Skip to main content
Log in

Transcriptional Profiling of Individual Airway Projecting Vagal Sensory Neurons

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Bronchopulmonary sensory neurons are derived from the vagal sensory ganglia and are essential for monitoring the physical and chemical environment of the airways and lungs. Subtypes are heterogenous in their responsiveness to stimuli, phenotype, and developmental origin, but they collectively serve to regulate normal respiratory and pulmonary processes and elicit a diverse range of defensive physiological responses that protect against noxious stimuli. In this study, we aimed to investigate the transcriptional features of vagal bronchopulmonary sensory neurons using single-cell RNA sequencing (scRNA-seq) to provide a deeper insight into their molecular profiles. Retrogradely labeled vagal sensory neurons projecting to the airways and lungs were hierarchically clustered into five types reflecting their developmental lineage (neural crest versus placodal) and putative function (nociceptors versus mechanoreceptors). The purinergic receptor subunit P2rx2 is known to display restricted expression in placodal-derived nodose neurons, and we demonstrate that the gene profiles defining cells high and low in expression of P2rx2 include G protein coupled receptors and ion channels, indicative of preferential expression in nodose or jugular neurons. Our results provide valuable insight into the transcriptional characteristics of bronchopulmonary sensory neurons and provide rational targets for future physiological investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mazzone SB, Undem BJ (2016) Vagal afferent innervation of the airways in health and disease. Physiol Rev 96:975–1024

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kummer W, Fischer A, Kurkowski R, Heym C (1992) The sensory and sympathetic innervation of guinea-pig lung and trachea as studied by retrograde neuronal tracing and double-labelling immunohistochemistry. Neuroscience. 49(3):715–737

    CAS  PubMed  Google Scholar 

  3. Brouns I, Pintelon I, Timmermans JP, Adriaensen D (2012) Novel insights in the neurochemistry and function of pulmonary sensory receptors. Adv Anat Embryol Cell Biol 211:1–115 vii

    PubMed  Google Scholar 

  4. Mazzone SB (2005) An overview of the sensory receptors regulating cough. Cough. 1:2

    PubMed  PubMed Central  Google Scholar 

  5. Canning BJ, Spina D (2009) Sensory nerves and airway irritability. Handb Exp Pharmacol 194:139–183

    CAS  PubMed Central  Google Scholar 

  6. Widdicombe J, Lee LY (2001) Airway reflexes, autonomic function, and cardiovascular responses. Environ Health Perspect 109(Suppl 4):579–584

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mazzone SB, Reynolds SM, Mori N, Kollarik M, Farmer DG, Myers AC, Canning BJ (2009) Selective expression of a sodium pump isozyme by cough receptors and evidence for its essential role in regulating cough. J Neurosci 29(43):13662–13671

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Canning BJ, Mazzone SB, Meeker SN, Mori N, Reynolds SM, Undem BJ (2004) Identification of the tracheal and laryngeal afferent neurones mediating cough in anaesthetized guinea-pigs. J Physiol 557:543–558

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kollarik M, Undem BJ (2002) Mechanisms of acid-induced activation of airway afferent nerve fibres in guinea-pig. J Physiol 543:591–600

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Baluk P, Nadel JA, McDonald DMJ (1992) Substance P-immunoreactive sensory axons in the rat respiratory tract: a quantitative study of their distribution and role in neurogenic inflammation. Comp Neurol 319(4):586–598

    CAS  Google Scholar 

  11. Coleridge JC, Coleridge HM (1984) Afferent vagal C fibre innervation of the lungs and airways and its functional significance. Rev Physiol Biochem Pharmacol 99:1–110

    CAS  PubMed  Google Scholar 

  12. Hunter DD, Undem BJ (1999) Identification and substance P content of vagal afferent neurons innervating the epithelium of the guinea pig trachea. Am J Respir Crit Care Med 159:1943–1948

    CAS  PubMed  Google Scholar 

  13. Lundberg JM, Hokfelt T, Martling CR, Saria A, Cuello C (1984) Substance P-immunoreactive sensory nerves in the lower respiratory tract of various mammals including man. Cell Tissue Res 235:251–261

    CAS  PubMed  Google Scholar 

  14. Baker CV, Schlosser G (2005) The evolutionary origin of neural crest and placodes. J Exp Zool B Mol Dev Evol 304:269–273

    PubMed  Google Scholar 

  15. Baker CV (2005) The embryology of vagal sensory neurons. In: Undem BJ, Weinreich D (eds) Advances in vagal afferent neurobiology. CRC, Boca Raton

    Google Scholar 

  16. Baker CV, Bronner-Fraser M (2001) Vertebrate cranial placodes. I. Embryonic induction. Dev Biol 232:1–61

    CAS  PubMed  Google Scholar 

  17. D'Amico-Martel A, Noden D (1983) Contributions of placodal and neural crest cells to avian cranial peripheral ganglia. Am J Anat 166:445–468

    CAS  PubMed  Google Scholar 

  18. Narayanan CH, Narayanan Y (1980) Neural crest and placodal contributions in the development of the glossopharyngeal-vagal complex in the chick. Anat Rec 196:71–82

    CAS  PubMed  Google Scholar 

  19. McGovern AE, Davis-Poynter N, Yang SK, Simmons DG, Farrell MJ, Mazzone SB (2015) Evidence for multiple sensory circuits in the brain arising from the respiratory system: an anterograde viral tract tracing study in rodents. Brain Struct Funct 220(6):3683–3699

    PubMed  Google Scholar 

  20. Undem BJ, Chuaychoo B, Lee MG, Weinreich D, Myers AC, Kollarik M (2004) Subtypes of vagal afferent C-fibres in guinea-pig lungs. J Physiol 556(3):905–917

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kwong K, Kollarik M, Nassenstein C, Ru F, Undem BJ (2008) P2X2 receptors differentiate placodal vs. neural crest C-fiber phenotypes innervating guinea pig lungs and esophagus. Am J Physiol Lung Cell Mol Physiol 295(5):L858–L865

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Nassenstein C, Taylor-Clark TE, Myers AC, Ru F, Nandigama R, Bettner W, Undem BJ (2010) Phenotypic distinctions between neural crest and placodal derived vagal C-fibres in mouse lungs. J Physiol 588(Pt 23):4769–4783

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lieu T, Kollarik M, Myers AC, Undem BJ (2011) Neurotrophin and GDNF family ligand receptor expression in vagal sensory nerve subtypes innervating the adult guinea pig respiratory tract. Am J Phys Lung Cell Mol Phys 300(5):L790–L798

    CAS  Google Scholar 

  24. D’Autréaux F, Coppola E, Hirsch MR, Birchmeier C, Brunet JF (2011) Homeoprotein Phox2b commands a somatic-to-visceral switch in cranial sensory pathways. Proc Natl Acad Sci U S A 108(50):20018–20023

    PubMed  PubMed Central  Google Scholar 

  25. McGovern AE, Driessen AK, Simmons DG, Powell J, Davis-Poynter N, Farrell MJ, Mazzone SB (2015) Distinct brainstem and forebrain circuits receiving tracheal sensory neuron inputs revealed using a novel conditional anterograde transsynaptic viral tracing system. J Neurosci 35:7041–7055

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kollarik M, Ru F, Undem BJ (2019) Phenotypic distinctions between the nodose and jugular TRPV1-positive vagal sensory neurons in the cynomolgus monkey. Neuroreport. 30(8):533–537

    PubMed  PubMed Central  Google Scholar 

  27. Trancikova A, Kovacova E, Ru F, Varga K, Brozmanova M, Tatar M, Kollarik M (2018) Distinct expression of phenotypic markers in placodes- and neural crest-derived afferent neurons innervating the rat stomach. Dig Dis Sci 63(2):383–394

    CAS  PubMed  Google Scholar 

  28. Surdenikova L, Ru F, Nassenstein C, Tatar M, Kollarik M (2012) The neural crest- and placodes-derived afferent innervation of the mouse esophagus. Neurogastroenterol Motil 24(10):e517–e525

    CAS  PubMed  Google Scholar 

  29. Hu G, Huang K, Hu Y, Du G, Xue Z, Zhu X, Fan G (2016) Single-cell RNA-seq reveals distinct injury responses in different types of DRG sensory neurons. Sci Rep 6:31851

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Li C, Wang S, Chen Y, Zhang X (2018) Somatosensory neuron typing with high-coverage single-cell RNA sequencing and functional analysis. Neurosci Bull 34(1):200–207

    CAS  PubMed  Google Scholar 

  31. Li CL, Li KC, Wu D, Chen Y, Luo H, Zhao JR, Wang SS, Sun MM et al (2016) Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity. Cell Res 26(1):83–102

    CAS  PubMed  Google Scholar 

  32. Usoskin D, Furlan A, Islam S, Abdo H, Lönnerberg P, Lou D, Hjerling-Leffler J, Haeggström J et al (2015) Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci 18(1):145–153

    CAS  PubMed  Google Scholar 

  33. Hockley JRF, Taylor TS, Callejo G, Wilbrey AL, Gutteridge A, Bach K, Winchester WJ, Bulmer DC et al (2019) Single-cell RNAseq reveals seven classes of colonic sensory neuron. Gut. 68:633–644

    CAS  PubMed  Google Scholar 

  34. Kupari J, Häring M, Agirre E, Castelo-Branco G, Ernfors P (2019) An atlas of vagal sensory neurons and their molecular specialization. Cell Rep 27(8):2508–2523.e4

    CAS  PubMed  PubMed Central  Google Scholar 

  35. McGovern AE, Mazzone SB (2010) Characterization of the vagal motor neurons projecting to the guinea pig airways and esophagus. Front Neurol 1:153

    PubMed  PubMed Central  Google Scholar 

  36. Eberwine J, Yeh H, Miyashiro K, Cao Y, Nair S, Finnell R, Zettel M, Coleman P (1992) Analysis of gene expression in single live neurons. Proc Natl Acad Sci U S A 89:3010–3014

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hashimshony T, Wagner F, Sher N, Yanai I (2012) CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep 2:666–673

    CAS  PubMed  Google Scholar 

  38. Liao Y, Smyth GK, Shi W (2013) The subread aligner: Fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res 41(10):e108

    PubMed  PubMed Central  Google Scholar 

  39. Liao Y, Smyth GK, Shi W (2014) FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 30(7):923–930

    CAS  PubMed  Google Scholar 

  40. Lun ATL, Bach K, Marioni JC (2016) Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol 17(1):75 http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0947-7

    PubMed  Google Scholar 

  41. Kiselev VY, Kirschner K, Schaub MT, Andrews T, Yiu A, Chandra T, Natarajan KN, Reik W et al (2017) SC3: Consensus clustering of single-cell RNA-seq data. Nat Methods 14(5):483–486 http://www.nature.com/doifinder/10.1038/nmeth.4236

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Robinson MD, McCarthy DJ, Smyth GK (2009) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 26(1):139–140 http://bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/btp616

    PubMed  PubMed Central  Google Scholar 

  43. Wickham H (2009) ggplot2: elegant graphics for data analysis. Applied Spatial Data Analysis with R 2009. 21–54 p. http://link.springer.com/10.1007/978-0-387-98141-3.

  44. Core Team, R. C. T. R. R: a language and environment for statistical computing. R Foundation for statistical computing, Vienna (2013).

  45. Wang J, Kollarik M, Ru F, Sun H, McNeil B, Dong X, Stephens G, Korolevich S et al (2017) Distinct and common expression of receptors for inflammatory mediators in vagal nodose versus jugular capsaicin-sensitive/TRPV1-positive neurons detected by low input RNA sequencing. PLoS. 12(10):e0185985

    Google Scholar 

  46. Weigand LA, Ford AP, Undem BJ (2012) A role for ATP in bronchoconstriction-induced activation of guinea pig vagal intrapulmonary C-fibres. J Physiol 590(16):4109–4120

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Riccio MM, Kummer W, Biglari B, Myers AC, Undem BJ (1996) Interganglionic segregation of distinct vagal afferent fibre phenotypes in guinea-pig airways. J Physiol 496(Pt 2):521–530

    CAS  Google Scholar 

  48. Driessen AK, Farrell MJ, Mazzone SB, McGovern AE (2015) The role of the Paratrigeminal nucleus in vagal afferent evoked respiratory reflexes: a neuroanatomical and functional study in guinea pigs. Front Physiol 6:378

    PubMed  PubMed Central  Google Scholar 

  49. Driessen AK, Farrell MJ, Dutschmann M, Stanic D, McGovern AE, Mazzone SB (2018) Reflex regulation of breathing by the paratrigeminal nucleus via multiple bulbar circuits. Brain Struct Funct 223(9):4005–4022

    CAS  PubMed  Google Scholar 

  50. Patthey C, Clifford H, Haerty W, Ponting CP, Shimeld SM, Begbie J (2016) Identification of molecular signatures specific for distinct cranial sensory ganglia in the developing chick. Neural Dev 11:3

    PubMed  PubMed Central  Google Scholar 

  51. Desiderio S, Vermeiren S, Van Campenhout C, Kricha S, Malki E, Richts S, Fletcher EV, Vanwelden T et al (2019) Prdm12 directs nociceptive sensory neuron development by regulating the expression of the NGF receptor TrkA. Cell Rep 26(13):3522–3536.e5

    CAS  PubMed  Google Scholar 

  52. Bartesaghi L, Wang Y, Fontanet P, Wanderoy S, Berger F, Wu H, Akkuratova N, Bouçanova F et al (2019) PRDM12 is required for initiation of the nociceptive neuron lineage during neurogenesis. Cell Rep 26(13):3484–3492.e4

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Goswami SC, Mishra SK, Maric D, Kaszas K, Gonnella GL, Clokie SJ, Kominsky HD, Gross JR et al (2014) Molecular signatures of mouse TRPV1-lineage neurons revealed by RNA-Seq transcriptome analysis. J Pain 15(12):1338–1359

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Ms. Jennifer Keller for expert technical assistance in aspects of this study.

Funding

Funded by grants to S.B.M [1078943] and A.E.M [1121376] from the National Health and Medical Research Council of Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice E. McGovern.

Ethics declarations

Experiments using pathogen-free C57BL/6 mice (8–10 weeks, male, n = 30) were approved by the University of Melbourne, Parkville, Australia, accredited institutional animal ethics committee in accordance with the Australian code for the care and use of animals for scientific purposes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Online resource 1.

Mapping and gene count metrics for the single cell RNAseq samples, related to Figure 1. (XLSX 14 kb)

Online resource 2.

Differentially expressed genes between the five clusters, related to Figure 1. (XLSX 16 kb)

Online resource 3.

Violin plots showing mean expression values of markers of bronchopulmonary sensory neuron subtypes previously reported in literature within the 5 clusters defined in Figure 1. In each graph the highlighted cluster denotes significantly greater expression of that cluster to another (e.g. Cx > Cy), suggestive of enrichment. Significance determined by multi comparison Tukey’s one-way ANOVA, confidence interval set at 90%. A) Ion channels: Htr3a, C1 > C2-5; P2rx2, C1 > C3-5; P2rx3, C1 > C2; P2ry1, C5 > C1-4; Piezo1, C5 > C2, C4; Piezo2, C4 > C1-3; Scn1a, C4 > C1-3, C5; Scn10a, C4, C5 > C2, C3; Trpa1, C1 > C2-5; Trpv1, C1 > C2-3, C5. B) Transcription factors: Phox2b, C1 > C4; Prdm12, C4 > C1-3, C5. C) G-protein coupled receptors: Npyr2, C4 > C2; Par1, C1 > C2, C3, C5; Ptgdr, C5 > C2; S1pr3, C1 > C2, C3 and C5 > C2, C3. D) Neurotrophic factors: Ntrk1, C4 > C1-3, C5. E) Neurofilaments: Nefh, C4 > C1-3. F) Other: Slc17a7, C4 > C1-3, C5. (PDF 3508 kb)

Online resource 4.

Differentially expressed genes between the P2rx2Low and P2rx2High clusters, related to Figure 2. (XLSX 18 kb)

Online resource 5.

Genes correlated to P2rx2 expression, related to Figure 3. (XLSX 68 kb)

Online resource 6.

Genes for Ion channel and G-protein coupled receptors correlated to P2rx2 expression, related to Figure 3. (XLSX 12 kb)

Online resource 7.

Expression of all detected genes in every single cell RNAseq sample (values in CPM). (XLSX 6124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazzone, S.B., Tian, L., Moe, A.A.K. et al. Transcriptional Profiling of Individual Airway Projecting Vagal Sensory Neurons. Mol Neurobiol 57, 949–963 (2020). https://doi.org/10.1007/s12035-019-01782-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-01782-8

Keywords

Navigation