Skip to main content

Advertisement

Log in

Novel Defense by Metallothionein Induction Against Cognitive Decline: From Amyloid β1–42-Induced Excess Zn2+ to Functional Zn2+ Deficiency

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The role of metallothioneins (MTs) in cognitive decline associated with intracellular Zn2+ dysregulation remains unclear. Here, we report that hippocampal MT induction defends cognitive decline, which was induced by amyloid β1–42 (Aβ1–42)-mediated excess Zn2+ and functional Zn2+ deficiency. Excess increase in intracellular Zn2+, which was induced by local injection of Aβ1–42 into the dentate granule cell layer, attenuated in vivo perforant pathway LTP, while the attenuation was rescued by preinjection of MT inducers into the same region. Intraperitoneal injection of dexamethasone, which increased hippocampal MT proteins and blocked Aβ1–42-mediated Zn2+ uptake, but not Aβ1–42 uptake, into dentate granule cells, also rescued Aβ1–42-induced impairment of memory via attenuated LTP. The present study indicates that hippocampal MT induction blocks rapid excess increase in intracellular Zn2+ in dentate granule cells, which originates in Zn2+ released from Aβ1–42, followed by rescuing Aβ1–42-induced cognitive decline. Furthermore, LTP was vulnerable to Aβ1–42 in the aged dentate gyrus, consistent with enhanced Aβ1–42-mediated Zn2+ uptake into aged dentate granule cells, suggesting that Aβ1–42-induced cognitive decline, which is caused by excess intracellular Zn2+, can more frequently occur along with aging. On the other hand, attenuated LTP under functional Zn2+ deficiency in dentate granule cells was also rescued by MT induction. Hippocampal MT induction may rescue cognitive decline under lack of cellular transient changes in functional Zn2+ concentration, while its induction is an attractive defense strategy against Aβ1–42-induced cognitive decline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Frederickson CJ (1989) Neurobiology of zinc and zinc-containing neurons. Int Rev Neurobiol 31:145–238. https://doi.org/10.1016/S0074-7742(08)60279-2

    Article  CAS  PubMed  Google Scholar 

  2. Takeda A, Tamano H (2016) Significance of the degree of synaptic Zn2+ signaling in cognition. Biometals 29(2):177–185. https://doi.org/10.1007/s10534-015-9907-z

    Article  CAS  PubMed  Google Scholar 

  3. Burdette SC, Lippard SJ (2003) Meeting of the minds: metalloneurochemistry. Proc Natl Acad Sci U S A 100(7):3605–3610. https://doi.org/10.1073/pnas.0637711100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Takeda A, Tamano H (2016) Insight into cognitive decline from Zn2+ dynamics through extracellular signaling of glutamate and glucocorticoids. Arch Biochem Biophys 611:93–99. https://doi.org/10.1016/j.abb.2016.06.021

    Article  CAS  PubMed  Google Scholar 

  5. Kägi JHR, Kojima Y (1987) Chemistry and biochemistry of metallothionein. Experientia Suppl 52:25–80. https://doi.org/10.1007/978-3-0348-6784-9_3

    Article  PubMed  Google Scholar 

  6. Palmiter RD, Findley SD, Whitmore TE, Durnam DM (1992) MT-III, a brain-specific member of the metallothionein gene family. Proc Natl Acad Sci U S A 89(14):6333–6337. https://doi.org/10.1073/pnas.89.14.6333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Tsuji S, Kobayashi H, Uchida Y, Ihara Y, Miyatake T (1992) Molecular cloning of human growth inhibitory factor cDNA and its downregulation in Alzheimer’s disease. EMBO J 11(13):4843–4850

    Article  PubMed Central  CAS  Google Scholar 

  8. Quaife CJ, Findley SD, Erickson JC, Froelick GJ, Kelly EJ, Zambrowicz BP, Palmiter RD (1994) Induction of a new metallothionein isoform (MT-IV) occurs during differentiation of stratified squamous epithelia. Biochemistry 33(23):7250–7259. https://doi.org/10.1021/bi00189a029

    Article  CAS  PubMed  Google Scholar 

  9. Masters BA, Quaife CJ, Erickson JC, Kelly EJ, Froelick GJ, Zambrowicz BP, Brinster RL, Palmiter RD (1994) Metallothionein-III is expressed in neurons that sequester zinc in synaptic vesicles. J Neurosci 14(10):5844–5857

    Article  CAS  PubMed  Google Scholar 

  10. Maret W (2014) Molecular aspects of zinc signals. In: Fukuda T, Kambe T (eds) Zinc signals in cellular functions and disorders. Springer, Tokyo, pp. 7–26

    Google Scholar 

  11. Tamano H, Koike Y, Nakada H, Shakushi Y, Takeda A (2016) Significance of synaptic Zn2+ signaling in zincergic and non-zincergic synapses in the hippocampus in cognition. J Trace Elem Med Biol 38:93–98. https://doi.org/10.1016/j.jtemb.2016.03.003

    Article  CAS  PubMed  Google Scholar 

  12. Hardyman JE, Tyson J, Jackson KA, Aldridge C, Cockell SJ, Wakeling LA, Valentine RA, Ford D (2016) Zinc sensing by metal-responsive transcription factor 1 (MTF1) controls metallothionein and ZnT1 expression to buffer the sensitivity of the transcriptome response to zinc. Metallomics 8(3):337–343. https://doi.org/10.1039/C5MT00305A

    Article  CAS  PubMed  Google Scholar 

  13. Erickson JC, Hollopeter G, Thomas SA, Froelick GJ, Palmiter RD (1997) Disruption of the metallothionein-III gene in mice: analysis of brain zinc, behavior, and neuron vulnerability to metals, aging, and seizures. J Neurosci 17(4):1271–1281

    Article  CAS  PubMed  Google Scholar 

  14. McAuliffe JJ, Joseph B, Hughes E, Miles L, Vorhees CV (2008) Metallothionein I,II deficient mice do not exhibit significantly worse long-term behavioral outcomes following neonatal hypoxia-ischemia: MT-I,II deficient mice have inherent behavioral impairments. Brain Res 1190:175–185. https://doi.org/10.1016/j.brainres.2007.11.038

    Article  CAS  PubMed  Google Scholar 

  15. Takeda A, Tamano H (2017) Significance of low nanomolar concentration of Zn2+ in artificial cerebrospinal fluid. Mol Neurobiol 54(4):2477–2482. https://doi.org/10.1007/s12035-016-9816-3

    Article  CAS  PubMed  Google Scholar 

  16. Tamano H, Nishio R, Shakushi Y, Sasaki M, Koike Y, Osawa M, Takeda A (2017) In vitro and in vivo physiology of low nanomolar concentrations of Zn2+ in artificial cerebrospinal fluid. Sci Rep 7:42897. https://doi.org/10.1038/srep42897

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Takeda A, Tamano H, Hisatsune M, Murakami T, Nakada H, Fujii H (2017) Maintained LTP and memory are lost by Zn2+ influx into dentate granule cells, but not Ca2+ influx. Mol Neurobiol. https://doi.org/10.1007/s12035-017-0428-3

  18. Takeda A, Koike Y, Osawa M, Tamano H (2017) Characteristic of extracellular Zn2+ influx in the middle-aged dentate gyrus and its involvement in attenuation of LTP. Mol Neurobiol. https://doi.org/10.1007/s12035-017-0472-z

  19. Suzuki M, Fujise Y, Tsuchiya Y, Tamano H, Takeda A (2015) Excess influx of Zn2+ into dentate granule cells affects object recognition memory via attenuated LTP. Neurochem Int 87:60–65. https://doi.org/10.1016/j.neuint.2015.05.006

    Article  CAS  PubMed  Google Scholar 

  20. Takeda A, Nakamura M, Fujii H, Uematsu C, Minamino T, Adlard PA, Bush AI, Tamano H (2014) Amyloid β-mediated Zn2+ influx into dentate granule cells transiently induces a short-term cognitive deficit. PLoS One 9(12):e115923. https://doi.org/10.1371/journal.pone.0115923

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Takeda A, Tamano H, Tempaku M, Sasaki M, Uematsu C, Sato S, Kanazawa H, Datki ZL et al (2017) Extracellular Zn2+ is essential for amyloid β1-42-induced cognitive decline in the normal brain and its rescue. J Neurosci 37(30):7253–7262. https://doi.org/10.1523/JNEUROSCI.0954-17.2017

    Article  CAS  PubMed  Google Scholar 

  22. Vasák M, Kägi JH (1983) Spectroscopic properties of metallothionein. In: Sigel H (ed) Metal Ions in Biological Systems, vol 15. Marcel Dekker, New York, pp. 213–273

    Google Scholar 

  23. Hirano T, Kikuchi K, Urano Y, Nagano T (2002) Improvement and biological applications of fluorescent probes for zinc, ZnAFs. J Am Chem Soc 124(23):6555–6562. https://doi.org/10.1021/ja025567p

    Article  CAS  PubMed  Google Scholar 

  24. Ueno S, Tsukamoto M, Hirano T, Kikuchi K, Yamada MK, Nishiyama N, Nagano T, Matsuki N et al (2002) Mossy fiber Zn2+ spillover modulates heterosynaptic N-methyl-D-aspartate receptor activity in hippocampal CA3 circuits. J Cell Biol 158(2):215–220. https://doi.org/10.1083/jcb.200204066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Takeda A, Tamano H, Ogawa T, Takada S, Nakamura M, Fujii H, Ando M (2014) Intracellular Zn2+ signaling in the dentate gyrus is required for object recognition memory. Hippocampus 24(11):1404–1412. https://doi.org/10.1002/hipo.22322

    Article  CAS  PubMed  Google Scholar 

  26. Aschner M, Cherian MG, Klaassen CD, Palmiter RD, Erickson JC, Bush AI (1997) Metallothioneins in brain—the role in physiology and pathology. Toxicol Appl Pharmacol 142(2):229–242. https://doi.org/10.1006/taap.1996.8054

    Article  CAS  PubMed  Google Scholar 

  27. Yanagitani S, Miyazaki H, Nakahashi Y, Kuno K, Ueno Y, Matsushita M, Naitoh Y, Taketani S et al (1999) Ischemia induces metallothionein III expression in neurons of rat brain. Life Sci 64(8):707–715. https://doi.org/10.1016/S0024-3205(98)00612-2

    Article  CAS  PubMed  Google Scholar 

  28. Penkowa M, Giralt M, Camats J, Hidalgo J (2002) Metallothionein 1+2 protect the CNS during neuroglial degeneration induced by 6-aminonicotinamide. J Comp Neurol 444(2):174–189. https://doi.org/10.1002/cne.10149

    Article  CAS  PubMed  Google Scholar 

  29. Helal GK, Aleisa AM, Helal OK, Al-Rejaie SS, Al-Yahya AA, Al-Majed AA, Al-Shabanah OA (2009) Metallothionein induction reduces caspase-3 activity and TNFalpha levels with preservation of cognitive function and intact hippocampal neurons in carmustine-treated rats. Oxidative Med Cell Longev 2(1):26–35. https://doi.org/10.4161/oxim.2.1.7901

    Article  Google Scholar 

  30. Sensi SL, Canzoniero LM, Yu SP, Ying HS, Koh JY, Kerchner GA, Choi DW (1997) Measurement of intracellular free zinc in living cortical neurons: routes of entry. J Neurosci 17(24):9554–9564

    Article  CAS  PubMed  Google Scholar 

  31. Colvin RA, Bush AI, Volitakis I, Fontaine CP, Thomas D, Kikuchi K, Holmes WR (2008) Insights into Zn2+ homeostasis in neurons from experimental and modeling studies. Am J Physiol Cell Physiol 294(3):C726–C742. https://doi.org/10.1152/ajpcell.00541.2007

    Article  CAS  PubMed  Google Scholar 

  32. Frederickson CJ, Koh JY, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6(6):449–462. https://doi.org/10.1038/nrn1671

    Article  CAS  PubMed  Google Scholar 

  33. Krężel A, Maret W (2006) Zinc buffering capacity of a eukaryotic cell at physiological pZn. J Biol Inorg Chem 11(8):1049–1062. https://doi.org/10.1007/s00775-006-0150-5

    Article  CAS  PubMed  Google Scholar 

  34. Krężel A, Hao Q, Maret W (2007) The zinc/thiolate redox biochemistry of metallothionein and the control of zinc ion fluctuations in cell signaling. Arch Biochem Biophys 463(2):188–200. https://doi.org/10.1016/j.abb.2007.02.017

    Article  CAS  PubMed  Google Scholar 

  35. Frederickson CJ, Giblin LJ, Krezel A, McAdoo DJ, Muelle RN, Zeng Y, Balaji RV, Masalha R et al (2006) Concentrations of extracellular free zinc (pZn)e in the central nervous system during simple anesthetization, ischemia and reperfusion. Exp Neurol 198(2):285–293. https://doi.org/10.1016/j.expneurol.2005.08.030

    Article  CAS  PubMed  Google Scholar 

  36. Krężel A, Maret W (2017) The functions of metamorphic metallothioneins in zinc and copper metabolism. Int J Mol Sci 18. https://doi.org/10.3390/ijms18061237

  37. Krężel A, Maret W (2007) Dual nanomolar and picomolar Zn(II) binding properties of metallothionein. J Am Chem Soc 129(35):10911–10921. https://doi.org/10.1021/ja071979s

    Article  CAS  PubMed  Google Scholar 

  38. Meloni G, Sonois V, Delaine T, Guilloreau L, Gillet A, Teissié J, Faller P, Vasák M (2008) Metal swap between Zn7-metallothionein-3 and amyloid-beta-cu protects against amyloid-beta toxicity. Nat Chem Biol 4(6):366–372. https://doi.org/10.1038/nchembio.89

    Article  CAS  PubMed  Google Scholar 

  39. Kim JH, Nam YP, Jeon SM, Han HS, Suk K (2012) Amyloid neurotoxicity is attenuated by metallothionein: dual mechanisms at work. J Neurochem 121(5):751–762. https://doi.org/10.1111/j.1471-4159.2012.07725.x

    Article  CAS  PubMed  Google Scholar 

  40. Takeda A, Tamano H, Murakami T, Nakada H, Minamino T, Koike Y (2017) Weakened intracellular Zn2+-buffering in the aged dentate gyrus and its involvement in erasure of maintained LTP. Mol Neurobiol. https://doi.org/10.1007/s12035-017-0615-2

  41. Cirrito JR, Yamada KA, Finn MB, Sloviter RS, Bales KR, May PC, Schoepp DD, Paul SM et al (2005) Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo. Neuron 48(6):913–922. https://doi.org/10.1016/j.neuron.2005.10.028

    Article  CAS  PubMed  Google Scholar 

  42. Kim SH, Fraser PE, Westaway D, St George-Hyslop PH, Ehrlich ME, Gandy S (2010) Group II metabotropic glutamate receptor stimulation triggers production and release of Alzheimer’s amyloid(beta)42 from isolated intact nerve terminals. J Neurosci 30(11):3870–3875. https://doi.org/10.1523/JNEUROSCI.4717-09.2010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Ha C, Ryu J (2007) Park CB (2007) metal ions differentially influence the aggregation and deposition of Alzheimer’s beta-amyloid on a solid template. Biochemistry 46(20):6118–6125. https://doi.org/10.1021/bi7000032

    Article  CAS  PubMed  Google Scholar 

  44. Wang T, Wang CY, Shan ZY, Teng WP, Wang ZY (2012) Clioquinol reduces zinc accumulation in neuritic plaques and inhibits the amyloidogenic pathway in AβPP/PS1 transgenic mouse brain. J Alzheimers Dis 29(3):549–559. https://doi.org/10.3233/JAD-2011-111874

    Article  CAS  PubMed  Google Scholar 

  45. Matlack KE, Tardiff DF, Narayan P, Hamamichi S, Caldwell KA, Caldwell GA, Lindquist S (2014) Clioquinol promotes the degradation of metal-dependent amyloid-β (Aβ) oligomers to restore endocytosis and ameliorate Aβ toxicity. Proc Natl Acad Sci U S A 111(11):4013–4018. https://doi.org/10.1073/pnas.1402228111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Lannfelt L, Blennow K, Zetterberg H, Batsman S, Ames D, Harrison J, Masters CL, Targum S et al (2008) Safety, efficacy, and biomarker findings of PBT2 in targeting Abeta as a modifying therapy for Alzheimer’s disease: a phase IIa, double-blind, randomised, placebocontrolled trial. Lancet Neurol 7(9):779–786. https://doi.org/10.1016/S1474-4422(08)70167-4

    Article  CAS  PubMed  Google Scholar 

  47. Faux NG, Ritchie CW, Gunn A, Rembach A, Tsatsanis A, Bedo J, Harrison J, Lannfelt L et al (2010) PBT2 rapidly improves cognition in Alzheimer’s disease: additional phase II analyses. J Alzheimers Dis 20(2):509–516. https://doi.org/10.3233/JAD-2010-1390

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Takeda.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeda, A., Tamano, H., Hashimoto, W. et al. Novel Defense by Metallothionein Induction Against Cognitive Decline: From Amyloid β1–42-Induced Excess Zn2+ to Functional Zn2+ Deficiency. Mol Neurobiol 55, 7775–7788 (2018). https://doi.org/10.1007/s12035-018-0948-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-0948-5

Keywords

Navigation