Skip to main content

Advertisement

Log in

Cdk5 Promotes Mitochondrial Fission via Drp1 Phosphorylation at S616 in Chronic Ethanol Exposure–Induced Cognitive Impairment

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Excessive alcohol consumption can lead to alterations in brain structure and function, even causing irreversible learning and memory disorders. The hippocampus is one of the most sensitive areas to alcohol neurotoxicity in the brain. Accumulating evidence indicates that mitochondrial dysfunction contributes to alcohol neurotoxicity. However, little is known about the underlying molecular mechanisms. In this study, we found that chronic exposure to ethanol caused abnormal mitochondrial fission/fusion and morphology by activating the mitochondrial fission protein dynamin-related protein 1 (Drp1) and upregulating Drp1 receptors, such as fission protein 1 (Fis1), mitochondrial dynamics protein of 49 kDa (Mid49), and mitochondrial fission factor (Mff), combined with decreasing optic atrophy 1 (Opa1) and mitochondrial fusion protein mitofusin 1 (Mfn1) levels. In addition, mitochondrial division inhibitor 1 (mdivi-1) abrogated ethanol-induced mitochondrial dysfunction and improved hippocampal synapses and cognitive function in ethanol-exposed mice. Chronic ethanol exposure also resulted in cyclin-dependent kinase 5 (Cdk5) overactivation, as shown by the increase in the levels of Cdk5 and its activator P25 in the hippocampus. Furthermore, a Cdk5/P25 inhibitor (roscovitine) or Cdk5 knockdown using small interfering RNA (LVi-Cdk5) exerted neuroprotection by inhibiting abnormal mitochondrial fission through Drp1 phosphorylation at Ser616 and mitochondrial translocation after chronic ethanol exposure. Taken together, the present study demonstrated that inhibition of aberrant Cdk5 activation attenuates hippocampal neuron injury and cognitive deficits induced by chronic exposure to ethanol through Drp1-mediated mitochondrial fission and mitochondrial dysfunction. Interfering with this pathway might serve as a potential therapeutic approach to prevent ethanol-induced neurotoxicity in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Authors will provide the data under a reasonable request.

References

  1. World Health Organization (2018) Global status report on alcohol and health 2018: executive summary. World Heal Organ 1–16

  2. Carvalho AF, Heilig M, Perez A et al (2019) Alcohol use disorders. Lancet 394:781–792

    Article  PubMed  Google Scholar 

  3. Kivimäki M, Singh-Manoux A, Batty GD et al (2020) Association of alcohol-induced loss of consciousness and overall alcohol consumption with risk for dementia. JAMA Netw Open 3:1–14. https://doi.org/10.1001/jamanetworkopen.2020.16084

    Article  Google Scholar 

  4. Livingston G, Huntley J, Sommerlad A et al (2020) Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet (London, England) 396:413–446. https://doi.org/10.1016/S0140-6736(20)30367-6

    Article  Google Scholar 

  5. Perry CJ (2016) Cognitive decline and recovery in alcohol abuse. J Mol Neurosci 60:383–389. https://doi.org/10.1007/s12031-016-0798-4

    Article  CAS  PubMed  Google Scholar 

  6. Contreras A, Morales L, Del Olmo N, Pérez-García C (2020) Effects of intermittent versus chronic-moderate ethanol administration during adolescence in the adult hippocampal phosphoproteome. Chem Res Toxicol 33:448–460. https://doi.org/10.1021/acs.chemrestox.9b00359

    Article  CAS  PubMed  Google Scholar 

  7. Topiwala A, Allan CL, Valkanova V et al (2017) Moderate alcohol consumption as risk factor for adverse brain outcomes and cognitive decline: longitudinal cohort study. BMJ 357:j2353. https://doi.org/10.1136/bmj.j2353

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mira RG, Tapia-Rojas C, Pérez MJ et al (2019) Alcohol impairs hippocampal function: from NMDA receptor synaptic transmission to mitochondrial function. Drug Alcohol Depend 205:107628

    Article  CAS  PubMed  Google Scholar 

  9. Karadayian AG, Malanga G, Czerniczyniec A et al (2017) Free radical production and antioxidant status in brain cortex non-synaptic mitochondria and synaptosomes at alcohol hangover onset. Free Radic Biol Med 108:692–703. https://doi.org/10.1016/j.freeradbiomed.2017.04.344

    Article  CAS  PubMed  Google Scholar 

  10. Girault V, Gilard V, Marguet F et al (2017) Prenatal alcohol exposure impairs autophagy in neonatal brain cortical microvessels. Cell Death Dis 8:1–13. https://doi.org/10.1038/cddis.2017.29

    Article  CAS  Google Scholar 

  11. Oliver D, Reddy PH (2019) Dynamics of dynamin-related protein 1 in Alzheimer’s disease and other neurodegenerative diseases. Cells 8:1–20. https://doi.org/10.3390/cells8090961

    Article  CAS  Google Scholar 

  12. Qi Z, Huang Z, Xie F, Chen L (2019) Dynamin-related protein 1: a critical protein in the pathogenesis of neural system dysfunctions and neurodegenerative diseases. J Cell Physiol 234:10032–10046. https://doi.org/10.1002/jcp.27866

    Article  CAS  PubMed  Google Scholar 

  13. Rosdah AA, Smiles WJ, Oakhill JS et al (2020) New perspectives on the role of Drp1 isoforms in regulating mitochondrial pathophysiology. Pharmacol Ther 213:107594

    Article  CAS  PubMed  Google Scholar 

  14. Hall AR, Burke N, Dongworth RK, Hausenloy DJ (2014) Mitochondrial fusion and fission proteins: novel therapeutic targets for combating cardiovascular disease. Br J Pharmacol 171:1890–1906. https://doi.org/10.1111/bph.12516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tapia-Rojas C, Carvajal FJ, Mira RG et al (2018) Adolescent binge alcohol exposure affects the brain function through mitochondrial impairment. Mol Neurobiol 55:4473–4491. https://doi.org/10.1007/s12035-017-0613-4

    Article  CAS  PubMed  Google Scholar 

  16. Lim JR, Lee HJ, Jung YH et al (2020) Ethanol-activated CaMKII signaling induces neuronal apoptosis through Drp1-mediated excessive mitochondrial fission and JNK1-dependent NLRP3 inflammasome activation. Cell Commun Signal 18:1–19. https://doi.org/10.1186/s12964-020-00572-3

    Article  CAS  Google Scholar 

  17. Tilokani L, Nagashima S, Paupe V, Prudent J (2018) Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem 62:341–360

    Article  PubMed  PubMed Central  Google Scholar 

  18. Strack S, Wilson TJ, Cribbs JT (2013) Cyclin-dependent kinases regulate splice-specific targeting of dynamin-related protein 1 to microtubules. J Cell Biol 201:1037–1051. https://doi.org/10.1083/jcb.201210045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu S, Wang P, Zhang H et al (2016) CaMKII induces permeability transition through Drp1 phosphorylation during chronic β-AR stimulation. Nat Commun 7:1–13. https://doi.org/10.1038/ncomms13189

    Article  CAS  Google Scholar 

  20. Han H, Tan J, Wang R et al (2020) PINK1 phosphorylates Drp1S616 to regulate mitophagy-independent mitochondrial dynamics. EMBO Rep 21:e48686. https://doi.org/10.15252/embr.201948686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guo X, Disatnik MH, Monbureau M et al (2013) Inhibition of mitochondrial fragmentation diminishes Huntington’s disease-associated neurodegeneration. J Clin Invest 123:5371–5388. https://doi.org/10.1172/JCI70911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Meuer K, Suppanz IE, Lingor P et al (2007) Cyclin-dependent kinase 5 is an upstream regulator of mitochondrial fission during neuronal apoptosis. Cell Death Differ 14:651–661. https://doi.org/10.1038/sj.cdd.4402087

    Article  CAS  PubMed  Google Scholar 

  23. Cho B, Kim H, Cho HM et al (2014) CDK5-dependent inhibitory phosphorylation of Drp1 during neuronal maturation. Exp Mol Med 46:e105–e110. https://doi.org/10.1038/emm.2014.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Almeida A, Bolaños JP, Moreno S (2005) Cdh1/Hct1-APC is essential for the survival of postmitotic neurons. J Neurosci 25:8115–8121. https://doi.org/10.1523/JNEUROSCI.1143-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shah K, Lahiri DK (2014) Cdk5 activity in the brain - multiple paths of regulation. J Cell Sci 127:2391–2400. https://doi.org/10.1242/jcs.147553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rong R, Xia X, Peng H, et al. (2020) Cdk5-mediated Drp1 phosphorylation drives mitochondrial defects and neuronal apoptosis in radiation-induced optic neuropathy. Cell Death Dis 11. https://doi.org/10.1038/s41419-020-02922-y

  27. Chen C, Peng X, Tang J et al (2021) CDK5 inhibition protects against OGDR induced mitochondrial fragmentation and apoptosis through regulation of Drp1S616 phosphorylation. Life Sci 269:119062. https://doi.org/10.1016/j.lfs.2021.119062

    Article  CAS  PubMed  Google Scholar 

  28. Carson EJ, Pruett SB (1996) Development and characterization of a binge drinking model in mice for evaluation of the immunological effects of ethanol. Alcohol Clin Exp Res 20:132–138. https://doi.org/10.1111/j.1530-0277.1996.tb01055.x

    Article  CAS  PubMed  Google Scholar 

  29. Wu QR, Zheng DL, Liu PM, et al. (2021) High glucose induces Drp1-mediated mitochondrial fission via the Orai1 calcium channel to participate in diabetic cardiomyocyte hypertrophy. Cell Death Dis 12. https://doi.org/10.1038/s41419-021-03502-4

  30. Zhan L, Liu D, Wen H et al (2019) Hypoxic postconditioning activates the Wnt/β-catenin pathway and protects against transient global cerebral ischemia through Dkk1 inhibition and GSK-3β inactivation. FASEB J 33:9291–9307. https://doi.org/10.1096/fj.201802633R

    Article  CAS  PubMed  Google Scholar 

  31. Leger M, Quiedeville A, Bouet V et al (2013) Object recognition test in mice. Nat Protoc 8:2531–2537. https://doi.org/10.1038/nprot.2013.155

    Article  CAS  PubMed  Google Scholar 

  32. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–858. https://doi.org/10.1038/nprot.2006.116

    Article  PubMed  PubMed Central  Google Scholar 

  33. Schindelin J, Arganda-Carrera I, Frise E, et al. (2009) Fiji - an open platform for biological image analysis. Nat Methods 9. https://doi.org/10.1038/nmeth.2019.Fiji

  34. Gong Z, Pan J, Shen Q et al (2018) Mitochondrial dysfunction induces NLRP3 inflammasome activation during cerebral ischemia/reperfusion injury. J Neuroinflammation 15:1–17. https://doi.org/10.1186/s12974-018-1282-6

    Article  CAS  Google Scholar 

  35. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  36. Bertholet AM, Delerue T, Millet AM et al (2016) Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity. Neurobiol Dis 90:3–19. https://doi.org/10.1016/j.nbd.2015.10.011

    Article  CAS  PubMed  Google Scholar 

  37. Archer SL (2013) Mitochondrial dynamics—mitochondrial fission and fusion in human diseases. N Engl J Med 369:2236–2251. https://doi.org/10.1056/nejmra1215233

    Article  CAS  PubMed  Google Scholar 

  38. van der Bliek AM, Shen Q, Kawajiri S (2013) Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol 5:1–16. https://doi.org/10.1101/cshperspect.a011072

    Article  CAS  Google Scholar 

  39. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795. https://doi.org/10.1038/nature05292

    Article  CAS  PubMed  Google Scholar 

  40. Hoek JB, Cahill A, Pastorino JG (2002) Alcohol and mitochondria: a dysfunctional relationship. Gastroenterology 122:2049–2063. https://doi.org/10.1053/gast.2002.33613

    Article  CAS  PubMed  Google Scholar 

  41. Yan T, Zhao Y (2020) Acetaldehyde induces phosphorylation of dynamin-related protein 1 and mitochondrial dysfunction via elevating intracellular ROS and Ca2+ levels. Redox Biol 28:101381. https://doi.org/10.1016/j.redox.2019.101381

    Article  CAS  PubMed  Google Scholar 

  42. Baek SH, Park SJ, Jeong JI et al (2017) Inhibition of Drp1 ameliorates synaptic depression, Aβ deposition, and cognitive impairment in an Alzheimer’s disease model. J Neurosci 37:5099–5110. https://doi.org/10.1523/JNEUROSCI.2385-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bido S, Soria FN, Fan RZ et al (2017) Mitochondrial division inhibitor-1 is neuroprotective in the A53T-α-synuclein rat model of Parkinson’s disease. Sci Rep 7:7495. https://doi.org/10.1038/s41598-017-07181-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Joshi AU, Minhas PS, Liddelow SA et al (2019) Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat Neurosci 22:1635–1648. https://doi.org/10.1038/s41593-019-0486-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Macia E, Ehrlich M, Massol R et al (2006) Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell 10:839–850. https://doi.org/10.1016/j.devcel.2006.04.002

    Article  CAS  PubMed  Google Scholar 

  46. Kuruva CS, Manczak M, Yin X et al (2017) Aqua-soluble DDQ reduces the levels of Drp1 and Aβ and inhibits abnormal interactions between Aβ and Drp1 and protects Alzheimer’s disease neurons from Aβ- and Drp1-induced mitochondrial and synaptic toxicities. Hum Mol Genet 26:3375–3395. https://doi.org/10.1093/hmg/ddx226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nhu NT, Li Q, Liu Y et al (2021) Effects of mdivi-1 on neural mitochondrial dysfunction and mitochondria-mediated apoptosis in ischemia-reperfusion injury after stroke: a systematic review of preclinical studies. Front Mol Neurosci 14:778569. https://doi.org/10.3389/fnmol.2021.778569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang P, Li Y, Yang Z et al (2018) Inhibition of dynamin-related protein 1 has neuroprotective effect comparable with therapeutic hypothermia in a rat model of cardiac arrest. Transl Res 194:68–78. https://doi.org/10.1016/j.trsl.2018.01.002

    Article  CAS  PubMed  Google Scholar 

  49. Xie N, Wang C, Wu C et al (2016) Mdivi-1 protects epileptic hippocampal neurons from apoptosis via inhibiting oxidative stress and endoplasmic reticulum stress in vitro. Neurochem Res 41:1335–1342. https://doi.org/10.1007/s11064-016-1835-y

    Article  CAS  PubMed  Google Scholar 

  50. Wu Q, Gao C, Wang H et al (2018) Mdivi-1 alleviates blood-brain barrier disruption and cell death in experimental traumatic brain injury by mitigating autophagy dysfunction and mitophagy activation. Int J Biochem Cell Biol 94:44–55. https://doi.org/10.1016/j.biocel.2017.11.007

    Article  CAS  PubMed  Google Scholar 

  51. Bordt EA, Clerc P, Roelofs BA et al (2017) The putative Drp1 inhibitor mdivi-1 is a reversible mitochondrial complex I inhibitor that modulates reactive oxygen species. Dev Cell 40:583-594.e6. https://doi.org/10.1016/j.devcel.2017.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cassidy-Stone A, Chipuk JE, Ingerman E et al (2008) Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell 14:193–204. https://doi.org/10.1016/j.devcel.2007.11.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Numadate A, Mita Y, Matsumoto Y et al (2014) Development of 2-thioxoquinazoline-4-one derivatives as dual and selective inhibitors of dynamin-related protein 1 (Drp1) and puromycin-sensitive aminopeptidase (PSA). Chem Pharm Bull (Tokyo) 62:979–988. https://doi.org/10.1248/cpb.c14-00333

    Article  CAS  Google Scholar 

  54. Smith G, Gallo G (2017) To mdivi-1 or not to mdivi-1: is that the question? Dev Neurobiol 77:1260–1268. https://doi.org/10.1002/dneu.22519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Manczak M, Kandimalla R, Yin X, Reddy PH (2019) Mitochondrial division inhibitor 1 reduces dynamin-related protein 1 and mitochondrial fission activity. Hum Mol Genet 28:177–199. https://doi.org/10.1093/hmg/ddy335

    Article  CAS  PubMed  Google Scholar 

  56. Duan C, Kuang L, Hong C et al (2021) Mitochondrial Drp1 recognizes and induces excessive mPTP opening after hypoxia through BAX-PiC and LRRK2-HK2. Cell Death Dis 12:1050. https://doi.org/10.1038/s41419-021-04343-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ly CV, Verstreken P (2006) Mitochondria at the synapse. Neuroscientist 12:291–299. https://doi.org/10.1177/1073858406287661

    Article  CAS  PubMed  Google Scholar 

  58. Riley JN, Walker DW (1978) Morphological alterations in hippocampus after long-term alcohol consumption in mice. Science 201:646–648. https://doi.org/10.1126/science.566953

    Article  CAS  PubMed  Google Scholar 

  59. Walker DW, Barnes DE, Zornetzer SF et al (1980) Neuronal loss in hippocampus induced by prolonged ethanol consumption in rats. Science 209:711–713. https://doi.org/10.1126/science.7394532

    Article  CAS  PubMed  Google Scholar 

  60. Paula-Barbosa MM, Brandão F, Madeira MD, Cadete-Leite A (1993) Structural changes in the hippocampal formation after long-term alcohol consumption and withdrawal in the rat. Addiction 88:237–247. https://doi.org/10.1111/j.1360-0443.1993.tb00807.x

    Article  CAS  PubMed  Google Scholar 

  61. Aberg E, Hofstetter CP, Olson L, Brené S (2005) Moderate ethanol consumption increases hippocampal cell proliferation and neurogenesis in the adult mouse. Int J Neuropsychopharmacol 8:557–567. https://doi.org/10.1017/S1461145705005286

    Article  CAS  PubMed  Google Scholar 

  62. Ravalia AS, Lau J, Barron JC et al (2021) Super-resolution imaging reveals extrastriatal synaptic dysfunction in presymptomatic Huntington disease mice. Neurobiol Dis 152:105293. https://doi.org/10.1016/j.nbd.2021.105293

    Article  CAS  PubMed  Google Scholar 

  63. Cheung ZH, Ip NY (2012) Cdk5: a multifaceted kinase in neurodegenerative diseases. Trends Cell Biol 22:169–175. https://doi.org/10.1016/j.tcb.2011.11.003

    Article  CAS  PubMed  Google Scholar 

  64. Joshi V, Subbanna S, Shivakumar M, Basavarajappa BS (2019) CB1R regulates CDK5 signaling and epigenetically controls Rac1 expression contributing to neurobehavioral abnormalities in mice postnatally exposed to ethanol. Neuropsychopharmacology 44:514–525. https://doi.org/10.1038/s41386-018-0181-y

    Article  CAS  PubMed  Google Scholar 

  65. Rajgopal Y, Vemuri MC (2001) Ethanol induced changes in cyclin-dependent kinase-5 activity and its activators, P35, P67 (Munc-18) in rat brain. Neurosci Lett 308:173–176. https://doi.org/10.1016/S0304-3940(01)02011-0

    Article  CAS  PubMed  Google Scholar 

  66. Goulding SP, de Guglielmo G, Carrette LLG et al (2019) Systemic administration of the cyclin-dependent kinase inhibitor (S)-CR8 selectively reduces escalated ethanol intake in dependent rats. Alcohol Clin Exp Res 43:2079–2089. https://doi.org/10.1111/acer.14177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang Y, Li S, Wang W et al (2015) Beneficial effects of polydatin on learning and memory in rats with chronic ethanol exposure. Int J Clin Exp Pathol 8:11116–11123

    PubMed  PubMed Central  Google Scholar 

  68. Samantaray S, Knaryan VH, Patel KS et al (2015) Chronic intermittent ethanol induced axon and myelin degeneration is attenuated by calpain inhibition. Brain Res 1622:7–21. https://doi.org/10.1016/j.brainres.2015.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Carloni S, Mazzoni E, Balduini W (2004) Caspase-3 and calpain activities after acute and repeated ethanol administration during the rat brain growth spurt. J Neurochem 89:197–203. https://doi.org/10.1111/j.1471-4159.2004.02341.x

    Article  CAS  PubMed  Google Scholar 

  70. Liu Y, Zhang Y, Peng J et al (2019) Autophagy alleviates ethanol-induced memory impairment in association with anti-apoptotic and anti-inflammatory pathways. Brain Behav Immun 82:63–75. https://doi.org/10.1016/j.bbi.2019.07.033

    Article  CAS  PubMed  Google Scholar 

  71. Furuya T, Kim M, Lipinski M et al (2010) Negative regulation of Vps34 by Cdk mediated phosphorylation. Mol Cell 38:500–511. https://doi.org/10.1016/j.molcel.2010.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shukla AK, Giniger E (2019) Reduced autophagy efficiency induces innate immune activation leading to neurodegeneration. Autophagy 15:1117–1119. https://doi.org/10.1080/15548627.2019.1596499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. Jun Liu for providing the HT22 cells.

Funding

The study was supported by the Guangzhou Municipal Science and Technology Project: (grant number: 201904010314) and the National Key R&D Program of China (grant numbers: 2018YFC1314400 and 2018YFC1314401).

Author information

Authors and Affiliations

Authors

Contributions

Dandan Liu, Qingyu Shen, and Ying Peng conceptualized and designed the research. Dandan Liu and Jiande Li performed the experiments. Dandan Liu, Xiaoming Rong, and Jie Li collected and analyzed the data. Dandan Liu and Xiaoming Rong prepared the manuscript. Qingyu Shen, Ying Peng, Jie Li, and Jiande Li critically reviewed the manuscript and approved the final manuscript.

Corresponding authors

Correspondence to Ying Peng or Qingyu Shen.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8771 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Li, J., Rong, X. et al. Cdk5 Promotes Mitochondrial Fission via Drp1 Phosphorylation at S616 in Chronic Ethanol Exposure–Induced Cognitive Impairment. Mol Neurobiol 59, 7075–7094 (2022). https://doi.org/10.1007/s12035-022-03008-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03008-w

Keywords

Navigation