Skip to main content
Log in

Ubiquitin Regulation of Trk Receptor Trafficking and Degradation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The regulation of Trk receptors is critical for orchestrating multiple signalling pathways required for developing and maintaining neuronal networks. Activation of Trk receptors results in signalling, internalisation and subsequent degradation of the protein. Although ubiquitination of TrkA by Nedd4-2 has been identified as an important degradation pathway, much less is known about the pathways regulating the degradation of TrkB and TrkC. Critical to the interaction between TrkA and Nedd4-2 is a PPxY motif present within TrkA but absent in TrkB and TrkC. Given the absence of this interaction motif, it remains to be determined how TrkB and TrkC are ubiquitinated. Here we report that the adaptor protein Ndfip1 can interact with all three Trk receptors and show for TrkB the recruitment of Nedd4-2 through PPxY motifs present in Ndfip1. Ndfip1 mediates the ubiquitination of TrkB, resulting in receptor trafficking predominantly on Rab7 containing late endosomes, highlighting a pathway for TrkB degradation at the lysosome. In vitro, overexpression of Ndfip1 increased TrkB ubiquitination and decreased viability of BDNF-dependent primary neurons. In vivo, conditional genetic deletion of Ndfip1 increased TrkB in the brain and resulted in enlargement of the granular cell layer of the dentate gyrus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chao MV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4(4):299–309. https://doi.org/10.1038/nrn1078

    Article  CAS  PubMed  Google Scholar 

  2. Cunningham ME, Stephens RM, Kaplan DR, Greene LA (1997) Autophosphorylation of activation loop tyrosines regulates signaling by the TRK nerve growth factor receptor. J Biol Chem 272(16):10957–10967

    Article  CAS  Google Scholar 

  3. York RD, Molliver DC, Grewal SS, Stenberg PE, McCleskey EW, Stork PJ (2000) Role of phosphoinositide 3-kinase and endocytosis in nerve growth factor-induced extracellular signal-regulated kinase activation via Ras and Rap1. Mol Cell Biol 20(21):8069–8083

    Article  CAS  Google Scholar 

  4. Delcroix JD, Valletta JS, Wu C, Hunt SJ, Kowal AS, Mobley WC (2003) NGF signaling in sensory neurons: evidence that early endosomes carry NGF retrograde signals. Neuron 39(1):69–84

    Article  CAS  Google Scholar 

  5. Ye H, Kuruvilla R, Zweifel LS, Ginty DD (2003) Evidence in support of signaling endosome-based retrograde survival of sympathetic neurons. Neuron 39(1):57–68

    Article  CAS  Google Scholar 

  6. Makkerh JP, Ceni C, Auld DS, Vaillancourt F, Dorval G, Barker PA (2005) p75 neurotrophin receptor reduces ligand-induced Trk receptor ubiquitination and delays Trk receptor internalization and degradation. EMBO Rep 6(10):936–941. https://doi.org/10.1038/sj.embor.7400503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Geetha T, Jiang J, Wooten MW (2005) Lysine 63 polyubiquitination of the nerve growth factor receptor TrkA directs internalization and signaling. Mol Cell 20(2):301–312. https://doi.org/10.1016/j.molcel.2005.09.014

    Article  CAS  PubMed  Google Scholar 

  8. Takahashi Y, Shimokawa N, Esmaeili-Mahani S, Morita A, Masuda H, Iwasaki T, Tamura J, Haglund K et al (2011) Ligand-induced downregulation of TrkA is partly regulated through ubiquitination by Cbl. FEBS Lett 585(12):1741–1747. https://doi.org/10.1016/j.febslet.2011.04.056

    Article  CAS  PubMed  Google Scholar 

  9. Emdal KB, Pedersen AK, Bekker-Jensen DB, Tsafou KP, Horn H, Lindner S, Schulte JH, Eggert A et al (2015) Temporal proteomics of NGF-TrkA signaling identifies an inhibitory role for the E3 ligase Cbl-b in neuroblastoma cell differentiation. Sci Signal 8(374):ra40. https://doi.org/10.1126/scisignal.2005769

    Article  PubMed  Google Scholar 

  10. Arevalo JC, Waite J, Rajagopal R, Beyna M, Chen ZY, Lee FS, Chao MV (2006) Cell survival through Trk neurotrophin receptors is differentially regulated by ubiquitination. Neuron 50(4):549–559

    Article  CAS  Google Scholar 

  11. Harvey KF, Shearwin-Whyatt LM, Fotia A, Parton RG, Kumar S (2002) N4WBP5, a potential target for ubiquitination by the Nedd4 family of proteins, is a novel Golgi-associated protein. J Biol Chem 277(11):9307–9317

    Article  CAS  Google Scholar 

  12. Howitt J, Putz U, Lackovic J, Doan A, Dorstyn L, Cheng H, Yang B, Chan-Ling T et al (2009) Divalent metal transporter 1 (DMT1) regulation by Ndfip1 prevents metal toxicity in human neurons. Proc Natl Acad Sci U S A 106(36):15489–15494

    Article  CAS  Google Scholar 

  13. Mund T, Pelham HR (2010) Regulation of PTEN/Akt and MAP kinase signaling pathways by the ubiquitin ligase activators Ndfip1 and Ndfip2. Proc Natl Acad Sci U S A 107(25):11429–11434. https://doi.org/10.1073/pnas.0911714107

    Article  PubMed  PubMed Central  Google Scholar 

  14. Low LH, Chow YL, Li Y, Goh CP, Putz U, Silke J, Ouchi T, Howitt J et al (2015) Nedd4-family interacting protein 1 (Ndfip1) is required for ubiquitination and nuclear trafficking of BRCA1-associated ATM activator 1 (BRAT1) during the DNA damage response. J Biol Chem. https://doi.org/10.1074/jbc.M114.613687

  15. Li Y, Low LH, Putz U, Goh CP, Tan SS, Howitt J (2014) Rab5 and Ndfip1 are involved in Pten ubiquitination and nuclear trafficking. Traffic. https://doi.org/10.1111/tra.12175

  16. Li Y, Luikart BW, Birnbaum S, Chen J, Kwon CH, Kernie SG, Bassel-Duby R, Parada LF (2008) TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment. Neuron 59(3):399–412. https://doi.org/10.1016/j.neuron.2008.06.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mund T, Pelham HR (2009) Control of the activity of WW-HECT domain E3 ubiquitin ligases by NDFIP proteins. EMBO Rep 10(5):501–507. https://doi.org/10.1038/embor.2009.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lackovic J, Howitt J, Callaway JK, Silke J, Bartlett P, Tan SS (2012) Differential regulation of Nedd4 ubiquitin ligases and their adaptor protein Ndfip1 in a rat model of ischemic stroke. Exp Neurol 235(1):326–335. https://doi.org/10.1016/j.expneurol.2012.02.014

    Article  CAS  PubMed  Google Scholar 

  19. Heerssen HM, Segal RA (2002) Location, location, location: a spatial view of neurotrophin signal transduction. Trends Neurosci 25(3):160–165

    Article  CAS  Google Scholar 

  20. Yacoubian TA, Lo DC (2000) Truncated and full-length TrkB receptors regulate distinct modes of dendritic growth. Nat Neurosci 3(4):342–349. https://doi.org/10.1038/73911

    Article  CAS  PubMed  Google Scholar 

  21. McAllister AK, Lo DC, Katz LC (1995) Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 15(4):791–803

    Article  CAS  Google Scholar 

  22. Hammond VE, Gunnersen JM, Goh CP, Low LH, Hyakumura T, Tang MM, Britto JM, Putz U et al (2014) Ndfip1 is required for the development of pyramidal neuron dendrites and spines in the neocortex. Cereb Cortex 24(12):3289–3300. https://doi.org/10.1093/cercor/bht191

    Article  PubMed  Google Scholar 

  23. Goh CP, Low LH, Putz U, Gunnersen J, Hammond V, Howitt J, Tan SS (2013) Ndfip1 expression in developing neurons indicates a role for protein ubiquitination by Nedd4 E3 ligases during cortical development. Neurosci Lett 555:225–230. https://doi.org/10.1016/j.neulet.2013.09.017

    Article  CAS  PubMed  Google Scholar 

  24. Scharfman H, Goodman J, Macleod A, Phani S, Antonelli C, Croll S (2005) Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp Neurol 192(2):348–356. https://doi.org/10.1016/j.expneurol.2004.11.016

    Article  CAS  PubMed  Google Scholar 

  25. Howitt J, Lackovic J, Low LH, Naguib A, Macintyre A, Goh CP, Callaway JK, Hammond V et al (2012) Ndfip1 regulates nuclear Pten import in vivo to promote neuronal survival following cerebral ischemia. J Cell Biol 196(1):29–36. https://doi.org/10.1083/jcb.201105009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The TrkB construct was kindly provided by Dr. Junhua Xiao from the University of Melbourne.

Funding

This work was supported by the Australia National Health and Medical Research Council through Project Grants (grant numbers 1066925 and 1066895), and the Victorian Government through the Operational Infrastructure Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Howitt.

Ethics declarations

All procedures were approved by the Florey Neuroscience Institutes Animal Ethics Committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murray, S.S., Wong, A.W., Yang, J. et al. Ubiquitin Regulation of Trk Receptor Trafficking and Degradation. Mol Neurobiol 56, 1628–1636 (2019). https://doi.org/10.1007/s12035-018-1179-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1179-5

Keywords

Navigation