCs). There were no significant differences between the groups in pharmacokinetic (PK) parameters. Healthy and SPMS subjects had increased cAMP at 2 and 4 h post-LA treatment compared to baseline, while RRMS subjects showed decreases in cAMP. Additionally, plasma concentrations of prostaglandin E2 (PGE2, a known cAMP stimulator) were significantly lower in female RRMS subjects compared to female HC and SPMS subjects 4 h after LA ingestion. These data indicate that cAMP could be part of the MOA of LA in SPMS, and that there is a divergent response to LA in RRMS subjects that may have implications in the efficacy of immunomodulatory drugs. This clinical trial, “Defining the Anti-inflammatory Role of Lipoic Acid in Multiple Sclerosis,” NCT00997438, is registered at https://clinicaltrials.gov/ct2/show/record/NCT00997438.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Morikawa T, Yasuno R, Wada H (2001) Do mammalian cells synthesize lipoic acid? Identification of a mouse cDNA encoding a lipoic acid synthase located in mitochondria. FEBS Lett 498(1):16–21

    Article  PubMed  CAS  Google Scholar 

  2. Marracci GH, Jones RE, McKeon GP, Bourdette DN (2002) Alpha lipoic acid inhibits T cell migration into the spinal cord and suppresses and treats experimental autoimmune encephalomyelitis. J Neuroimmunol 131(1–2):104–114

    Article  PubMed  CAS  Google Scholar 

  3. Wang KC, Tsai CP, Lee CL, Chen SY, Lin GJ, Yen MH, Sytwu HK, Chen SJ (2013) Alpha-lipoic acid enhances endogenous peroxisome-proliferator-activated receptor-gamma to ameliorate experimental autoimmune encephalomyelitis in mice. Clin Sci (Lond) 125(7):329–340. https://doi.org/10.1042/CS20120560

    Article  CAS  Google Scholar 

  4. Yadav V, Marracci G, Lovera J, Woodward W, Bogardus K, Marquardt W, Shinto L, Morris C et al (2005) Lipoic acid in multiple sclerosis: a pilot study. Mult Scler 11(2):159–165

    Article  PubMed  CAS  Google Scholar 

  5. Chaudhary P, Marracci GH, Bourdette DN (2006) Lipoic acid inhibits expression of ICAM-1 and VCAM-1 by CNS endothelial cells and T cell migration into the spinal cord in experimental autoimmune encephalomyelitis. J Neuroimmunol 175(1–2):87–96

    Article  PubMed  CAS  Google Scholar 

  6. Chaudhary P, Marracci G, Galipeau D, Pocius E, Morris B, Bourdette D (2015) Lipoic acid reduces inflammation in a mouse focal cortical experimental autoimmune encephalomyelitis model. J Neuroimmunol 289:68–74. https://doi.org/10.1016/j.jneuroim.2015.10.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Schreibelt G, Musters RJ, Reijerkerk A, de Groot LR, van der Pol SM, Hendrikx EM, Dopp ED, Dijkstra CD et al (2006) Lipoic acid affects cellular migration into the central nervous system and stabilizes blood-brain barrier integrity. J Immunol 177(4):2630–2637

    Article  PubMed  CAS  Google Scholar 

  8. Khalili M, Eghtesadi S, Mirshafiey A, Eskandari G, Sanoobar M, Sahraian MA, Motevalian A, Norouzi A et al (2014) Effect of lipoic acid consumption on oxidative stress among multiple sclerosis patients: a randomized controlled clinical trial. Nutr Neurosci 17(1):16–20. https://doi.org/10.1179/1476830513Y.0000000060

    Article  PubMed  CAS  Google Scholar 

  9. Spain R, Powers K, Murchison C, Heriza E, Winges K, Yadav V, Cameron M, Kim E et al (2017) Lipoic acid in secondary progressive MS: a randomized controlled pilot trial. Neurol Neuroimmunol Neuroinflamm 4(5):e374. https://doi.org/10.1212/NXI.0000000000000374

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schillace RV, Pisenti N, Pattamanuch N, Galligan S, Marracci GH, Bourdette DN, Carr DW (2007) Lipoic acid stimulates cAMP production in T lymphocytes and NK cells. Biochem Biophys Res Commun 354(1):259–264. https://doi.org/10.1016/j.bbrc.2006.12.195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kammer GM (1988) The adenylate cyclase-cAMP-protein kinase A pathway and regulation of the immune response. Immunol Today 9(7–8):222–229

    Article  PubMed  CAS  Google Scholar 

  12. Schillace RV, Carr DW (2006) The role of protein kinase A and A-kinase anchoring proteins in modulating T-cell activation: progress and future directions. Crit Rev Immunol 26(2):113–131

    Article  PubMed  CAS  Google Scholar 

  13. Torgersen KM, Vang T, Abrahamsen H, Yaqub S, Tasken K (2002) Molecular mechanisms for protein kinase A-mediated modulation of immune function. Cell Signal 14(1):1–9

    Article  PubMed  CAS  Google Scholar 

  14. Zidek Z (1999) Adenosine—cyclic AMP pathways and cytokine expression. Eur Cytokine Netw 10(3):319–328

    PubMed  CAS  Google Scholar 

  15. Huber JD, Witt KA, Hom S, Egleton RD, Mark KS, Davis TP (2001) Inflammatory pain alters blood-brain barrier permeability and tight junctional protein expression. Am J Physiol Heart Circ Physiol 280(3):H1241–H1248

    Article  PubMed  CAS  Google Scholar 

  16. Karczewski J, Groot J (2000) Molecular physiology and pathophysiology of tight junctions III. Tight junction regulation by intracellular messengers: differences in response within and between epithelia. Am J Physiol Gastrointest Liver Physiol 279(4):G660–G665

    Article  PubMed  CAS  Google Scholar 

  17. Stelzner TJ, Weil JV, O'Brien RF (1989) Role of cyclic adenosine monophosphate in the induction of endothelial barrier properties. J Cell Physiol 139(1):157–166

    Article  PubMed  CAS  Google Scholar 

  18. Zhang Y, Huo M, Zhou J, Xie S (2010) PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Prog Biomed 99(3):306–314. https://doi.org/10.1016/j.cmpb.2010.01.007

    Article  Google Scholar 

  19. Yadav V, Marracci GH, Munar MY, Cherala G, Stuber LE, Alvarez L, Shinto L, Koop DR et al (2010) Pharmacokinetic study of lipoic acid in multiple sclerosis: comparing mice and human pharmacokinetic parameters. Mult Scler 16(4):387–397. https://doi.org/10.1177/1352458509359722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Amenta F, Traini E, Tomassoni D, Mignini F (2008) Pharmacokinetics of different formulations of tioctic (alpha-lipoic) acid in healthy volunteers. Clin Exp Hypertens 30(8):767–775. https://doi.org/10.1080/10641960802563568

    Article  PubMed  CAS  Google Scholar 

  21. Teichert J, Kern J, Tritschler HJ, Ulrich H, Preiss R (1998) Investigations on the pharmacokinetics of alpha-lipoic acid in healthy volunteers. Int J Clin Pharmacol Ther 36(12):625–628

    PubMed  CAS  Google Scholar 

  22. Teichert J, Hermann R, Ruus P, Preiss R (2003) Plasma kinetics, metabolism, and urinary excretion of alpha-lipoic acid following oral administration in healthy volunteers. J Clin Pharmacol 43(11):1257–1267. https://doi.org/10.1177/0091270003258654

    Article  PubMed  CAS  Google Scholar 

  23. Keith DJ, Butler JA, Bemer B, Dixon B, Johnson S, Garrard M, Sudakin DL, Christensen JM et al (2012) Age and gender dependent bioavailability of R- and R,S-alpha-lipoic acid: a pilot study. Pharmacol Res 66(3):199–206. https://doi.org/10.1016/j.phrs.2012.05.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Hermann R, Mungo J, Cnota PJ, Ziegler D (2014) Enantiomer-selective pharmacokinetics, oral bioavailability, and sex effects of various alpha-lipoic acid dosage forms. Clin Pharmacol 6:195–204. https://doi.org/10.2147/CPAA.S71574

    Article  PubMed  PubMed Central  Google Scholar 

  25. Salinthone S, Yadav V, Schillace RV, Bourdette DN, Carr DW (2010) Lipoic acid attenuates inflammation via cAMP and protein kinase A signaling. PLoS One 5(9):e13058. https://doi.org/10.1371/journal.pone.0013058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. van Oosten BW, Barkhof F, Scholten PE, von Blomberg BM, Ader HJ, Polman CH (1998) Increased production of tumor necrosis factor alpha, and not of interferon gamma, preceding disease activity in patients with multiple sclerosis. Arch Neurol 55(6):793–798

    Article  PubMed  Google Scholar 

  27. Salinthone S, Schillace RV, Tsang C, Regan JW, Bourdette DN, Carr DW (2011) Lipoic acid stimulates cAMP production via G protein-coupled receptor-dependent and -independent mechanisms. J Nutr Biochem 22(7):681–690. https://doi.org/10.1016/j.jnutbio.2010.05.008

    Article  PubMed  CAS  Google Scholar 

  28. Salinthone S, Schillace RV, Marracci GH, Bourdette DN, Carr DW (2008) Lipoic acid stimulates cAMP production via the EP2 and EP4 prostanoid receptors and inhibits IFN gamma synthesis and cellular cytotoxicity in NK cells. J Neuroimmunol 199(1–2):46–55. https://doi.org/10.1016/j.jneuroim.2008.05.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Harbo HF, Gold R, Tintore M (2013) Sex and gender issues in multiple sclerosis. Ther Adv Neurol Disord 6(4):237–248. https://doi.org/10.1177/1756285613488434

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gleiter CH, Schug BS, Hermann R, Elze M, Blume HH, Gundert-Remy U (1996) Influence of food intake on the bioavailability of thioctic acid enantiomers. Eur J Clin Pharmacol 50(6):513–514

    Article  PubMed  CAS  Google Scholar 

  31. Yu Z, Kastenmuller G, He Y, Belcredi P, Moller G, Prehn C, Mendes J, Wahl S et al (2011) Differences between human plasma and serum metabolite profiles. PLoS One 6(7):e21230. https://doi.org/10.1371/journal.pone.0021230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Montenarh D, Wernet MP, Hopf M, Maurer HH, Schmidt PH, Ewald AH (2014) Quantification of 33 antidepressants by LC-MS/MS—comparative validation in whole blood, plasma, and serum. Anal Bioanal Chem 406(24):5939–5953. https://doi.org/10.1007/s00216-014-8019-x

    Article  PubMed  CAS  Google Scholar 

  33. Smith AR, Shenvi SV, Widlansky M, Suh JH, Hagen TM (2004) Lipoic acid as a potential therapy for chronic diseases associated with oxidative stress. Curr Med Chem 11(9):1135–1146

    Article  PubMed  CAS  Google Scholar 

  34. Markovic T, Jakopin Z, Dolenc MS, Mlinaric-Rascan I (2017) Structural features of subtype-selective EP receptor modulators. Drug Discov Today 22(1):57–71. https://doi.org/10.1016/j.drudis.2016.08.003

    Article  PubMed  CAS  Google Scholar 

  35. Li G, Fu J, Zhao Y, Ji K, Luan T, Zang B (2015) Alpha-lipoic acid exerts anti-inflammatory effects on lipopolysaccharide-stimulated rat mesangial cells via inhibition of nuclear factor kappa B (NF-kappaB) signaling pathway. Inflammation 38(2):510–519. https://doi.org/10.1007/s10753-014-9957-3

    Article  PubMed  CAS  Google Scholar 

  36. Fernandez-Galilea M, Perez-Matute P, Prieto-Hontoria PL, Martinez JA, Moreno-Aliaga MJ (2012) Effects of lipoic acid on lipolysis in 3T3-L1 adipocytes. J Lipid Res 53(11):2296–2306. https://doi.org/10.1194/jlr.M027086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Brudvik KW, Tasken K (2012) Modulation of T cell immune functions by the prostaglandin E(2)—cAMP pathway in chronic inflammatory states. Br J Pharmacol 166(2):411–419. https://doi.org/10.1111/j.1476-5381.2011.01800.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Yao C, Sakata D, Esaki Y, Li Y, Matsuoka T, Kuroiwa K, Sugimoto Y, Narumiya S (2009) Prostaglandin E2-EP4 signaling promotes immune inflammation through Th1 cell differentiation and Th17 cell expansion. Nat Med 15(6):633–640. https://doi.org/10.1038/nm.1968

    Article  PubMed  CAS  Google Scholar 

  39. Esaki Y, Li Y, Sakata D, Yao C, Segi-Nishida E, Matsuoka T, Fukuda K, Narumiya S (2010) Dual roles of PGE2-EP4 signaling in mouse experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 107(27):12233–12238. https://doi.org/10.1073/pnas.0915112107

    Article  PubMed  PubMed Central  Google Scholar 

  40. Grigoriadis N, van Pesch V (2015) A basic overview of multiple sclerosis immunopathology. Eur J Neurol 22(Suppl 2):3–13. https://doi.org/10.1111/ene.12798

    Article  PubMed  Google Scholar 

  41. Merrill JE, Gerner RH, Myers LW, Ellison GW (1983) Regulation of natural killer cell cytotoxicity by prostaglandin E in the peripheral blood and cerebrospinal fluid of patients with multiple sclerosis and other neurological diseases. Part 1. Association between amount of prostaglandin produced, natural killer, and endogenous interferon. J Neuroimmunol 4(3):223–237

    Article  PubMed  CAS  Google Scholar 

  42. Aberg JA, Demers LM, Romano PJ, Tenser RB (1990) Prostaglandin production in chronic progressive multiple sclerosis. J Clin Lab Anal 4(4):246–250

    Article  PubMed  CAS  Google Scholar 

  43. Zhang J, Rivest S (1999) Distribution, regulation and colocalization of the genes encoding the EP2- and EP4-PGE2 receptors in the rat brain and neuronal responses to systemic inflammation. Eur J Neurosci 11(8):2651–2668

    Article  PubMed  CAS  Google Scholar 

  44. Ikegami R, Sugimoto Y, Segi E, Katsuyama M, Karahashi H, Amano F, Maruyama T, Yamane H et al (2001) The expression of prostaglandin E receptors EP2 and EP4 and their different regulation by lipopolysaccharide in C3H/HeN peritoneal macrophages. J Immunol 166(7):4689–4696

    Article  PubMed  CAS  Google Scholar 

  45. Stapleton PP, Strong VE, Freeman TA, Winter J, Yan Z, Daly JM (2004) Gender affects macrophage cytokine and prostaglandin E2 production and PGE2 receptor expression after trauma. J Surg Res 122(1):1–7. https://doi.org/10.1016/j.jss.2004.04.020

    Article  PubMed  CAS  Google Scholar 

  46. Hoffman JF, Wright CL, McCarthy MM (2016) A critical period in Purkinje cell development is mediated by local estradiol synthesis, disrupted by inflammation, and has enduring consequences only for males. J Neurosci 36(39):10039–10049. https://doi.org/10.1523/JNEUROSCI.1262-16.2016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Konopka CK, Glanzner WG, Rigo ML, Rovani MT, Comim FV, Goncalves PB, Morais EN, Antoniazzi AQ et al (2015) Responsivity to PGE2 labor induction involves concomitant differential prostaglandin E receptor gene expression in cervix and myometrium. Genet Mol Res 14(3):10877–10887. https://doi.org/10.4238/2015.September.9.25

    Article  PubMed  CAS  Google Scholar 

  48. Pace S, Rossi A, Krauth V, Dehm F, Troisi F, Bilancia R, Weinigel C, Rummler S et al (2017) Sex differences in prostaglandin biosynthesis in neutrophils during acute inflammation. Sci Rep 7(1):3759. https://doi.org/10.1038/s41598-017-03696-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Wong W, Scott JD (2004) AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol 5(12):959–970

    Article  PubMed  CAS  Google Scholar 

  50. Boularan C, Gales C (2015) Cardiac cAMP: production, hydrolysis, modulation and detection. Front Pharmacol 6:203. https://doi.org/10.3389/fphar.2015.00203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Chofflon M, Juillard C, Juillard P, Gauthier G, Grau GE (1992) Tumor necrosis factor alpha production as a possible predictor of relapse in patients with multiple sclerosis. Eur Cytokine Netw 3(6):523–531

    PubMed  CAS  Google Scholar 

  52. Tejera-Alhambra M, Casrouge A, de Andres C, Seyfferth A, Ramos-Medina R, Alonso B, Vega J, Fernandez-Paredes L et al (2015) Plasma biomarkers discriminate clinical forms of multiple sclerosis. PLoS One 10(6):e0128952. https://doi.org/10.1371/journal.pone.0128952

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Domingues RB, Fernandes GBP, Leite F, Tilbery CP, Thomaz RB, Silva GS, Mangueira CLP, Soares CAS (2017) The cerebrospinal fluid in multiple sclerosis: far beyond the bands. Einstein (Sao Paulo) 15(1):100–104. https://doi.org/10.1590/S1679-45082017RW3706

    Article  Google Scholar 

  54. Kemanetzoglou E, Andreadou E (2017) CNS demyelination with TNF-alpha blockers. Curr Neurol Neurosci Rep 17(4):36. https://doi.org/10.1007/s11910-017-0742-1

    Article  PubMed  PubMed Central  Google Scholar 

  55. Maczurek A, Hager K, Kenklies M, Sharman M, Martins R, Engel J, Carlson DA, Munch G (2008) Lipoic acid as an anti-inflammatory and neuroprotective treatment for Alzheimer’s disease. Adv Drug Deliv Rev 60(13–14):1463–1470. https://doi.org/10.1016/j.addr.2008.04.015

    Article  PubMed  CAS  Google Scholar 

  56. Zhang Y, Han P, Wu N, He B, Lu Y, Li S, Liu Y, Zhao S et al (2011) Amelioration of lipid abnormalities by alpha-lipoic acid through antioxidative and anti-inflammatory effects. Obesity (Silver Spring) 19(8):1647–1653. https://doi.org/10.1038/oby.2011.121

    Article  CAS  Google Scholar 

  57. Nasole E, Nicoletti C, Yang ZJ, Girelli A, Rubini A, Giuffreda F, Di Tano A, Camporesi E et al (2014) Effects of alpha lipoic acid and its R+ enantiomer supplemented to hyperbaric oxygen therapy on interleukin-6, TNF-alpha and EGF production in chronic leg wound healing. J Enzyme Inhib Med Chem 29(2):297–302. https://doi.org/10.3109/14756366.2012.759951

    Article  PubMed  CAS  Google Scholar 

  58. Sardu C, Santulli G, Santamaria M, Barbieri M, Sacra C, Paolisso P, D'Amico F, Testa N et al (2017) Effects of alpha lipoic acid on multiple cytokines and biomarkers and recurrence of atrial fibrillation within 1 year of catheter ablation. Am J Cardiol 119(9):1382–1386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. We thank Dennis Koop at the OHSU Bioanalytical Shared Resource/Pharmacokinetics Core for measuring the plasma LA concentrations. We also thank OCTRI, which provided clinical coordination, nursing services, and blood processing.

Funding

This work was supported by a Clinical Science Research and Development Service Career Development Award and a Biomedical Laboratory Research and Development Service Merit Review (1I01BX001793), both from the US Department of Veterans Affairs. The statistical analyses in this publication were supported by The Portland VA Research foundation and by the Oregon Clinical and Translational Institute (OCTRI), National Institutes of Health (NIH), grant UL1TR000128 from the National Center for Advancing Translational Sciences (NCATS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonemany Salinthone.

Ethics declarations

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiedler, S.E., Yadav, V., Kerns, A.R. et al. Lipoic Acid Stimulates cAMP Production in Healthy Control and Secondary Progressive MS Subjects. Mol Neurobiol 55, 6037–6049 (2018). https://doi.org/10.1007/s12035-017-0813-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0813-y

Keywords

Navigation