Skip to main content
Log in

Amyloid Precursor Protein Dimerisation Reduces Neurite Outgrowth

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The amyloid precursor protein (APP) undergoes extensive metabolism, and its transport and proteolytic processing can be modulated by its ability to form a homodimer. We have investigated the functional consequences of stabilised APP dimer expression in cells by studying the engineered dimerisation of the APPL17C (residue 17 in Aβ sequence) construct, which is associated with a 30% increase in APP dimer expression, on APP’s neurite outgrowth promoting activity. Overexpression of APPL17C in SH-SY5Y cells decreased neurite outgrowth upon retinoic acid differentiation as compared to overexpressing APPWT cells. The APPL17C phenotype was rescued by replacing the APPL17C media with conditioned media from APPWT cells, indicating that the APPL17C mutant is impairing the secretion of a neuritogenic promoting factor. APPL17C had altered transport and was localised in the endoplasmic reticulum. Defining the molecular basis of the APPL17C phenotype showed that RhoA GTPase activity, a negative regulator of neurite outgrowth, was increased in APPL17C cells. RhoA activity was decreased after APPWT conditioned media rescue. Moreover, treatment with the RhoA inhibitor, Y27632, restored a wild-type morphology to the APPL17C cells. Small RNAseq analysis of APPL17C and APPWT cells identified several differentially expressed miRNAs relating to neurite outgrowth. Of these, miR-34a showed the greatest decrease in expression. Lentiviral-mediated overexpression of miR-34a rescued neurite outgrowth in APPL17C cells to APPWT levels and changed RhoA activation. This study has identified a novel link between APP dimerisation and its neuritogenic activity which is mediated by miR-34a expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Muller UC, Zheng H (2012) Physiological functions of APP family proteins. Cold Spring Harb Perspect Med 2(2):a006288. https://doi.org/10.1101/cshperspect.a006288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Muller UC, Deller T, Korte M (2017) Not just amyloid: physiological functions of the amyloid precursor protein family. Nat Rev Neurosci 18(5):281–298. https://doi.org/10.1038/nrn.2017.29

    Article  CAS  PubMed  Google Scholar 

  3. Sosa LJ, Caceres A, Dupraz S, Oksdath M, Quiroga S, Lorenzo A (2017) The physiological role of the amyloid precursor protein as an adhesion molecule in the developing nervous system. J Neurochem 143(1):11–29. https://doi.org/10.1111/jnc.14122

    Article  CAS  PubMed  Google Scholar 

  4. Thordardottir S, Kinhult Stahlbom A, Almkvist O, Thonberg H, Eriksdotter M, Zetterberg H, Blennow K, Graff C (2017) The effects of different familial Alzheimer’s disease mutations on APP processing in vivo. Alzheimers Res Ther 9(1):9. https://doi.org/10.1186/s13195-017-0234-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gerber H, Wu F, Dimitrov M, Garcia Osuna GM, Fraering PC (2017) Zinc and copper differentially modulate amyloid precursor protein processing by gamma-secretase and amyloid-beta peptide production. J Biol Chem 292(9):3751–3767. https://doi.org/10.1074/jbc.M116.754101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Klaver D, Hung AC, Gasperini R, Foa L, Aguilar MI, Small DH (2010) Effect of heparin on APP metabolism and Abeta production in cortical neurons. Neurodegener Dis 7(1–3):187–189. https://doi.org/10.1159/000295661

    Article  CAS  PubMed  Google Scholar 

  7. Deyts C, Thinakaran G, Parent AT (2016) APP receptor? To be or not to be. Trends Pharmacol Sci 37(5):390–411. https://doi.org/10.1016/j.tips.2016.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Soba P, Eggert S, Wagner K, Zentgraf H, Siehl K, Kreger S, Lower A, Langer A et al (2005) Homo- and heterodimerization of APP family members promotes intercellular adhesion. EMBO J 24(20):3624–3634. https://doi.org/10.1038/sj.emboj.7600824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Munter LM, Voigt P, Harmeier A, Kaden D, Gottschalk KE, Weise C, Pipkorn R, Schaefer M et al (2007) GxxxG motifs within the amyloid precursor protein transmembrane sequence are critical for the etiology of Abeta42. EMBO J 26(6):1702–1712. https://doi.org/10.1038/sj.emboj.7601616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kienlen-Campard P, Tasiaux B, Van Hees J, Li M, Huysseune S, Sato T, Fei JZ, Aimoto S et al (2008) Amyloidogenic processing but not amyloid precursor protein (APP) intracellular C-terminal domain production requires a precisely oriented APP dimer assembled by transmembrane GXXXG motifs. J Biol Chem 283(12):7733–7744. https://doi.org/10.1074/jbc.M707142200

    Article  CAS  PubMed  Google Scholar 

  11. Qiu WQ, Ferreira A, Miller C, Koo EH, Selkoe DJ (1995) Cell-surface beta-amyloid precursor protein stimulates neurite outgrowth of hippocampal neurons in an isoform-dependent manner. J Neurosci 15(3 Pt 2):2157–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Alvarez J, Moreno RD, Llanos O, Inestrosa NC, Brandan E, Colby T, Esch FS (1992) Axonal sprouting induced in the sciatic nerve by the amyloid precursor protein (APP) and other antiproteases. Neurosci Lett 144(1–2):130–134. https://doi.org/10.1016/0304-3940(92)90733-N

    Article  CAS  PubMed  Google Scholar 

  13. Perez RG, Zheng H, Van der Ploeg LH, Koo EH (1997) The beta-amyloid precursor protein of Alzheimer’s disease enhances neuron viability and modulates neuronal polarity. J Neurosci 17(24):9407–9414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Williamson TG, Mok SS, Henry A, Cappai R, Lander AD, Nurcombe V, Beyreuther K, Masters CL et al (1996) Secreted glypican binds to the amyloid precursor protein of Alzheimer’s disease (APP) and inhibits APP-induced neurite outgrowth. J Biol Chem 271(49):31215–31221. https://doi.org/10.1074/jbc.271.49.31215

    Article  CAS  PubMed  Google Scholar 

  15. Allinquant B, Hantraye P, Mailleux P, Moya K, Bouillot C, Prochiantz A (1995) Downregulation of amyloid precursor protein inhibits neurite outgrowth in vitro. J Cell Biol 128(5):919–927. https://doi.org/10.1083/jcb.128.5.919

    Article  CAS  PubMed  Google Scholar 

  16. Tuo QZ, Lei P, Jackman KA, Li XL, Xiong H, Li XL, Liuyang ZY, Roisman L et al (2017) Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry 22(11):1520–1530. https://doi.org/10.1038/mp.2017.171

    Article  CAS  PubMed  Google Scholar 

  17. Savage C, Hamelin M, Culotti JG, Coulson A, Albertson DG, Chalfie M (1989) Mec-7 is a beta-tubulin gene required for the production of 15-protofilament microtubules in Caenorhabditis elegans. Genes Dev 3(6):870–881. https://doi.org/10.1101/gad.3.6.870

    Article  CAS  PubMed  Google Scholar 

  18. Chan CC, Khodarahmi K, Liu J, Sutherland D, Oschipok LW, Steeves JD, Tetzlaff W (2005) Dose-dependent beneficial and detrimental effects of ROCK inhibitor Y27632 on axonal sprouting and functional recovery after rat spinal cord injury. Exp Neurol 196(2):352–364. https://doi.org/10.1016/j.expneurol.2005.08.011

    Article  CAS  PubMed  Google Scholar 

  19. Nakayama AY, Harms MB, Luo L (2000) Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J Neurosci 20(14):5329–5338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ishizaki T, Uehata M, Tamechika I, Keel J, Nonomura K, Maekawa M, Narumiya S (2000) Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Mol Pharmacol 57(5):976–983

    CAS  PubMed  Google Scholar 

  21. Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27(3):435–448. https://doi.org/10.1016/j.molcel.2007.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439(7074):283–289. https://doi.org/10.1038/nature04367

    Article  CAS  PubMed  Google Scholar 

  23. Corrigan F, Pham CL, Vink R, Blumbergs PC, Masters CL, van den Heuvel C, Cappai R (2011) The neuroprotective domains of the amyloid precursor protein, in traumatic brain injury, are located in the two growth factor domains. Brain Res 1378:137–143. https://doi.org/10.1016/j.brainres.2010.12.077

  24. Dinet V, An N, Ciccotosto GD, Bruban J, Maoui A, Bellingham SA, Hill AF, Andersen OM et al (2011) APP involvement in retinogenesis of mice. Acta Neuropathol 121(3):351–363. https://doi.org/10.1007/s00401-010-0762-2

    Article  CAS  PubMed  Google Scholar 

  25. Needham BE, Wlodek ME, Ciccotosto GD, Fam BC, Masters CL, Proietto J, Andrikopoulos S, Cappai R (2008) Identification of the Alzheimer’s disease amyloid precursor protein (APP) and its homologue APLP2 as essential modulators of glucose and insulin homeostasis and growth. J Pathol 215(2):155–163. https://doi.org/10.1002/path.2343

    Article  CAS  PubMed  Google Scholar 

  26. Needham BE, Ciccotosto GD, Cappai R (2014) Combined deletions of amyloid precursor protein and amyloid precursor-like protein 2 reveal different effects on mouse brain metal homeostasis. Metallomics 6(3):598–603. https://doi.org/10.1039/c3mt00358b

    Article  CAS  PubMed  Google Scholar 

  27. Masters CL, Selkoe DJ (2012) Biochemistry of amyloid beta-protein and amyloid deposits in Alzheimer disease. Cold Spring Harb Perspect Med 2(6):a006262. https://doi.org/10.1101/cshperspect.a006262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Munter LM, Botev A, Richter L, Hildebrand PW, Althoff V, Weise C, Kaden D, Multhaup G (2010) Aberrant amyloid precursor protein (APP) processing in hereditary forms of Alzheimer disease caused by APP familial Alzheimer disease mutations can be rescued by mutations in the APP GxxxG motif. J Biol Chem 285(28):21636–21643. https://doi.org/10.1074/jbc.M109.088005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Noda Y, Asada M, Kubota M, Maesako M, Watanabe K, Uemura M, Kihara T, Shimohama S et al (2013) Copper enhances APP dimerization and promotes Abeta production. Neurosci Lett 547:10–15. https://doi.org/10.1016/j.neulet.2013.04.057

    Article  CAS  PubMed  Google Scholar 

  30. Isbert S, Wagner K, Eggert S, Schweitzer A, Multhaup G, Weggen S, Kins S, Pietrzik CU (2012) APP dimer formation is initiated in the endoplasmic reticulum and differs between APP isoforms. Cell Mol Life Sci 69(8):1353–1375. https://doi.org/10.1007/s00018-011-0882-4

    Article  CAS  PubMed  Google Scholar 

  31. Khalifa NB, Van Hees J, Tasiaux B, Huysseune S, Smith SO, Constantinescu SN, Octave JN, Kienlen-Campard P (2010) What is the role of amyloid precursor protein dimerization? Cell Adhes Migr 4(2):268–272

    Article  Google Scholar 

  32. Baumkotter F, Schmidt N, Vargas C, Schilling S, Weber R, Wagner K, Fiedler S, Klug W et al (2014) Amyloid precursor protein dimerization and synaptogenic function depend on copper binding to the growth factor-like domain. J Neurosci 34(33):11159–11172. https://doi.org/10.1523/jneurosci.0180-14.2014

    Article  PubMed  PubMed Central  Google Scholar 

  33. da Rocha JF, da Cruz e Silva OA, Vieira SI (2015) Analysis of the amyloid precursor protein role in neuritogenesis reveals a biphasic SH-SY5Y neuronal cell differentiation model. J Neurochem 134(2):288–301. https://doi.org/10.1111/jnc.13133

    Article  CAS  PubMed  Google Scholar 

  34. Adlerz L, Beckman M, Holback S, Tehranian R, Cortes Toro V, Iverfeldt K (2003) Accumulation of the amyloid precursor-like protein APLP2 and reduction of APLP1 in retinoic acid-differentiated human neuroblastoma cells upon curcumin-induced neurite retraction. Brain Res Mol Brain Res 119(1):62–72. https://doi.org/10.1016/j.molbrainres.2003.08.014

    Article  CAS  PubMed  Google Scholar 

  35. Holback S, Adlerz L, Iverfeldt K (2005) Increased processing of APLP2 and APP with concomitant formation of APP intracellular domains in BDNF and retinoic acid-differentiated human neuroblastoma cells. J Neurochem 95(4):1059–1068. https://doi.org/10.1111/j.1471-4159.2005.03440.x

    Article  CAS  PubMed  Google Scholar 

  36. Vella LJ, Cappai R (2012) Identification of a novel amyloid precursor protein processing pathway that generates secreted N-terminal fragments. FASEB J 26(7):2930–2940. https://doi.org/10.1096/fj.11-200295

    Article  CAS  PubMed  Google Scholar 

  37. LeBlanc AC, Goodyer CG (1999) Role of endoplasmic reticulum, endosomal-lysosomal compartments, and microtubules in amyloid precursor protein metabolism of human neurons. J Neurochem 72(5):1832–1842. https://doi.org/10.1046/j.1471-4159.1999.0721832.x

    Article  CAS  PubMed  Google Scholar 

  38. Greenfield JP, Tsai J, Gouras GK, Hai B, Thinakaran G, Checler F, Sisodia SS, Greengard P et al (1999) Endoplasmic reticulum and trans-Golgi network generate distinct populations of Alzheimer β-amyloid peptides. Proc Natl Acad Sci U S A 96(2):742–747. https://doi.org/10.1073/pnas.96.2.742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ben Khalifa N, Tyteca D, Marinangeli C, Depuydt M, Collet JF, Courtoy PJ, Renauld JC, Constantinescu S et al (2012) Structural features of the KPI domain control APP dimerization, trafficking, and processing. FASEB J 26(2):855–867. https://doi.org/10.1096/fj.11-190207

    Article  CAS  PubMed  Google Scholar 

  40. Chen C, Wirth A, Ponimaskin E (2012) Cdc42: an important regulator of neuronal morphology. Int J Biochem Cell Biol 44(3):447–451. https://doi.org/10.1016/j.biocel.2011.11.022

    Article  CAS  PubMed  Google Scholar 

  41. Fujita Y, Yamashita T (2014) Axon growth inhibition by RhoA/ROCK in the central nervous system. Front Neurosci 8:338. https://doi.org/10.3389/fnins.2014.00338

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kranenburg O, Poland M, Gebbink M, Oomen L, Moolenaar WH (1997) Dissociation of LPA-induced cytoskeletal contraction from stress fiber formation by differential localization of RhoA. J Cell Sci 110 (Pt 19) (19):2417–2427

  43. Hasebe N, Fujita Y, Ueno M, Yoshimura K, Fujino Y, Yamashita T (2013) Soluble beta-amyloid precursor protein alpha binds to p75 neurotrophin receptor to promote neurite outgrowth. PLoS One 8(12):e82321. https://doi.org/10.1371/journal.pone.0082321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yamashita T, Tucker KL, Barde YA (1999) Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron 24(3):585–593. https://doi.org/10.1016/S0896-6273(00)81114-9

    Article  CAS  PubMed  Google Scholar 

  45. Zhang YW, Chen Y, Liu Y, Zhao Y, Liao FF, Xu H (2013) APP regulates NGF receptor trafficking and NGF-mediated neuronal differentiation and survival. PLoS One 8(11):e80571. https://doi.org/10.1371/journal.pone.0080571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chasseigneaux S, Dinc L, Rose C, Chabret C, Coulpier F, Topilko P, Mauger G, Allinquant B (2011) Secreted amyloid precursor protein beta and secreted amyloid precursor protein alpha induce axon outgrowth in vitro through Egr1 signaling pathway. PLoS One 6(1):e16301. https://doi.org/10.1371/journal.pone.0016301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gu X, Meng S, Liu S, Jia C, Fang Y, Li S, Fu C, Song Q et al (2014) miR-124 represses ROCK1 expression to promote neurite elongation through activation of the PI3K/Akt signal pathway. J Mol Neurosci 52(1):156–165. https://doi.org/10.1007/s12031-013-0190-6

    Article  CAS  PubMed  Google Scholar 

  48. Fang W, Gao G, Zhao H, Xia Y, Guo X, Li N, Li Y, Yang Y et al (2015) Role of the Akt/GSK-3beta/CRMP-2 pathway in axon degeneration of dopaminergic neurons resulting from MPP+ toxicity. Brain Res 1602:9–19. https://doi.org/10.1016/j.brainres.2014.08.030

    Article  CAS  PubMed  Google Scholar 

  49. Carrel D, Firestein BL (2009) MicroRNA-mediated regulation of synaptic palmitoylation: shrinking fat spines. Nat Cell Biol 11(6):681–682. https://doi.org/10.1038/ncb0609-681

    Article  CAS  PubMed  Google Scholar 

  50. Schratt G (2009) microRNAs at the synapse. Nat Rev Neurosci 10(12):842–849. https://doi.org/10.1038/nrn2763

    Article  CAS  PubMed  Google Scholar 

  51. Nampoothiri SS, Rajanikant GK (2017) Decoding the ubiquitous role of microRNAs in neurogenesis. Mol Neurobiol 54(3):2003–2011. https://doi.org/10.1007/s12035-016-9797-2

    Article  CAS  PubMed  Google Scholar 

  52. Jang J, Lee S, Oh HJ, Choi Y, Choi JH, Hwang DW, Lee DS (2016) Fluorescence imaging of in vivo miR-124a-induced neurogenesis of neuronal progenitor cells using neuron-specific reporters. EJNMMI Res 6(1):38. https://doi.org/10.1186/s13550-016-0190-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lin L, Gu X, Liu S, Wang X (2014) miR-124a promotes neurite outgrowth by inhibiting iASPP expression. Nan Fang Yi Ke Da Xue Xue Bao 34(1):31–35. https://doi.org/10.3969/j.issn.1673-4254.2014.01.07

    Article  CAS  PubMed  Google Scholar 

  54. Agostini M, Tucci P, Steinert JR, Shalom-Feuerstein R, Rouleau M, Aberdam D, Forsythe ID, Young KW et al (2011) microRNA-34a regulates neurite outgrowth, spinal morphology, and function. Proc Natl Acad Sci U S A 108(52):21099–21104. https://doi.org/10.1073/pnas.1112063108

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported from funding from the Australia National Health and Medical Research Council (R.C., A.F.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Cappai.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luu, L., Ciccotosto, G.D., Vella, L.J. et al. Amyloid Precursor Protein Dimerisation Reduces Neurite Outgrowth. Mol Neurobiol 56, 13–28 (2019). https://doi.org/10.1007/s12035-018-1070-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1070-4

Keywords

Navigation