Skip to main content

Advertisement

Log in

Non-genomic Effect of Estradiol on the Neurovascular Unit and Possible Involvement in the Cerebral Vascular Accident

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cerebrovascular diseases, such as ischemic cerebral vascular accident (CVA), are responsible for causing high rates of morbidity, mortality, and disability in the population. The neurovascular unit (NVU) during and after ischemic CVA plays crucial roles in cell regulation and preservation, the immune and inflammatory response, and cell and/or tissue survival and repair. Cellular responses to 17β-estradiol (E2) can be triggered by two mechanisms: one called classical or genomic, which is due to the activation of the “classical” nuclear estrogen receptors α (ERα) and β (ERβ), and the non-genomic or rapid mechanism, which is due to the activation of the G protein–coupled estrogen receptor 1 (GPER) that is located in the plasma membrane and some in intracellular membranes, such as in the Golgi apparatus and endoplasmic reticulum. Nuclear receptors can regulate gene expression and cellular functions. On the contrary, activating the GPER by E2 and/or its G-1 agonist triggers several rapid cell signaling pathways. Therefore, E2 or its G-1 agonist, by mediating GPER activation and/or expression, can influence several NVU cell types. Most studies argue that the activation of the GPER may be used as a potential therapeutic target in various pathologies, such as CVA. Thus, with this review, we aimed to summarize the existing literature on the role of GPER mediated by E2 and/or its agonist G-1 in the physiology and pathophysiology of NVU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Khakh BS, Deneen B (2019) The emerging nature of astrocyte diversity. Annu Rev Neurosci 42:187–207. https://doi.org/10.1146/annurev-neuro-070918-050443

    Article  CAS  PubMed  Google Scholar 

  2. Muoio V, Persson PB, Sendeski MM (2014) The neurovascular unit - concept review. Acta Physiol (Oxf) 210(4):790–798. https://doi.org/10.1111/apha.12250

    Article  CAS  PubMed  Google Scholar 

  3. Xiao M, Li Q, Feng H, Zhang L, Chen Y (2017) Neural vascular mechanism for the cerebral blood flow autoregulation after hemorrhagic stroke. Neural Plast 2017:5819514. https://doi.org/10.1155/2017/5819514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brown LS, Foster CG, Courtney JM, King NE, Howells DW, Sutherland BA (2019) Pericytes and neurovascular function in the healthy and diseased brain. Front Cell Neurosci 13:282. https://doi.org/10.3389/fncel.2019.00282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang S, Jin H, Zhu Y, Wan Y, Opoku EN, Zhu L, Hu B (2017) Diverse functions and mechanisms of pericytes in ischemic stroke. Curr Neuropharmacol 15(6):892–905. https://doi.org/10.2174/1570159x15666170112170226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Quelhas P, Baltazar G, Cairrao E (2019) The neurovascular unit: focus on the regulation of arterial smooth muscle cells. Curr Neurovasc Res 16(5):502–515. https://doi.org/10.2174/1567202616666191026122642

    Article  PubMed  Google Scholar 

  7. Dore-Duffy P, Cleary K (2011) Morphology and properties of pericytes. Methods Mol Biol 686:49–68. https://doi.org/10.1007/978-1-60761-938-3_2

    Article  CAS  PubMed  Google Scholar 

  8. del Zoppo GJ (2010) The neurovascular unit in the setting of stroke. J Intern Med 267(2):156–171. https://doi.org/10.1111/j.1365-2796.2009.02199.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pouso MR, Cairrao E (2022) Effect of retinoic acid on the neurovascular unit: a review. Brain Res Bull 184:34–45. https://doi.org/10.1016/j.brainresbull.2022.03.011

    Article  CAS  PubMed  Google Scholar 

  10. Prossnitz ER, Arterburn JB, Smith HO, Oprea TI, Sklar LA, Hathaway HJ (2008) Estrogen signaling through the transmembrane G protein-coupled receptor GPR30. Annu Rev Physiol 70:165–190. https://doi.org/10.1146/annurev.physiol.70.113006.100518

    Article  CAS  PubMed  Google Scholar 

  11. Prossnitz ER, Barton M (2011) The G-protein-coupled estrogen receptor GPER in health and disease. Nat Rev Endocrinol 7(12):715–726. https://doi.org/10.1038/nrendo.2011.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Prossnitz ER, Barton M (2014) Estrogen biology: new insights into GPER function and clinical opportunities. Mol Cell Endocrinol 389(1–2):71–83. https://doi.org/10.1016/j.mce.2014.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kumar A, Bean LA, Rani A, Jackson T, Foster TC (2015) Contribution of estrogen receptor subtypes, ERα, ERβ, and GPER1 in rapid estradiol-mediated enhancement of hippocampal synaptic transmission in mice. Hippocampus 25(12):1556–1566. https://doi.org/10.1002/hipo.22475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Prossnitz ER, Arterburn JB (2015) International Union of Basic and Clinical Pharmacology. XCVII. G protein-coupled estrogen receptor and its pharmacologic modulators. Pharmacol Rev 67(3):505–540. https://doi.org/10.1124/pr.114.009712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Meyer MR, Barton M (2016) Estrogens and coronary artery disease: new clinical perspectives. Adv Pharmacol 77:307–360. https://doi.org/10.1016/bs.apha.2016.05.003

    Article  CAS  PubMed  Google Scholar 

  16. Kumar A, Banerjee A, Singh D, Thakur G, Kasarpalkar N, Gavali S, Gadkar S, Madan T et al (2018) Estradiol: a steroid with multiple facets. Horm Metab Res 50(5):359–374. https://doi.org/10.1055/s-0044-100920

    Article  CAS  PubMed  Google Scholar 

  17. Puglisi R, Mattia G, Carè A, Marano G, Malorni W, Matarrese P (2019) Non-genomic effects of estrogen on cell homeostasis and remodeling with special focus on cardiac ischemia/reperfusion injury. Front Endocrinol (Lausanne) 10:733. https://doi.org/10.3389/fendo.2019.00733

    Article  PubMed  Google Scholar 

  18. Tran QK (2020) Reciprocality between estrogen biology and calcium signaling in the cardiovascular system. Front Endocrinol (Lausanne) 11:568203. https://doi.org/10.3389/fendo.2020.568203

    Article  PubMed  Google Scholar 

  19. Wang XS, Yue J, Hu LN, Tian Z, Zhang K, Yang L, Zhang HN, Guo YY et al (2019) Activation of G protein-coupled receptor 30 protects neurons by regulating autophagy in astrocytes. Glia 68(1):27–43. https://doi.org/10.1002/glia.23697

    Article  PubMed  Google Scholar 

  20. Beyer C, Ivanova T, Karolczak M, Küppers E (2002) Cell type-specificity of nonclassical estrogen signaling in the developing midbrain. J Steroid Biochem Mol Biol 81(4–5):319–325. https://doi.org/10.1016/s0960-0760(02)00119-x

    Article  CAS  PubMed  Google Scholar 

  21. Barton M (2016) Not lost in translation: emerging clinical importance of the G protein-coupled estrogen receptor GPER. Steroids 111:37–45. https://doi.org/10.1016/j.steroids.2016.02.016

    Article  CAS  PubMed  Google Scholar 

  22. Luo J, Liu D (2020) Does GPER really function as a G protein-coupled estrogen receptor in vivo? Front Endocrinol (Lausanne) 11:148. https://doi.org/10.3389/fendo.2020.00148

    Article  PubMed  Google Scholar 

  23. Garcia-Segura LM, Azcoitia I, DonCarlos LL (2001) Neuroprotection by estradiol. Prog Neurobiol 63(1):29–60. https://doi.org/10.1016/s0301-0082(00)00025-3

    Article  CAS  PubMed  Google Scholar 

  24. Tang H, Zhang Q, Yang L, Dong Y, Khan M, Yang F, Brann DW, Wang R (2014) GPR30 mediates estrogen rapid signaling and neuroprotection. Mol Cell Endocrinol 387(1–2):52–58. https://doi.org/10.1016/j.mce.2014.01.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Iorga A, Cunningham CM, Moazeni S, Ruffenach G, Umar S, Eghbali M (2017) The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy. Biol Sex Differ 8(1):33. https://doi.org/10.1186/s13293-017-0152-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Crupi R, Di Paola R, Esposito E, Cuzzocrea S (2018) Middle cerebral artery occlusion by an intraluminal suture method. Methods Mol Biol 1727:393–401. https://doi.org/10.1007/978-1-4939-7571-6_31

    Article  CAS  PubMed  Google Scholar 

  27. Xing Y, Bai Y (2020) A review of exercise-induced neuroplasticity in ischemic stroke: pathology and mechanisms. Mol Neurobiol 57(10):4218–4231. https://doi.org/10.1007/s12035-020-02021-1

    Article  CAS  PubMed  Google Scholar 

  28. Feske SK (2021) Ischemic stroke. Am J Med 134(12):1457–1464. https://doi.org/10.1016/j.amjmed.2021.07.027

    Article  PubMed  Google Scholar 

  29. Paul S, Candelario-Jalil E (2021) Emerging neuroprotective strategies for the treatment of ischemic stroke: an overview of clinical and preclinical studies. Exp Neurol 335:113518. https://doi.org/10.1016/j.expneurol.2020.113518

    Article  CAS  PubMed  Google Scholar 

  30. Shen XY, Gao ZK, Han Y, Yuan M, Guo YS, Bi X (2021) Activation and role of astrocytes in ischemic stroke. Front Cell Neurosci 15:755955. https://doi.org/10.3389/fncel.2021.755955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang L, Xiong X, Zhang L, Shen J (2021) Neurovascular unit: a critical role in ischemic stroke. CNS Neurosci Ther 27(1):7–16. https://doi.org/10.1111/cns.13561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang S, Shang D, Shi H, Teng W, Tian L (2021) Function of astrocytes in neuroprotection and repair after ischemic stroke. Eur Neurol 84(6):426–434. https://doi.org/10.1159/000517378

    Article  CAS  PubMed  Google Scholar 

  33. Sá-Pereira I, Brites D, Brito MA (2012) Neurovascular unit: a focus on pericytes. Mol Neurobiol 45(2):327–347. https://doi.org/10.1007/s12035-012-8244-2

    Article  CAS  PubMed  Google Scholar 

  34. Iadecola C (2017) The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96(1):17–42. https://doi.org/10.1016/j.neuron.2017.07.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Andreone BJ, Lacoste B, Gu C (2015) Neuronal and vascular interactions. Annu Rev Neurosci 38:25–46. https://doi.org/10.1146/annurev-neuro-071714-033835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jia M, Dahlman-Wright K, Gustafsson J (2015) Estrogen receptor alpha and beta in health and disease. Best Pract Res Clin Endocrinol Metab 29(4):557–568. https://doi.org/10.1016/j.beem.2015.04.008

    Article  CAS  PubMed  Google Scholar 

  37. Molina L, Figueroa CD, Bhoola KD, Ehrenfeld P (2017) GPER-1/GPR30 a novel estrogen receptor sited in the cell membrane: therapeutic coupling to breast cancer. Expert Opin Ther Targets 21(8):755–766. https://doi.org/10.1080/14728222.2017.1350264

    Article  CAS  PubMed  Google Scholar 

  38. Yaşar P, Ayaz G, User SD, Güpür G, Muyan M (2017) Molecular mechanism of estrogen-estrogen receptor signaling. Reprod Med Biol 16(1):4–20. https://doi.org/10.1002/rmb2.12006

    Article  CAS  PubMed  Google Scholar 

  39. Meyer MR, Haas E, Prossnitz ER, Barton M (2009) Non-genomic regulation of vascular cell function and growth by estrogen. Mol Cell Endocrinol 308(1–2):9–16. https://doi.org/10.1016/j.mce.2009.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Prossnitz ER, Barton M (2009) Signaling, physiological functions and clinical relevance of the G protein-coupled estrogen receptor GPER. Prostaglandins Other Lipid Mediat 89(3–4):89–97. https://doi.org/10.1016/j.prostaglandins.2009.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Meyer MR, Prossnitz ER, Barton M (2011) The G protein-coupled estrogen receptor GPER/GPR30 as a regulator of cardiovascular function. Vascul Pharmacol 55(1–3):17–25. https://doi.org/10.1016/j.vph.2011.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Meyer MR, Fredette NC, Howard TA, Hu C, Ramesh C, Daniel C, Amann K, Arterburn JB et al (2014) G protein-coupled estrogen receptor protects from atherosclerosis. Sci Rep 4:7564. https://doi.org/10.1038/srep07564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lebesgue D, Traub M, De Butte-Smith M, Chen C, Zukin RS, Kelly MJ, Etgen AM (2010) Acute administration of non-classical estrogen receptor agonists attenuates ischemia-induced hippocampal neuron loss in middle-aged female rats. PLoS ONE 5(1):e8642. https://doi.org/10.1371/journal.pone.0008642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Han G, Li F, Yu X, White RE (2013) GPER: a novel target for non-genomic estrogen action in the cardiovascular system. Pharmacol Res 71:53–60. https://doi.org/10.1016/j.phrs.2013.02.008

    Article  CAS  PubMed  Google Scholar 

  45. Kumar A, Foster TC (2020) G protein-coupled estrogen receptor: rapid effects on hippocampal-dependent spatial memory and synaptic plasticity. Front Endocrinol (Lausanne) 11:385. https://doi.org/10.3389/fendo.2020.00385

    Article  PubMed  Google Scholar 

  46. Bologa CG, Revankar CM, Young SM, Edwards BS, Arterburn JB, Kiselyov AS, Parker MA, Tkachenko SE et al (2006) Virtual and biomolecular screening converge on a selective agonist for GPR30. Nat Chem Biol 2(4):207–212. https://doi.org/10.1038/nchembio775

    Article  CAS  PubMed  Google Scholar 

  47. Hadjimarkou MM, Vasudevan N (2018) GPER1/GPR30 in the brain: crosstalk with classical estrogen receptors and implications for behavior. J Steroid Biochem Mol Biol 176:57–64. https://doi.org/10.1016/j.jsbmb.2017.04.012

    Article  CAS  PubMed  Google Scholar 

  48. Azcoitia I, Arevalo MA, De Nicola AF, Garcia-Segura LM (2011) Neuroprotective actions of estradiol revisited. Trends Endocrinol Metab 22(12):467–473. https://doi.org/10.1016/j.tem.2011.08.002

    Article  CAS  PubMed  Google Scholar 

  49. Honda K, Shimohama S, Sawada H, Kihara T, Nakamizo T, Shibasaki H, Akaike A (2001) Nongenomic antiapoptotic signal transduction by estrogen in cultured cortical neurons. J Neurosci Res 64(5):466–475. https://doi.org/10.1002/jnr.1098

    Article  CAS  PubMed  Google Scholar 

  50. Beyer C, Pawlak J, Brito V, Karolczak M, Ivanova T, Kuppers E (2003) Regulation of gene expression in the developing midbrain by estrogen: implication of classical and nonclassical steroid signaling. Ann N Y Acad Sci 1007:17–28. https://doi.org/10.1196/annals.1286.002

    Article  CAS  PubMed  Google Scholar 

  51. Ivanova T, Mendez P, Garcia-Segura LM, Beyer C (2002) Rapid stimulation of the PI3-kinase/Akt signalling pathway in developing midbrain neurones by oestrogen. J Neuroendocrinol 14(1):73–79. https://doi.org/10.1046/j.0007-1331.2001.00742.x

    Article  CAS  PubMed  Google Scholar 

  52. Dhandapani KM, Wade FM, Mahesh VB, Brann DW (2005) Astrocyte-derived transforming growth factor-{beta} mediates the neuroprotective effects of 17{beta}-estradiol: involvement of nonclassical genomic signaling pathways. Endocrinology 146(6):2749–2759. https://doi.org/10.1210/en.2005-0014

    Article  CAS  PubMed  Google Scholar 

  53. Evans NJ, Bayliss AL, Reale V, Evans PD (2016) Characterisation of signalling by the endogenous GPER1 (GPR30) receptor in an embryonic mouse hippocampal cell line (mHippoE-18). PLoS ONE 11(3):e0152138. https://doi.org/10.1371/journal.pone.0152138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhao TZ, Shi F, Hu J, He SM, Ding Q, Ma LT (2016) GPER1 mediates estrogen-induced neuroprotection against oxygen-glucose deprivation in the primary hippocampal neurons. Neuroscience 328:117–126. https://doi.org/10.1016/j.neuroscience.2016.04.026

    Article  CAS  PubMed  Google Scholar 

  55. Kosaka Y, Quillinan N, Bond C, Traystman R, Hurn P, Herson P (2012) GPER1/GPR30 activation improves neuronal survival following global cerebral ischemia induced by cardiac arrest in mice. Transl Stroke Res 3(4):500–507. https://doi.org/10.1007/s12975-012-0211-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kelly MJ, Lagrange AH, Wagner EJ, Rønnekleiv OK (1999) Rapid effects of estrogen to modulate G protein-coupled receptors via activation of protein kinase A and protein kinase C pathways. Steroids 64(1–2):64–75. https://doi.org/10.1016/s0039-128x(98)00095-6

    Article  CAS  PubMed  Google Scholar 

  57. Beyer C, Raab H (1998) Nongenomic effects of oestrogen: embryonic mouse midbrain neurones respond with a rapid release of calcium from intracellular stores. Eur J Neurosci 10(1):255–262. https://doi.org/10.1046/j.1460-9568.1998.00045.x

    Article  CAS  PubMed  Google Scholar 

  58. Funakoshi T, Yanai A, Shinoda K, Kawano MM, Mizukami Y (2006) G protein-coupled receptor 30 is an estrogen receptor in the plasma membrane. Biochem Biophys Res Commun 346(3):904–910. https://doi.org/10.1016/j.bbrc.2006.05.191

    Article  CAS  PubMed  Google Scholar 

  59. Brailoiu E, Dun SL, Brailoiu GC, Mizuo K, Sklar LA, Oprea TI, Prossnitz ER, Dun NJ (2007) Distribution and characterization of estrogen receptor G protein-coupled receptor 30 in the rat central nervous system. J Endocrinol 193(2):311–321. https://doi.org/10.1677/joe-07-0017

    Article  CAS  PubMed  Google Scholar 

  60. Liu SB, Zhang N, Guo YY, Zhao R, Shi TY, Feng SF, Wang SQ, Yang Q et al (2012) G-protein-coupled receptor 30 mediates rapid neuroprotective effects of estrogen via depression of NR2B-containing NMDA receptors. J Neurosci 32(14):4887–4900. https://doi.org/10.1523/jneurosci.5828-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lee DY, Chai YG, Lee EB, Kim KW, Nah SY, Oh TH, Rhim H (2002) 17Beta-estradiol inhibits high-voltage-activated calcium channel currents in rat sensory neurons via a non-genomic mechanism. Life Sci 70(17):2047–2059. https://doi.org/10.1016/s0024-3205(01)01534-x

    Article  CAS  PubMed  Google Scholar 

  62. Khakh BS, Sofroniew MV (2015) Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 18(7):942–952. https://doi.org/10.1038/nn.4043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Guillamón-Vivancos T, Gómez-Pinedo U, Matías-Guiu J (2015) Astrocytes in neurodegenerative diseases (I): function and molecular description. Neurologia 30(2):119–129. https://doi.org/10.1016/j.nrl.2012.12.007

    Article  PubMed  Google Scholar 

  64. Zhou B, Zuo YX, Jiang RT (2019) Astrocyte morphology: diversity, plasticity, and role in neurological diseases. CNS Neurosci Ther 25(6):665–673. https://doi.org/10.1111/cns.13123

    Article  PubMed  PubMed Central  Google Scholar 

  65. Daneman R, Prat A (2015) The blood-brain barrier. Cold Spring Harb Perspect Biol 7(1):a020412. https://doi.org/10.1101/cshperspect.a020412

    Article  PubMed  PubMed Central  Google Scholar 

  66. Liu Z, Chopp M (2016) Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol 144:103–120. https://doi.org/10.1016/j.pneurobio.2015.09.008

    Article  CAS  PubMed  Google Scholar 

  67. Guttenplan KA, Liddelow SA (2019) Astrocytes and microglia: Models and tools. J Exp Med 216(1):71–83. https://doi.org/10.1084/jem.20180200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sofroniew MV (2020) Astrocyte reactivity: subtypes, states, and functions in CNS innate immunity. Trends Immunol 41(9):758–770. https://doi.org/10.1016/j.it.2020.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Galland F, Seady M, Taday J, Smaili SS, Gonçalves CA, Leite MC (2019) Astrocyte culture models: molecular and function characterization of primary culture, immortalized astrocytes and C6 glioma cells. Neurochem Int 131:104538. https://doi.org/10.1016/j.neuint.2019.104538

    Article  CAS  PubMed  Google Scholar 

  70. Lu Y, Sareddy GR, Wang J, Zhang Q, Tang FL, Pratap UP, Tekmal RR, Vadlamudi RK et al (2020) Neuron-derived estrogen is critical for astrocyte activation and neuroprotection of the ischemic brain. J Neurosci 40(38):7355–7374. https://doi.org/10.1523/jneurosci.0115-20.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang J, Hou Y, Zhang L, Liu M, Zhao J, Zhang Z, Ma Y, Hou W (2021) Estrogen attenuates traumatic brain injury by inhibiting the activation of microglia and astrocyte-mediated neuroinflammatory responses. Mol Neurobiol 58(3):1052–1061. https://doi.org/10.1007/s12035-020-02171-2

    Article  CAS  PubMed  Google Scholar 

  72. Pawlak J, Karolczak M, Krust A, Chambon P, Beyer C (2005) Estrogen receptor-alpha is associated with the plasma membrane of astrocytes and coupled to the MAP/Src-kinase pathway. Glia 50(3):270–275. https://doi.org/10.1002/glia.20162

    Article  PubMed  Google Scholar 

  73. Sortino MA, Chisari M, Merlo S, Vancheri C, Caruso M, Nicoletti F, Canonico PL, Copani A (2004) Glia mediates the neuroprotective action of estradiol on beta-amyloid-induced neuronal death. Endocrinology 145(11):5080–5086. https://doi.org/10.1210/en.2004-0973

    Article  CAS  PubMed  Google Scholar 

  74. Chaban VV, Lakhter AJ, Micevych P (2004) A membrane estrogen receptor mediates intracellular calcium release in astrocytes. Endocrinology 145(8):3788–3795. https://doi.org/10.1210/en.2004-0149

    Article  CAS  PubMed  Google Scholar 

  75. Guo J, Duckles SP, Weiss JH, Li X, Krause DN (2012) 17β-Estradiol prevents cell death and mitochondrial dysfunction by an estrogen receptor-dependent mechanism in astrocytes after oxygen-glucose deprivation/reperfusion. Free Radic Biol Med 52(11–12):2151–2160. https://doi.org/10.1016/j.freeradbiomed.2012.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Peferoen L, Kipp M, van der Valk P, van Noort JM, Amor S (2014) Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology 141(3):302–313. https://doi.org/10.1111/imm.12163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen Z, Trapp BD (2016) Microglia and neuroprotection. J Neurochem 136(Suppl 1):10–17. https://doi.org/10.1111/jnc.13062

    Article  CAS  PubMed  Google Scholar 

  78. Prinz M, Jung S, Priller J (2019) Microglia biology: one century of evolving concepts. Cell 179(2):292–311. https://doi.org/10.1016/j.cell.2019.08.053

    Article  CAS  PubMed  Google Scholar 

  79. Savage JC, Carrier M, Tremblay M (2019) Morphology of microglia across contexts of health and disease. Methods Mol Biol 2034:13–26. https://doi.org/10.1007/978-1-4939-9658-2_2

    Article  CAS  PubMed  Google Scholar 

  80. Chen Z, Jalabi W, Hu W, Park HJ, Gale JT, Kidd GJ, Bernatowicz R, Gossman ZC et al (2014) Microglial displacement of inhibitory synapses provides neuroprotection in the adult brain. Nat Commun 5:4486. https://doi.org/10.1038/ncomms5486

    Article  CAS  PubMed  Google Scholar 

  81. Zhao TZ, Ding Q, Hu J, He SM, Shi F, Ma LT (2016) GPER expressed on microglia mediates the anti-inflammatory effect of estradiol in ischemic stroke. Brain Behav 6(4):e00449. https://doi.org/10.1002/brb3.449

    Article  PubMed  PubMed Central  Google Scholar 

  82. Guan J, Yang B, Fan Y, Zhang J (2017) GPER Agonist G1 attenuates neuroinflammation and dopaminergic neurodegeneration in parkinson disease. NeuroImmunoModulation 24(1):60–66. https://doi.org/10.1159/000478908

    Article  CAS  PubMed  Google Scholar 

  83. Drew PD, Chavis JA (2000) Female sex steroids: effects upon microglial cell activation. J Neuroimmunol 111(1–2):77–85. https://doi.org/10.1016/s0165-5728(00)00386-6

    Article  CAS  PubMed  Google Scholar 

  84. Tang Y, Le W (2016) Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 53(2):1181–1194. https://doi.org/10.1007/s12035-014-9070-5

    Article  CAS  PubMed  Google Scholar 

  85. Colonna M, Butovsky O (2017) Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol 35:441–468. https://doi.org/10.1146/annurev-immunol-051116-052358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Saeed K, Jo MH, Park JS, Alam SI, Khan I, Ahmad R, Khan A, Ullah R, Kim MO (2021) 17β-estradiol abrogates oxidative stress and neuroinflammation after cortical stab wound injury. Antioxidants (Basel) 10(11):1682. https://doi.org/10.3390/antiox10111682

    Article  CAS  PubMed  Google Scholar 

  87. Thakkar R, Wang R, Wang J, Vadlamudi RK, Brann DW (2018) 17β-estradiol regulates microglia activation and polarization in the hippocampus following global cerebral ischemia. Oxid Med Cell Longev 2018:4248526. https://doi.org/10.1155/2018/4248526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Scheld M, Heymann F, Zhao W, Tohidnezhad M, Clarner T, Beyer C, Zendedel A (2020) Modulatory effect of 17β-estradiol on myeloid cell infiltration into the male rat brain after ischemic stroke. J Steroid Biochem Mol Biol 202:105667. https://doi.org/10.1016/j.jsbmb.2020.105667

    Article  CAS  PubMed  Google Scholar 

  89. Aryanpour R, Zibara K, Pasbakhsh P, Jame’ei SB, Namjoo Z, Ghanbari A, Mahmoudi R, Amani S et al (2021) 17β-estradiol reduces demyelination in cuprizone-fed mice by promoting M2 Microglia Polarity and Regulating NLRP3 Inflammasome. Neuroscience 463:116–127. https://doi.org/10.1016/j.neuroscience.2021.03.025

    Article  CAS  PubMed  Google Scholar 

  90. Amaral AI, Tavares JM, Sonnewald U, Kotter MR (2016) Oligodendrocytes: development, physiology and glucose metabolism. Adv Neurobiol 13:275–294. https://doi.org/10.1007/978-3-319-45096-4_10

    Article  PubMed  Google Scholar 

  91. Kipp M (2020) Oligodendrocyte physiology and pathology function. Cells 9(9):2078. https://doi.org/10.3390/cells9092078

    Article  PubMed  PubMed Central  Google Scholar 

  92. Tognatta R, Miller RH (2016) Contribution of the oligodendrocyte lineage to CNS repair and neurodegenerative pathologies. Neuropharmacology 110(Pt B):539–547. https://doi.org/10.1016/j.neuropharm.2016.04.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dimou L, Simons M (2017) Diversity of oligodendrocytes and their progenitors. Curr Opin Neurobiol 47:73–79. https://doi.org/10.1016/j.conb.2017.09.015

    Article  CAS  PubMed  Google Scholar 

  94. Hayashi C, Suzuki N (2019) Heterogeneity of oligodendrocytes and their precursor cells. Adv Exp Med Biol 1190:53–62. https://doi.org/10.1007/978-981-32-9636-7_5

    Article  CAS  PubMed  Google Scholar 

  95. Butt AM, Ibrahim M, Ruge FM, Berry M (1995) Biochemical subtypes of oligodendrocyte in the anterior medullary velum of the rat as revealed by the monoclonal antibody Rip. Glia 14(3):185–197. https://doi.org/10.1002/glia.440140304

    Article  CAS  PubMed  Google Scholar 

  96. Hirahara Y, Matsuda KI, Liu YF, Yamada H, Kawata M, Boggs JM (2013) 17β-Estradiol and 17α-estradiol induce rapid changes in cytoskeletal organization in cultured oligodendrocytes. Neuroscience 235:187–199. https://doi.org/10.1016/j.neuroscience.2012.12.070

    Article  CAS  PubMed  Google Scholar 

  97. Arvanitis DN, Wang H, Bagshaw RD, Callahan JW, Boggs JM (2004) Membrane-associated estrogen receptor and caveolin-1 are present in central nervous system myelin and oligodendrocyte plasma membranes. J Neurosci Res 75(5):603–613. https://doi.org/10.1002/jnr.20017

    Article  CAS  PubMed  Google Scholar 

  98. Hirahara Y, Matsuda K, Gao W, Arvanitis DN, Kawata M, Boggs JM (2009) The localization and non-genomic function of the membrane-associated estrogen receptor in oligodendrocytes. Glia 57(2):153–165. https://doi.org/10.1002/glia.20742

    Article  PubMed  Google Scholar 

  99. Shi J, Yang Y, Cheng A, Xu G, He F (2020) Metabolism of vascular smooth muscle cells in vascular diseases. Am J Physiol Heart Circ Physiol 319(3):H613-h631. https://doi.org/10.1152/ajpheart.00220.2020

    Article  CAS  PubMed  Google Scholar 

  100. Zhang JH, Badaut J, Tang J, Obenaus A, Hartman R, Pearce WJ (2012) The vascular neural network–a new paradigm in stroke pathophysiology. Nat Rev Neurol 8(12):711–716. https://doi.org/10.1038/nrneurol.2012.210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mariana M, Roque C, Baltazar G, Cairrao E (2021) In vitro model for ischemic stroke: functional analysis of vascular smooth muscle cells. Cell Mol Neurobiol. https://doi.org/10.1007/s10571-021-01103-5

    Article  PubMed  Google Scholar 

  102. Badaut J, Bix GJ (2014) Vascular neural network phenotypic transformation after traumatic injury: potential role in long-term sequelae. Transl Stroke Res 5(3):394–406. https://doi.org/10.1007/s12975-013-0304-z

    Article  CAS  PubMed  Google Scholar 

  103. Wang G, Jacquet L, Karamariti E, Xu Q (2015) Origin and differentiation of vascular smooth muscle cells. J Physiol 593(14):3013–3030. https://doi.org/10.1113/jp270033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Quelhas P, Baltazar G, Cairrao E (2020) Characterization of culture from smooth muscle cells isolated from rat middle cerebral arteries. Tissue Cell 66:101400. https://doi.org/10.1016/j.tice.2020.101400

    Article  CAS  PubMed  Google Scholar 

  105. Reho JJ, Zheng X, Fisher SA (2014) Smooth muscle contractile diversity in the control of regional circulations. Am J Physiol Heart Circ Physiol 306(2):H163-172. https://doi.org/10.1152/ajpheart.00493.2013

    Article  CAS  PubMed  Google Scholar 

  106. Salom JB, Burguete MC, Pérez-Asensio FJ, Torregrosa G, Alborch E (2001) Relaxant effects of 17-beta-estradiol in cerebral arteries through Ca(2+) entry inhibition. J Cereb Blood Flow Metab 21(4):422–429. https://doi.org/10.1097/00004647-200104000-00011

    Article  CAS  PubMed  Google Scholar 

  107. Patkar S, Farr TD, Cooper E, Dowell FJ, Carswell HV (2011) Differential vasoactive effects of oestrogen, oestrogen receptor agonists and selective oestrogen receptor modulators in rat middle cerebral artery. Neurosci Res 71(1):78–84. https://doi.org/10.1016/j.neures.2011.05.006

    Article  CAS  PubMed  Google Scholar 

  108. Ramírez-Rosas MB, Cobos-Puc LE, Sánchez-López A, Gutiérrez-Lara EJ, Centurión D (2014) Pharmacological characterization of the mechanisms involved in the vasorelaxation induced by progesterone and 17β-estradiol on isolated canine basilar and internal carotid arteries. Steroids 89:33–40. https://doi.org/10.1016/j.steroids.2014.07.010

    Article  CAS  PubMed  Google Scholar 

  109. Deer RR, Stallone JN (2016) Effects of estrogen on cerebrovascular function: age-dependent shifts from beneficial to detrimental in small cerebral arteries of the rat. Am J Physiol Heart Circ Physiol 310(10):H1285-1294. https://doi.org/10.1152/ajpheart.00645.2015

    Article  PubMed  PubMed Central  Google Scholar 

  110. Evanson KW, Goldsmith JA, Ghosh P, Delp MD (2018) The G protein-coupled estrogen receptor agonist, G-1, attenuates BK channel activation in cerebral arterial smooth muscle cells. Pharmacol Res Perspect 6(4):e00409. https://doi.org/10.1002/prp2.409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Xia X, Zhou C, He X, Liu C, Wang G, Sun X (2020) The relationship between estrogen-induced phenotypic transformation and proliferation of vascular smooth muscle and hypertensive intracerebral hemorrhage. Ann Transl Med 8(12):762. https://doi.org/10.21037/atm-20-4567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Su X, Huang L, Qu Y, Xiao D, Mu D (2019) Pericytes in cerebrovascular diseases: an emerging therapeutic target. Front Cell Neurosci 13:519. https://doi.org/10.3389/fncel.2019.00519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kurmann L, Okoniewski M, Dubey RK (2021) Estradiol inhibits human brain vascular pericyte migration activity: a functional and transcriptomic analysis. Cells 10(9):2314. https://doi.org/10.3390/cells10092314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hennigs JK, Matuszcak C, Trepel M, Körbelin J (2021) Vascular endothelial cells: heterogeneity and targeting approaches. Cells 10(10):2712. https://doi.org/10.3390/cells10102712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sturtzel C (2017) Endothelial cells. Adv Exp Med Biol 1003:71–91. https://doi.org/10.1007/978-3-319-57613-8_4

    Article  CAS  PubMed  Google Scholar 

  116. Russell KS, Haynes MP, Sinha D, Clerisme E, Bender JR (2000) Human vascular endothelial cells contain membrane binding sites for estradiol, which mediate rapid intracellular signaling. Proc Natl Acad Sci U S A 97(11):5930–5935. https://doi.org/10.1073/pnas.97.11.5930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Momoi H, Ikomi F, Ohhashi T (2003) Estrogen-induced augmentation of endothelium-dependent nitric oxide-mediated vasodilation in isolated rat cerebral small arteries. Jpn J Physiol 53(3):193–203. https://doi.org/10.2170/jjphysiol.53.193

    Article  CAS  PubMed  Google Scholar 

  118. Nevzati E, Shafighi M, Bakhtian KD, Treiber H, Fandino J, Fathi AR (2015) Estrogen induces nitric oxide production via nitric oxide synthase activation in endothelial cells. In: Fandino J, Marbacher S, Fathi A-R, Muroi C, Keller E (eds) Neurovascular events after subarachnoid hemorrhage: towards experimental and clinical standardisation. Springer International Publishing, Cham, pp 141–145. https://doi.org/10.1007/978-3-319-04981-6_24

  119. Stirone C, Boroujerdi A, Duckles SP, Krause DN (2005) Estrogen receptor activation of phosphoinositide-3 kinase, akt, and nitric oxide signaling in cerebral blood vessels: rapid and long-term effects. Mol Pharmacol 67(1):105–113. https://doi.org/10.1124/mol.104.004465

    Article  CAS  PubMed  Google Scholar 

  120. Holm A, Baldetorp B, Olde B, Leeb-Lundberg LM, Nilsson BO (2011) The GPER1 agonist G-1 attenuates endothelial cell proliferation by inhibiting DNA synthesis and accumulating cells in the S and G2 phases of the cell cycle. J Vasc Res 48(4):327–335. https://doi.org/10.1159/000322578

    Article  CAS  PubMed  Google Scholar 

  121. Tu J, Jufri NF (2013) Estrogen signaling through estrogen receptor beta and G-protein-coupled estrogen receptor 1 in human cerebral vascular endothelial cells: implications for cerebral aneurysms. Biomed Res Int 2013:524324. https://doi.org/10.1155/2013/524324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Altmann JB, Yan G, Meeks JF, Abood ME, Brailoiu E, Brailoiu GC (2015) G protein-coupled estrogen receptor-mediated effects on cytosolic calcium and nanomechanics in brain microvascular endothelial cells. J Neurochem 133(5):629–639. https://doi.org/10.1111/jnc.13066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Galea E, Santizo R, Feinstein DL, Adamsom P, Greenwood J, Koenig HM, Pelligrino DA (2002) Estrogen inhibits NF kappa B-dependent inflammation in brain endothelium without interfering with I kappa B degradation. NeuroReport 13(11):1469–1472. https://doi.org/10.1097/00001756-200208070-00024

    Article  CAS  PubMed  Google Scholar 

  124. Mori M, Tsukahara F, Yoshioka T, Irie K, Ohta H (2004) Suppression by 17beta-estradiol of monocyte adhesion to vascular endothelial cells is mediated by estrogen receptors. Life Sci 75(5):599–609. https://doi.org/10.1016/j.lfs.2003.12.023

    Article  CAS  PubMed  Google Scholar 

  125. Torres-Hernández AR, González-Vegas JA (2005) Effects of 17beta-estradiol on the spontaneous activity of substantia nigra neurons: evidence for a non-genomic mechanism. Brain Res 1049(1):1–7. https://doi.org/10.1016/j.brainres.2005.04.085

    Article  CAS  PubMed  Google Scholar 

  126. Guo J, Krause DN, Horne J, Weiss JH, Li X, Duckles SP (2010) Estrogen-receptor-mediated protection of cerebral endothelial cell viability and mitochondrial function after ischemic insult in vitro. J Cereb Blood Flow Metab 30(3):545–554. https://doi.org/10.1038/jcbfm.2009.226

    Article  CAS  PubMed  Google Scholar 

  127. Datta A, Sarmah D, Mounica L, Kaur H, Kesharwani R, Verma G, Veeresh P, Kotian V et al (2020) Cell death pathways in ischemic stroke and targeted pharmacotherapy. Transl Stroke Res 11(6):1185–1202. https://doi.org/10.1007/s12975-020-00806-z

    Article  PubMed  Google Scholar 

  128. Mizuma A, Yenari MA (2021) Clinical perspectives on ischemic stroke. Exp Neurol 338:113599. https://doi.org/10.1016/j.expneurol.2021.113599

    Article  PubMed  PubMed Central  Google Scholar 

  129. Rosner J, Reddy V, Lui F (2022) Neuroanatomy, circle of Willis. In: StatPearls. StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC., Treasure Island (FL)

  130. González Delgado M, Bogousslavsky J (2012) Superficial middle cerebral artery territory infarction. Front Neurol Neurosci 30:111–114. https://doi.org/10.1159/000333604

    Article  PubMed  Google Scholar 

  131. Pekny M (1862) Pekna M (2016) Reactive gliosis in the pathogenesis of CNS diseases. Biochim Biophys Acta 3:483–491. https://doi.org/10.1016/j.bbadis.2015.11.014

    Article  CAS  Google Scholar 

  132. Roque C, Mendes-Oliveira J, Baltazar G (2019) G protein-coupled estrogen receptor activates cell type-specific signaling pathways in cortical cultures: relevance to the selective loss of astrocytes. J Neurochem 149(1):27–40. https://doi.org/10.1111/jnc.14648

    Article  CAS  PubMed  Google Scholar 

  133. Broughton BR, Brait VH, Guida E, Lee S, Arumugam TV, Gardiner-Mann CV, Miller AA, Tang SC et al (2013) Stroke increases g protein-coupled estrogen receptor expression in the brain of male but not female mice. Neurosignals 21(3–4):229–239. https://doi.org/10.1159/000338019

    Article  CAS  PubMed  Google Scholar 

  134. Murata T, Dietrich HH, Xiang C, Dacey RG Jr (2013) G protein-coupled estrogen receptor agonist improves cerebral microvascular function after hypoxia/reoxygenation injury in male and female rats. Stroke 44(3):779–785. https://doi.org/10.1161/strokeaha.112.678177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Schreihofer DA, Ma Y (2013) Estrogen receptors and ischemic neuroprotection: who, what, where, and when? Brain Res 1514:107–122. https://doi.org/10.1016/j.brainres.2013.02.051

    Article  CAS  PubMed  Google Scholar 

  136. Broughton BR, Brait VH, Kim HA, Lee S, Chu HX, Gardiner-Mann CV, Guida E, Evans MA et al (2014) Sex-dependent effects of G protein-coupled estrogen receptor activity on outcome after ischemic stroke. Stroke 45(3):835–841. https://doi.org/10.1161/strokeaha.113.001499

    Article  CAS  PubMed  Google Scholar 

  137. Suzuki S, Gerhold LM, Böttner M, Rau SW, Dela Cruz C, Yang E, Zhu H, Yu J et al (2007) Estradiol enhances neurogenesis following ischemic stroke through estrogen receptors alpha and beta. J Comp Neurol 500(6):1064–1075. https://doi.org/10.1002/cne.21240

    Article  CAS  PubMed  Google Scholar 

  138. Choi JW, Ryoo IW, Hong JY, Lee KY, Nam HS, Kim WC, Oh SH, Kang J et al (2021) Clinical impact of estradiol/testosterone ratio in patients with acute ischemic stroke. BMC Neurol 21(1):91. https://doi.org/10.1186/s12883-021-02116-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Foundation for Science and Technology (FCT), through funds from the State Budget, and by the European Regional Development Fund (ERDF), under the Portugal 2020 Program, through the Regional Operational Program of the Center (Centro2020), and through the Projects with the references (UIDB/00709/2020 + UIDP/00709/2020). M.L. received the Ph.D. fellowship from FCT (Reference: 2020.06616.BD).

Author information

Authors and Affiliations

Authors

Contributions

Francisca Jorge Gonçalves: investigation; writing — original draft; writing — review and editing. Fatima Abrantes-Soares: writing — original draft; writing — review and editing. Manuel R Pouso: validation; writing — original draft; writing — review and editing. Margarida Lorigo: validation; writing — original draft; writing — review and editing. Elisa Cairrao: conceptualization; validation; funding acquisition; project administration; supervision; writing — review and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Elisa Cairrao.

Ethics declarations

Ethics Approval

This is a review article. There is not ethical approval applicable.

Consent to Participate

Not applicated.

Consent for Publication

This is a review article. There is no consent to publish applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, F.J., Abrantes-Soares, F., Pouso, M.R. et al. Non-genomic Effect of Estradiol on the Neurovascular Unit and Possible Involvement in the Cerebral Vascular Accident. Mol Neurobiol 60, 1964–1985 (2023). https://doi.org/10.1007/s12035-022-03178-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03178-7

Keywords

Navigation