Skip to main content

Advertisement

Log in

Resveratrol Induces Brain Resilience Against Alzheimer Neurodegeneration Through Proteostasis Enhancement

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Resveratrol is a natural compound that mimics the antioxidant and antiaging effects of caloric restriction, mainly mediated through SIRT1, a deacetylase that induces longevity and neuroprotection. We aimed to analyze the effects of resveratrol on the brain status of control non-transgenic (NoTg) and AD transgenic (3xTg-AD) mice to discern the mechanisms involved in a potential inducement of resilience against age-related neurodegeneration and Alzheimer’s disease (AD). Mice were fed with a diet supplemented with 100 mg/kg of resveratrol from 2 months of age during 10 months. Resveratrol administration induced complete protection against memory loss and brain pathology in 3xTg-AD mice, and also induced cognitive enhancement in healthy NoTg mice. Resveratrol improved exploration and reduced anxiety in both mouse strains, indicative of well-being. Resveratrol reduced the presence of Aβ and p-tau pathology in the hippocampus of the 3xTg-AD mouse. Proteostasis analysis showed the following in both NoTg and 3xTg-AD mice: (i) increased levels of the amyloid-degrading enzyme neprilysin, (ii) reduction of the amyloidogenic secretase BACE1, and (iii) increase of proteasome protein levels and enhancement of proteasome activity. Resveratrol also increased AMPK protein levels, then upregulating the SIRT1 pathway, as shown by the activation of PGC-1α and CREB in both mice, resulting in further beneficial changes. Our data demonstrated that resveratrol induces cognitive enhancement and neuroprotection against amyloid and tau pathologies. Improvement of proteostasis by resveratrol, in both healthy and AD mice, suggests that it is a mechanism of brain resilience and defense against neurodegeneration caused by the accumulation of aberrant proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. World Alzheimer Report (2016) Improving healthcare for people living with dementia. Alzheimer’s Disease International (ADI), London

    Google Scholar 

  2. Reitz C, Brayne C, Mayeux R (2011) Epidemiology of Alzheimer disease. Nat Rev Neurol 7(3):137–152. https://doi.org/10.1038/nrneurol.2011.2

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lane CA, Hardy J, Schott JM (2018) Alzheimer’s disease. Eur J Neurol 25(1):59–70. https://doi.org/10.1111/ene.13439

    Article  CAS  PubMed  Google Scholar 

  4. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356. https://doi.org/10.1126/science.1072994

    Article  CAS  PubMed  Google Scholar 

  5. Selkoe DJ (2011) Alzheimer’s disease. Cold Spring Harb Perspect Biol 3 (7). doi:https://doi.org/10.1101/cshperspect.a004457

    Article  PubMed  PubMed Central  Google Scholar 

  6. Salomone S, Caraci F, Leggio GM, Fedotova J, Drago F (2012) New pharmacological strategies for treatment of Alzheimer’s disease: focus on disease modifying drugs. Br J Clin Pharmacol 73(4):504–517. https://doi.org/10.1111/j.1365-2125.2011.04134.x

    Article  CAS  PubMed  Google Scholar 

  7. Kumar A, Singh A, Ekavali (2015) A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep 67(2):195–203. https://doi.org/10.1016/j.pharep.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  8. Burns J, Yokota T, Ashihara H, Lean ME, Crozier A (2002) Plant foods and herbal sources of resveratrol. J Agric Food Chem 50(11):3337–3340

    Article  CAS  PubMed  Google Scholar 

  9. Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5(6):493–506. https://doi.org/10.1038/nrd2060

    Article  CAS  PubMed  Google Scholar 

  10. Malhotra A, Bath S, Elbarbry F (2015) An organ system approach to explore the antioxidative, anti-inflammatory, and cytoprotective actions of resveratrol. Oxidative Med Cell Longev 2015:803971. https://doi.org/10.1155/2015/803971

    Article  CAS  Google Scholar 

  11. Novelle MG, Wahl D, Dieguez C, Bernier M, de Cabo R (2015) Resveratrol supplementation: where are we now and where should we go? Ageing Res Rev 21:1–15. https://doi.org/10.1016/j.arr.2015.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sun AY, Wang Q, Simonyi A, Sun GY (2010) Resveratrol as a therapeutic agent for neurodegenerative diseases. Mol Neurobiol 41(2–3):375–383. https://doi.org/10.1007/s12035-010-8111-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rege SD, Geetha T, Griffin GD, Broderick TL, Babu JR (2014) Neuroprotective effects of resveratrol in Alzheimer disease pathology. Front Aging Neurosci 6:218. https://doi.org/10.3389/fnagi.2014.00218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ahmed T, Javed S, Javed S, Tariq A, Samec D, Tejada S, Nabavi SF, Braidy N et al (2017) Resveratrol and Alzheimer’s disease: mechanistic insights. Mol Neurobiol 54(4):2622–2635. https://doi.org/10.1007/s12035-016-9839-9

    Article  CAS  PubMed  Google Scholar 

  15. Sawda C, Moussa C, Turner RS (2017) Resveratrol for Alzheimer’s disease. Ann N Y Acad Sci 1403(1):142–149. https://doi.org/10.1111/nyas.13431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Turner RS, Thomas RG, Craft S, van Dyck CH, Mintzer J, Reynolds BA, Brewer JB, Rissman RA et al (2015) A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 85(16):1383–1391. https://doi.org/10.1212/WNL.0000000000002035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moussa C, Hebron M, Huang X, Ahn J, Rissman RA, Aisen PS, Turner RS (2017) Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J Neuroinflammation 14(1):1. https://doi.org/10.1186/s12974-016-0779-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Witte AV, Kerti L, Margulies DS, Floel A (2014) Effects of resveratrol on memory performance, hippocampal functional connectivity, and glucose metabolism in healthy older adults. J Neurosci 34(23):7862–7870. https://doi.org/10.1523/JNEUROSCI.0385-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Evans HM, Howe PR, Wong RH (2017) Effects of resveratrol on cognitive performance, mood and cerebrovascular function in post-menopausal women; a 14-week randomised placebo-controlled intervention trial. Nutrients 9(1). https://doi.org/10.3390/nu9010027

    Article  PubMed Central  Google Scholar 

  20. Karuppagounder SS, Pinto JT, Xu H, Chen HL, Beal MF, Gibson GE (2009) Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochem Int 54(2):111–118. https://doi.org/10.1016/j.neuint.2008.10.008

    Article  CAS  PubMed  Google Scholar 

  21. Vingtdeux V, Giliberto L, Zhao H, Chandakkar P, Wu Q, Simon JE, Janle EM, Lobo J et al (2010) AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J Biol Chem 285(12):9100–9113. https://doi.org/10.1074/jbc.M109.060061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Porquet D, Grinan-Ferre C, Ferrer I, Camins A, Sanfeliu C, Del Valle J, Pallas M (2014) Neuroprotective role of trans-resveratrol in a murine model of familial Alzheimer’s disease. J Alzheimers Dis 42(4):1209–1220. https://doi.org/10.3233/JAD-140444

    Article  CAS  PubMed  Google Scholar 

  23. Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, Rodgers JT, Delalle I, Baur JA et al (2007) SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J 26(13):3169–3179. https://doi.org/10.1038/sj.emboj.7601758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Barger JL, Kayo T, Vann JM, Arias EB, Wang J, Hacker TA, Wang Y, Raederstorff D et al (2008) A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS One 3(6):e2264. https://doi.org/10.1371/journal.pone.0002264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Albani D, Polito L, Batelli S, De Mauro S, Fracasso C, Martelli G, Colombo L, Manzoni C et al (2009) The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by alpha-synuclein or amyloid-beta (1-42) peptide. J Neurochem 110(5):1445–1456. https://doi.org/10.1111/j.1471-4159.2009.06228.x

    Article  CAS  PubMed  Google Scholar 

  26. Porquet D, Casadesus G, Bayod S, Vicente A, Canudas AM, Vilaplana J, Pelegri C, Sanfeliu C et al (2013) Dietary resveratrol prevents Alzheimer’s markers and increases life span in SAMP8. Age (Dordr) 35(5):1851–1865. https://doi.org/10.1007/s11357-012-9489-4

    Article  CAS  Google Scholar 

  27. Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5:253–295. https://doi.org/10.1146/annurev.pathol.4.110807.092250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Donmez G (2012) The neurobiology of sirtuins and their role in neurodegeneration. Trends Pharmacol Sci 33(9):494–501. https://doi.org/10.1016/j.tips.2012.05.007

    Article  CAS  PubMed  Google Scholar 

  29. Herskovits AZ, Guarente L (2014) SIRT1 in neurodevelopment and brain senescence. Neuron 81(3):471–483. https://doi.org/10.1016/j.neuron.2014.01.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Corpas R, Revilla S, Ursulet S, Castro-Freire M, Kaliman P, Petegnief V, Gimenez-Llort L, Sarkis C et al (2017) SIRT1 overexpression in mouse hippocampus induces cognitive enhancement through proteostatic and neurotrophic mechanisms. Mol Neurobiol 54(7):5604–5619. https://doi.org/10.1007/s12035-016-0087-9

    Article  CAS  PubMed  Google Scholar 

  31. Borra MT, Smith BC, Denu JM (2005) Mechanism of human SIRT1 activation by resveratrol. J Biol Chem 280(17):17187–17195. https://doi.org/10.1074/jbc.M501250200

    Article  CAS  PubMed  Google Scholar 

  32. Beher D, Wu J, Cumine S, Kim KW, Lu SC, Atangan L, Wang M (2009) Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem Biol Drug Des 74(6):619–624. https://doi.org/10.1111/j.1747-0285.2009.00901.x

    Article  CAS  PubMed  Google Scholar 

  33. Bitterman JL, Chung JH (2015) Metabolic effects of resveratrol: addressing the controversies. Cell Mol Life Sci 72(8):1473–1488. https://doi.org/10.1007/s00018-014-1808-8

    Article  CAS  PubMed  Google Scholar 

  34. Park SJ, Ahmad F, Philp A, Baar K, Williams T, Luo H, Ke H, Rehmann H et al (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148(3):421–433. https://doi.org/10.1016/j.cell.2012.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ, Agarwal B, Ye L et al (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 15(5):675–690. https://doi.org/10.1016/j.cmet.2012.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jang JH, Surh YJ (2003) Protective effect of resveratrol on beta-amyloid-induced oxidative PC12 cell death. Free Radic Biol Med 34(8):1100–1110

    Article  CAS  PubMed  Google Scholar 

  37. Chiang MC, Nicol CJ, Cheng YC (2018) Resveratrol activation of AMPK-dependent pathways is neuroprotective in human neural stem cells against amyloid-beta-induced inflammation and oxidative stress. Neurochem Int 115:1–10. https://doi.org/10.1016/j.neuint.2017.10.002

    Article  CAS  PubMed  Google Scholar 

  38. Marambaud P, Zhao H, Davies P (2005) Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides. J Biol Chem 280(45):37377–37382. https://doi.org/10.1074/jbc.M508246200

    Article  CAS  PubMed  Google Scholar 

  39. Regitz C, Fitzenberger E, Mahn FL, Dussling LM, Wenzel U (2016) Resveratrol reduces amyloid-beta (Abeta(1)(−)(4)(2))-induced paralysis through targeting proteostasis in an Alzheimer model of Caenorhabditis elegans. Eur J Nutr 55(2):741–747. https://doi.org/10.1007/s00394-015-0894-1

    Article  CAS  PubMed  Google Scholar 

  40. Vilchez D, Saez I, Dillin A (2014) The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun 5:5659. https://doi.org/10.1038/ncomms6659

    Article  CAS  PubMed  Google Scholar 

  41. Xin SH, Tan L, Cao X, Yu JT, Tan L (2018) Clearance of amyloid Beta and tau in Alzheimer’s disease: from mechanisms to therapy. Neurotox Res doi:https://doi.org/10.1007/s12640-018-9895-1

    Article  CAS  PubMed  Google Scholar 

  42. Scheper W, Nijholt DA, Hoozemans JJ (2011) The unfolded protein response and proteostasis in Alzheimer disease: preferential activation of autophagy by endoplasmic reticulum stress. Autophagy 7(8):910–911

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gerakis Y, Hetz C (2018) Emerging roles of ER stress in the etiology and pathogenesis of Alzheimer’s disease. FEBS J 285(6):995–1011. https://doi.org/10.1111/febs.14332

    Article  CAS  PubMed  Google Scholar 

  44. Hashimoto S, Saido TC (2018) Critical review: involvement of endoplasmic reticulum stress in the aetiology of Alzheimer’s disease. Open Biol 8 (4). doi:https://doi.org/10.1098/rsob.180024

    Article  PubMed  PubMed Central  Google Scholar 

  45. Karpova A, Mikhaylova M, Thomas U, Knopfel T, Behnisch T (2006) Involvement of protein synthesis and degradation in long-term potentiation of Schaffer collateral CA1 synapses. J Neurosci 26(18):4949–4955. https://doi.org/10.1523/JNEUROSCI.4573-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fonseca R, Vabulas RM, Hartl FU, Bonhoeffer T, Nagerl UV (2006) A balance of protein synthesis and proteasome-dependent degradation determines the maintenance of LTP. Neuron 52(2):239–245. https://doi.org/10.1016/j.neuron.2006.08.015

    Article  CAS  PubMed  Google Scholar 

  47. Gadhave K, Bolshette N, Ahire A, Pardeshi R, Thakur K, Trandafir C, Istrate A, Ahmed S et al (2016) The ubiquitin proteasomal system: a potential target for the management of Alzheimer’s disease. J Cell Mol Med 20(7):1392–1407. https://doi.org/10.1111/jcmm.12817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Westerheide SD, Anckar J, Stevens SM Jr, Sistonen L, Morimoto RI (2009) Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 323(5917):1063–1066. https://doi.org/10.1126/science.1165946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Groll M, Ditzel L, Lowe J, Stock D, Bochtler M, Bartunik HD, Huber R (1997) Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386(6624):463–471. https://doi.org/10.1038/386463a0

    Article  CAS  PubMed  Google Scholar 

  50. Ciechanover A, Kwon YT (2015) Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med 47:e147. https://doi.org/10.1038/emm.2014.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP et al (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39(3):409–421

    Article  CAS  PubMed  Google Scholar 

  52. Garcia-Mesa Y, Colie S, Corpas R, Cristofol R, Comellas F, Nebreda AR, Gimenez-Llort L, Sanfeliu C (2016) Oxidative stress is a central target for physical exercise neuroprotection against pathological brain aging. J Gerontol A Biol Sci Med Sci 71(1):40–49. https://doi.org/10.1093/gerona/glv005

    Article  CAS  PubMed  Google Scholar 

  53. Mastrangelo MA, Bowers WJ (2008) Detailed immunohistochemical characterization of temporal and spatial progression of Alzheimer’s disease-related pathologies in male triple-transgenic mice. BMC Neurosci 9:81. https://doi.org/10.1186/1471-2202-9-81

    Article  PubMed  PubMed Central  Google Scholar 

  54. Garcia-Mesa Y, Gimenez-Llort L, Lopez LC, Venegas C, Cristofol R, Escames G, Acuna-Castroviejo D, Sanfeliu C (2012) Melatonin plus physical exercise are highly neuroprotective in the 3xTg-AD mouse. Neurobiol Aging 33(6):1124 e1113–1124 e1129. https://doi.org/10.1016/j.neurobiolaging.2011.11.016

    Article  CAS  Google Scholar 

  55. Corpas R, Hernandez-Pinto AM, Porquet D, Hernandez-Sanchez C, Bosch F, Ortega-Aznar A, Comellas F, de la Rosa EJ et al (2017) Proinsulin protects against age-related cognitive loss through anti-inflammatory convergent pathways. Neuropharmacology 123:221–232. https://doi.org/10.1016/j.neuropharm.2017.06.014

    Article  CAS  PubMed  Google Scholar 

  56. Revilla S, Ursulet S, Alvarez-Lopez MJ, Castro-Freire M, Perpina U, Garcia-Mesa Y, Bortolozzi A, Gimenez-Llort L et al (2014) Lenti-GDNF gene therapy protects against Alzheimer’s disease-like neuropathology in 3xTg-AD mice and MC65 cells. CNS Neurosci Ther 20(11):961–972. https://doi.org/10.1111/cns.12312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Conte A, Pellegrini S, Tagliazucchi D (2003) Synergistic protection of PC12 cells from beta-amyloid toxicity by resveratrol and catechin. Brain Res Bull 62(1):29–38

    Article  CAS  PubMed  Google Scholar 

  58. Cristofol R, Porquet D, Corpas R, Coto-Montes A, Serret J, Camins A, Pallas M, Sanfeliu C (2012) Neurons from senescence-accelerated SAMP8 mice are protected against frailty by the sirtuin 1 promoting agents melatonin and resveratrol. J Pineal Res 52(3):271–281. https://doi.org/10.1111/j.1600-079X.2011.00939.x

    Article  CAS  PubMed  Google Scholar 

  59. Liu GS, Zhang ZS, Yang B, He W (2012) Resveratrol attenuates oxidative damage and ameliorates cognitive impairment in the brain of senescence-accelerated mice. Life Sci 91(17–18):872–877. https://doi.org/10.1016/j.lfs.2012.08.033

    Article  CAS  PubMed  Google Scholar 

  60. Wang R, Zhang Y, Li J, Zhang C (2017) Resveratrol ameliorates spatial learning memory impairment induced by Abeta1-42 in rats. Neuroscience 344:39–47. https://doi.org/10.1016/j.neuroscience.2016.08.051

    Article  CAS  PubMed  Google Scholar 

  61. Mu Y, Gage FH (2011) Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol Neurodegener 6:85. https://doi.org/10.1186/1750-1326-6-85

    Article  PubMed  PubMed Central  Google Scholar 

  62. Apostolova LG, Zarow C, Biado K, Hurtz S, Boccardi M, Somme J, Honarpisheh H, Blanken AE et al (2015) Relationship between hippocampal atrophy and neuropathology markers: a 7T MRI validation study of the EADC-ADNI harmonized hippocampal segmentation protocol. Alzheimers Dement 11(2):139–150. https://doi.org/10.1016/j.jalz.2015.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  63. Raskin J, Cummings J, Hardy J, Schuh K, Dean RA (2015) Neurobiology of Alzheimer’s disease: integrated molecular, physiological, anatomical, biomarker, and cognitive dimensions. Curr Alzheimer Res 12(8):712–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Riedel G, Micheau J, Lam AG, Roloff EL, Martin SJ, Bridge H, de Hoz L, Poeschel B et al (1999) Reversible neural inactivation reveals hippocampal participation in several memory processes. Nat Neurosci 2(10):898–905. https://doi.org/10.1038/13202

    Article  CAS  PubMed  Google Scholar 

  65. Laeremans A, Sabanov V, Ahmed T, Nys J, Van de Plas B, Vinken K, Woolley DG, Gantois I et al (2015) Distinct and simultaneously active plasticity mechanisms in mouse hippocampus during different phases of Morris water maze training. Brain Struct Funct 220(3):1273–1290. https://doi.org/10.1007/s00429-014-0722-z

    Article  PubMed  Google Scholar 

  66. D'Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 36(1):60–90

    Article  CAS  PubMed  Google Scholar 

  67. Slevin M, Matou S, Zeinolabediny Y, Corpas R, Weston R, Liu D, Boras E, Di Napoli M et al (2015) Monomeric C-reactive protein—a key molecule driving development of Alzheimer’s disease associated with brain ischaemia? Sci Rep 5:13281. https://doi.org/10.1038/srep13281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Assini FL, Duzzioni M, Takahashi RN (2009) Object location memory in mice: pharmacological validation and further evidence of hippocampal CA1 participation. Behav Brain Res 204(1):206–211. https://doi.org/10.1016/j.bbr.2009.06.005

    Article  CAS  PubMed  Google Scholar 

  69. Broadbent NJ, Gaskin S, Squire LR, Clark RE (2010) Object recognition memory and the rodent hippocampus. Learn Mem 17(1):5–11. https://doi.org/10.1101/lm.1650110

    Article  PubMed  PubMed Central  Google Scholar 

  70. Shin IS, Carter M, Masterman D, Fairbanks L, Cummings JL (2005) Neuropsychiatric symptoms and quality of life in Alzheimer disease. Am J Geriatr Psychiatry 13(6):469–474. https://doi.org/10.1176/appi.ajgp.13.6.469

    Article  PubMed  Google Scholar 

  71. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8(6):595–608. https://doi.org/10.15252/emmm.201606210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Agostinho P, Pliassova A, Oliveira CR, Cunha RA (2015) Localization and trafficking of amyloid-beta protein precursor and secretases: impact on Alzheimer’s disease. J Alzheimers Dis 45(2):329–347. https://doi.org/10.3233/JAD-142730

    Article  CAS  PubMed  Google Scholar 

  73. Vetrivel KS, Thinakaran G (2006) Amyloidogenic processing of beta-amyloid precursor protein in intracellular compartments. Neurology 66(2 Suppl 1):S69–S73. https://doi.org/10.1212/01.wnl.0000192107.17175.39

    Article  CAS  PubMed  Google Scholar 

  74. Nitsch RM, Slack BE, Wurtman RJ, Growdon JH (1992) Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 258(5080):304–307

    Article  CAS  PubMed  Google Scholar 

  75. Postina R, Schroeder A, Dewachter I, Bohl J, Schmitt U, Kojro E, Prinzen C, Endres K et al (2004) A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest 113(10):1456–1464. https://doi.org/10.1172/JCI20864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Haniu M, Denis P, Young Y, Mendiaz EA, Fuller J, Hui JO, Bennett BD, Kahn S et al (2000) Characterization of Alzheimer’s beta-secretase protein BACE. A pepsin family member with unusual properties. J Biol Chem 275(28):21099–21106. https://doi.org/10.1074/jbc.M002095200

    Article  CAS  PubMed  Google Scholar 

  77. Vassar R (2004) BACE1: the beta-secretase enzyme in Alzheimer’s disease. J Mol Neurosci 23(1–2):105–114. https://doi.org/10.1385/JMN:23:1-2:105

    Article  CAS  PubMed  Google Scholar 

  78. Ohno M, Cole SL, Yasvoina M, Zhao J, Citron M, Berry R, Disterhoft JF, Vassar R (2007) BACE1 gene deletion prevents neuron loss and memory deficits in 5XFAD APP/PS1 transgenic mice. Neurobiol Dis 26(1):134–145. https://doi.org/10.1016/j.nbd.2006.12.008

    Article  CAS  PubMed  Google Scholar 

  79. Spencer B, Marr RA, Rockenstein E, Crews L, Adame A, Potkar R, Patrick C, Gage FH et al (2008) Long-term neprilysin gene transfer is associated with reduced levels of intracellular Abeta and behavioral improvement in APP transgenic mice. BMC Neurosci 9:109. https://doi.org/10.1186/1471-2202-9-109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Blurton-Jones M, Spencer B, Michael S, Castello NA, Agazaryan AA, Davis JL, Muller FJ, Loring JF et al (2014) Neural stem cells genetically-modified to express neprilysin reduce pathology in Alzheimer transgenic models. Stem Cell Res Ther 5(2):46. https://doi.org/10.1186/scrt440

    Article  PubMed  PubMed Central  Google Scholar 

  81. Devi L, Ohno M (2015) A combination Alzheimer’s therapy targeting BACE1 and neprilysin in 5XFAD transgenic mice. Mol Brain 8:19. https://doi.org/10.1186/s13041-015-0110-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lee HR, Shin HK, Park SY, Kim HY, Lee WS, Rhim BY, Hong KW, Kim CD (2014) Cilostazol suppresses beta-amyloid production by activating a disintegrin and metalloproteinase 10 via the upregulation of SIRT1-coupled retinoic acid receptor-beta. J Neurosci Res 92(11):1581–1590. https://doi.org/10.1002/jnr.23421

    Article  CAS  PubMed  Google Scholar 

  83. Saftig P, Lichtenthaler SF (2015) The alpha secretase ADAM10: a metalloprotease with multiple functions in the brain. Prog Neurobiol 135:1–20. https://doi.org/10.1016/j.pneurobio.2015.10.003

    Article  CAS  PubMed  Google Scholar 

  84. Lloret A, Fuchsberger T, Giraldo E, Vina J (2015) Molecular mechanisms linking amyloid beta toxicity and tau hyperphosphorylation in Alzheimers disease. Free Radic Biol Med 83:186–191. https://doi.org/10.1016/j.freeradbiomed.2015.02.028

    Article  CAS  PubMed  Google Scholar 

  85. Avila J, Pallas N, Bolos M, Sayas CL, Hernandez F (2016) Intracellular and extracellular microtubule associated protein tau as a therapeutic target in Alzheimer disease and other tauopathies. Expert Opin Ther Targets 20(6):653–661. https://doi.org/10.1517/14728222.2016.1131269

    Article  CAS  PubMed  Google Scholar 

  86. Min SW, Cho SH, Zhou Y, Schroeder S, Haroutunian V, Seeley WW, Huang EJ, Shen Y et al (2010) Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67(6):953–966. https://doi.org/10.1016/j.neuron.2010.08.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Irwin DJ, Cohen TJ, Grossman M, Arnold SE, Xie SX, Lee VM, Trojanowski JQ (2012) Acetylated tau, a novel pathological signature in Alzheimer’s disease and other tauopathies. Brain 135(Pt 3):807–818. https://doi.org/10.1093/brain/aws013

    Article  PubMed  PubMed Central  Google Scholar 

  88. Min SW, Chen X, Tracy TE, Li Y, Zhou Y, Wang C, Shirakawa K, Minami SS et al (2015) Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat Med 21(10):1154–1162. https://doi.org/10.1038/nm.3951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tomita T, Hamazaki J, Hirayama S, McBurney MW, Yashiroda H, Murata S (2015) Sirt1-deficiency causes defective protein quality control. Sci Rep 5:12613. https://doi.org/10.1038/srep12613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Petrucelli L, Dickson D, Kehoe K, Taylor J, Snyder H, Grover A, De Lucia M, McGowan E et al (2004) CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum Mol Genet 13(7):703–714. https://doi.org/10.1093/hmg/ddh083

    Article  CAS  PubMed  Google Scholar 

  91. Magrane J, Smith RC, Walsh K, Querfurth HW (2004) Heat shock protein 70 participates in the neuroprotective response to intracellularly expressed beta-amyloid in neurons. J Neurosci 24(7):1700–1706. https://doi.org/10.1523/JNEUROSCI.4330-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Keller JN, Hanni KB, Markesbery WR (2000) Impaired proteasome function in Alzheimer’s disease. J Neurochem 75(1):436–439

    Article  CAS  PubMed  Google Scholar 

  93. Tseng BP, Green KN, Chan JL, Blurton-Jones M, LaFerla FM (2008) Abeta inhibits the proteasome and enhances amyloid and tau accumulation. Neurobiol Aging 29(11):1607–1618. https://doi.org/10.1016/j.neurobiolaging.2007.04.014

    Article  CAS  PubMed  Google Scholar 

  94. Perry G, Friedman R, Shaw G, Chau V (1987) Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer disease brains. Proc Natl Acad Sci U S A 84(9):3033–3036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang JZ, Grundke-Iqbal I, Iqbal K (2007) Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur J Neurosci 25(1):59–68. https://doi.org/10.1111/j.1460-9568.2006.05226.x

    Article  PubMed  PubMed Central  Google Scholar 

  96. Cras P, Smith MA, Richey PL, Siedlak SL, Mulvihill P, Perry G (1995) Extracellular neurofibrillary tangles reflect neuronal loss and provide further evidence of extensive protein cross-linking in Alzheimer disease. Acta Neuropathol 89(4):291–295

    Article  CAS  PubMed  Google Scholar 

  97. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P et al (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425(6954):191–196. https://doi.org/10.1038/nature01960

    Article  CAS  PubMed  Google Scholar 

  98. Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 16(10):4623–4635. https://doi.org/10.1091/mbc.E05-01-0033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Johnson S, Imai SI (2018) NAD (+) biosynthesis, aging, and disease. F1000Res 7:132. https://doi.org/10.12688/f1000research.12120.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J et al (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127(6):1109–1122. https://doi.org/10.1016/j.cell.2006.11.013

    Article  CAS  PubMed  Google Scholar 

  101. Um JH, Park SJ, Kang H, Yang S, Foretz M, McBurney MW, Kim MK, Viollet B et al (2010) AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes 59(3):554–563. https://doi.org/10.2337/db09-0482

    Article  CAS  PubMed  Google Scholar 

  102. Hubbard BP, Sinclair DA (2014) Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol Sci 35(3):146–154. https://doi.org/10.1016/j.tips.2013.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P et al (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458(7241):1056–1060. https://doi.org/10.1038/nature07813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sindreu CB, Scheiner ZS, Storm DR (2007) Ca2+-stimulated adenylyl cyclases regulate ERK-dependent activation of MSK1 during fear conditioning. Neuron 53(1):79–89. https://doi.org/10.1016/j.neuron.2006.11.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Saura CA, Valero J (2011) The role of CREB signaling in Alzheimer’s disease and other cognitive disorders. Rev Neurosci 22(2):153–169. https://doi.org/10.1515/RNS.2011.018

    Article  CAS  PubMed  Google Scholar 

  106. Li Z, Fang F, Wang Y, Wang L (2016) Resveratrol protects CA1 neurons against focal cerebral ischemic reperfusion-induced damage via the ERK-CREB signaling pathway in rats. Pharmacol Biochem Behav 146-147:21–27. https://doi.org/10.1016/j.pbb.2016.04.007

    Article  CAS  PubMed  Google Scholar 

  107. Tang BL (2016) Sirt1 and the mitochondria. Mol Cells 39(2):87–95. https://doi.org/10.14348/molcells.2016.2318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434(7029):113–118. https://doi.org/10.1038/nature03354

    Article  CAS  PubMed  Google Scholar 

  109. Nemoto S, Fergusson MM, Finkel T (2005) SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J Biol Chem 280(16):16456–16460. https://doi.org/10.1074/jbc.M501485200

    Article  PubMed  Google Scholar 

  110. Palomera-Avalos V, Grinan-Ferre C, Izquierdo V, Camins A, Sanfeliu C, Pallas M (2017) Metabolic stress induces cognitive disturbances and inflammation in aged mice: protective role of resveratrol. Rejuvenation Res 20(3):202–217. https://doi.org/10.1089/rej.2016.1885

    Article  CAS  PubMed  Google Scholar 

  111. Canto C, Auwerx J (2009) PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 20(2):98–105. https://doi.org/10.1097/MOL.0b013e328328d0a4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Valenti D, de Bari L, de Rasmo D, Signorile A, Henrion-Caude A, Contestabile A, Vacca RA (2016) The polyphenols resveratrol and epigallocatechin-3-gallate restore the severe impairment of mitochondria in hippocampal progenitor cells from a Down syndrome mouse model. Biochim Biophys Acta 1862(6):1093–1104. https://doi.org/10.1016/j.bbadis.2016.03.003

    Article  CAS  PubMed  Google Scholar 

  113. Garcia-Mesa Y, Lopez-Ramos JC, Gimenez-Llort L, Revilla S, Guerra R, Gruart A, Laferla FM, Cristofol R et al (2011) Physical exercise protects against Alzheimer’s disease in 3xTg-AD mice. J Alzheimers Dis 24(3):421–454. https://doi.org/10.3233/JAD-2011-101635

    Article  PubMed  Google Scholar 

  114. Jardim FR, de Rossi FT, Nascimento MX, da Silva Barros RG, Borges PA, Prescilio IC, de Oliveira MR (2018) Resveratrol and brain mitochondria: a review. Mol Neurobiol 55(3):2085–2101. https://doi.org/10.1007/s12035-017-0448-z

    Article  CAS  PubMed  Google Scholar 

  115. Huang WJ, Zhang X, Chen WW (2016) Role of oxidative stress in Alzheimer’s disease. Biomed Rep 4(5):519–522. https://doi.org/10.3892/br.2016.630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Cadonic C, Sabbir MG, Albensi BC (2016) Mechanisms of mitochondrial dysfunction in Alzheimer’s disease. Mol Neurobiol 53(9):6078–6090. https://doi.org/10.1007/s12035-015-9515-5

    Article  CAS  PubMed  Google Scholar 

  117. Chen S, Fan Q, Li A, Liao D, Ge J, Laties AM, Zhang X (2013) Dynamic mobilization of PGC-1alpha mediates mitochondrial biogenesis for the protection of RGC-5 cells by resveratrol during serum deprivation. Apoptosis 18(7):786–799. https://doi.org/10.1007/s10495-013-0837-3

    Article  CAS  PubMed  Google Scholar 

  118. Banerjee K, Munshi S, Frank DE, Gibson GE (2015) Abnormal glucose metabolism in Alzheimer’s disease: relation to autophagy/mitophagy and therapeutic approaches. Neurochem Res 40(12):2557–2569. https://doi.org/10.1007/s11064-015-1631-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sweeney G, Song J (2016) The association between PGC-1alpha and Alzheimer’s disease. Anat Cell Biol 49(1):1–6. https://doi.org/10.5115/acb.2016.49.1.1

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the use of mice derived from the colony established by Dr. Lydia Giménez-Llort at the Universitat Autònoma de Barcelona with progenitors provided by Dr. Frank M LaFerla, University of California Irvine.

Funding

This study was supported by grants SAF2016-77703 and SAF2016-81716-REDC from Spanish MINECO and European Development Fund; 2017-SGR-106 from AGAUR and the CERCA Programme/Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rubén Corpas or Coral Sanfeliu.

Ethics declarations

Animal handling and experimental procedures were approved by the Ethics Committee for animal experimentation (CEEA) of the University of Barcelona (UB) (Ref: DAAM 6523, CEEA), in accordance with the Decree 214/1997 of the Generalitat of Catalonia and the Directive 2010/63/EU of the European Union for animal experiments.

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 10.0 MB)

ESM 2

(DOCX 35.2 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corpas, R., Griñán-Ferré, C., Rodríguez-Farré, E. et al. Resveratrol Induces Brain Resilience Against Alzheimer Neurodegeneration Through Proteostasis Enhancement. Mol Neurobiol 56, 1502–1516 (2019). https://doi.org/10.1007/s12035-018-1157-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1157-y

Keywords

Navigation