Skip to main content

Advertisement

Log in

Therapeutic Potentials of MicroRNA-126 in Cerebral Ischemia

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Stroke is a leading cause of death and disability worldwide. It is among the most common neurological disorders with an 8–10% lifetime risk. Ischemic stroke accounts for about 85% of all strokes and damages the brain tissue via various damaging mechanisms. Following cerebral ischemia, the disrupted blood–brain barrier (BBB) leads to cerebral edema formation caused by activation of oxidative stress, inflammation, and apoptosis, targeting primarily endothelial cells. Activation of the protective mechanisms might favor fewer damages to the neural tissue. MicroRNA (miR)-126 is an endothelial cell-specific miR involved in angiogenesis. MiR-126 orchestrates endothelial progenitor cell functions under hypoxic conditions and could inhibit ischemia-induced oxidative stress and inflammation. It alleviates the BBB disruption by preventing an augment in matrix metalloproteinase level and halting the decrease in the junctional proteins, including zonula occludens-1 (ZO-1), claudin-5, and occludin levels. Moreover, miR-126 enhances post-stroke angiogenesis and neurogenesis. This work provides a therapeutic perspective for miR-126 as a new approach to treating cerebral ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

All data are included in this published article.

Abbreviations

BBB:

Blood-brain barrier

BDNF:

Brain-derived neural factor

Ca+2 :

Calcium

COX-2:

Cyclooxygenase-2

FGF-2:

Fibroblast growth factor-2

HMGB1:

High mobility group box-1 protein

HO-1:

Hemoxygenase-1

ICAM1:

Intercellular adhesion molecule 1

IL:

Interleukin

MAPK:

Mitogen-activated protein kinase

MiR:

MicroRNA

MMP-9:

Matrix etalloproteinase-9

NF-κB:

Nuclear factor kappa B

NOS:

Nitric oxide synthesis

Nrf2:

Nuclear factor erythroid 2‑related factor 2

PIK3R2:

Phosphoinositide-3-kinase regulatory subunit 2

PTPN9:

Tyrosine-protein phosphatase non-receptor type 9

ROS:

Reactive oxygen species

SIRT1:

Sirtuin-1

SOD:

Superoxide dismutase

TLR4:

Toll-like receptor-4

TNF-α:

Tumor necrosis factor-alpha

VCAM1:

Vascular adhesion molecule 1

VEGF:

Vascular endothelial growth factor

ZO-1:

Zonula occludens-1

References

  1. Rastegar-Moghaddam SH, Ebrahimzadeh-Bideskan A, Shahba S, Malvandi AM, Mohammadipour A (2022) Roles of the miR-155 in neuroinflammation and neurological disorders: a potent biological and therapeutic target. Cell Mol Neurobiol. https://doi.org/10.1007/s10571-022-01200-z

  2. Sun L, Clarke R, Bennett D, Guo Y, Walters RG, Hill M, Parish S, Millwood IY, Bian Z, Chen Y, Yu C, Lv J, Collins R, Chen J, Peto R, Li L, Chen Z, China Kadoorie Biobank Collaborative Group; International Steering Committee; International Co-ordinating Centre, Oxford; National Co-ordinating Centre, Beijing; Regional Co-ordinatingCentres (2019) Causal associations of blood lipids with risk of ischemic stroke and intracerebral hemorrhage in Chinese adults. Nat Med 25(4):569–574. https://doi.org/10.1038/s41591-019-0366-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xie W, Zhu T, Dong X, Nan F, Meng X, Zhou P, Sun G, Sun X (2019) HMGB1-triggered inflammation inhibition of notoginseng leaf triterpenes against cerebral ischemia and reperfusion injury via MAPK and NF-κB signaling pathways. Biomolecules 9(10):512. https://doi.org/10.3390/biom9100512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Abdullahi W, Tripathi D, Ronaldson PT (2018) Blood-brain barrier dysfunction in ischemic stroke: targeting tight junctions and transporters for vascular protection. Am J Physiol Cell Physiol 315(3):C343–C356. https://doi.org/10.1152/ajpcell.00095.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R (2017) American Heart Association Statistics Committee and Stroke Statistics Subcommittee Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 135(10):e146–e603. https://doi.org/10.1161/CIR.0000000000000485

    Article  PubMed  PubMed Central  Google Scholar 

  6. Luo T, Wang J, Hao S, Guo T, Ren P, Cheng Z, Gao F, Gong Y, Wang B (2017) Brain drug delivery systems for the stroke intervention and recovery. Curr Pharm Des 23(15):2258–2267. https://doi.org/10.2174/1381612822666161025155058

    Article  CAS  PubMed  Google Scholar 

  7. Sinha RK, Singh A, Kishor A, Richa S, Kumar R, Kumar A (2021) Evaluation of oral hygiene status in patients with hemorrhagic and ischemic stroke. J Pharm Bioallied Sci 13(Suppl 1):S233–S236. https://doi.org/10.4103/jpbs.JPBS_698_20

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rastegar-Moghaddam SH, Ebrahimzadeh-Bideskan A, Shahba S, Malvandi AM, Mohammadipour A (2022) MicroRNA-22: a novel and potent biological therapeutics in neurological disorders. Mol Neurobiol 59(5):2694–2701. https://doi.org/10.1007/s12035-022-02769-8

    Article  CAS  PubMed  Google Scholar 

  9. Long G, Wang F, Li H, Yin Z, Sandip C, Lou Y, Wang Y, Chen C, Wang DW (2013) Circulating miR-30a, miR-126 and let-7b as biomarker for ischemic stroke in humans. BMC Neurol 13:178. https://doi.org/10.1186/1471-2377-13-178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Qi R, Liu H, Liu C, Xu Y, Liu C (2020) Expression and short-term prognostic value of miR-126 and miR-182 in patients with acute stroke. Exp Ther Med 19(1):527–534. https://doi.org/10.3892/etm.2019.8227

    Article  CAS  PubMed  Google Scholar 

  11. Lidong D, Zhanghong X, Huawu M, Xiaofang H, Junhua G, Kaifu K, Jue C (2021) Ischemia modified albumin and miR-126 play important role in diagnosis of posterior circulation transient ischemic attack and prediction of secondary cerebral infarction. Neurol India 69(1):75–80. https://doi.org/10.4103/0028-3886.310100

    Article  PubMed  Google Scholar 

  12. Wang L, Lee AY, Wigg JP, Peshavariya H, Liu P, Zhang H (2016) miR-126 regulation of angiogenesis in age-related macular degeneration in CNV mouse model. Int J Mol Sci 17:895. https://doi.org/10.3390/ijms17060895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhao F, Anderson C, Karnes S, Zhou Q, Ma J, Jin ZG, Bhattacharjee PS, Wang S (2018) Expression, regulation and function of miR-126 in the mouse choroid vasculature. Exp Eye Res 170:169–176. https://doi.org/10.1016/j.exer.2018.02.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pan Q, Zheng J, Du D, Liao X, Ma C, Yang Y, Chen Y, Zhong W, Ma X (2018) MicroRNA-126 priming enhances functions of endothelial progenitor cells under physiological and hypoxic conditions and their therapeutic efficacy in cerebral ischemic damage. Stem Cells Int 2018:2912347. https://doi.org/10.1155/2018/2912347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pan J, Qu M, Li Y, Wang L, Zhang L, Wang Y, Tang Y, Tian HL, Zhang Z, Yang GY (2020) MicroRNA-126-3p/-5p overexpression attenuates blood-brain barrier disruption in a mouse model of middle cerebral artery occlusion. Stroke 51(2):619–627. https://doi.org/10.1161/STROKEAHA.119.027531

    Article  CAS  PubMed  Google Scholar 

  16. Wu Q, Qi B, Duan X, Ming X, Yan F, He Y, Bu X, Sun S, Zhu H (2021) MicroRNA-126 enhances the biological function of endothelial progenitor cells under oxidative stress via PI3K/Akt/GSK3β and ERK1/2 signaling pathways. Bosn J Basic Med Sci 21(1):71–80. https://doi.org/10.17305/bjbms.2019.4493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fu X, Niu T, Li X (2019) MicroRNA-126-3p attenuates intracerebral hemorrhage-induced blood-brain barrier disruption by regulating VCAM-1 expression. Front Neurosci 13:866. https://doi.org/10.3389/fnins.2019.00866

    Article  PubMed  PubMed Central  Google Scholar 

  18. Li J, Yang C, Wang Y (2021) miR-126 overexpression attenuates oxygen-glucose deprivation/reperfusion injury by inhibiting oxidative stress and inflammatory response via the activation of SIRT1/Nrf2 signaling pathway in human umbilical vein endothelial cells. Mol Med Rep 23(2):165. https://doi.org/10.3892/mmr.2020.11804

    Article  CAS  PubMed  Google Scholar 

  19. Niizuma K, Yoshioka H, Chen H, Kim GS, Jung JE, Katsu M, Okami N (1802) Chan PH (2010) Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. Biochim Biophys Acta 1:92–99. https://doi.org/10.1016/j.bbadis.2009.09.002

    Article  CAS  Google Scholar 

  20. Lai Y, Lin P, Chen M, Zhang Y, Chen J, Zheng M, Liu J, Du H, Chen R, Pan X, Liu N, Chen H (2020) Restoration of L-OPA1 alleviates acute ischemic stroke injury in rats via inhibiting neuronal apoptosis and preserving mitochondrial function. Redox Biol 34:101503. https://doi.org/10.1016/j.redox.2020.101503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bano D, Nicotera P (2007) Ca2+ signals and neuronal death in brain ischemia. Stroke 38(2 Suppl):674–676. https://doi.org/10.1161/01.STR.0000256294.46009.29

    Article  CAS  PubMed  Google Scholar 

  22. Sarkar S, Chakraborty D, Bhowmik A, Ghosh MK (2019) Cerebral ischemic stroke: cellular fate and therapeutic opportunities. Front Biosci (Landmark Ed) 24(3):435–450. https://doi.org/10.2741/4727. (PMID: 30468665)

    Article  PubMed  Google Scholar 

  23. Inta I, Paxian S, Maegele I, Zhang W, Pizzi M, Spano P, Sarnico I, Muhammad S, Herrmann O, Inta D, Baumann B, Liou HC, Schmid RM, Schwaninger M (2006) Bim and Noxa are candidates to mediate the deleterious effect of the NF-kappa B subunit RelA in cerebral ischemia. J Neurosci 26(50):12896–12903. https://doi.org/10.1523/JNEUROSCI.3670-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ikeda-Matsuo Y, Hirayama Y, Ota A, Uematsu S, Akira S, Sasaki Y (2010) Microsomal prostaglandin E synthase-1 and cyclooxygenase-2 are both required for ischaemic excitotoxicity. Br J Pharmacol 159(5):1174–1186. https://doi.org/10.1111/j.1476-5381.2009.00595.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guo P, Jin Z, Wu H, Li X, Ke J, Zhang Z, Zhao Q (2019) Effects of irisin on the dysfunction of blood-brain barrier in rats after focal cerebral ischemia/reperfusion. Brain Behav 9(10):e01425. https://doi.org/10.1002/brb3.1425

    Article  PubMed  PubMed Central  Google Scholar 

  26. Valable S, Montaner J, Bellail A, Berezowski V, Brillault J, Cecchelli R, Divoux D, Mackenzie ET, Bernaudin M, Roussel S, Petit E (2005) VEGF-induced BBB permeability is associated with an MMP-9 activity increase in cerebral ischemia: both effects decreased by Ang-1. J Cereb Blood Flow Metab 25(11):1491–1504. https://doi.org/10.1038/sj.jcbfm.9600148

    Article  CAS  PubMed  Google Scholar 

  27. Guo P, Liu L, Yang X, Li M, Zhao Q, Wu H (2022) Irisin improves BBB dysfunction in SAP rats by inhibiting MMP-9 via the ERK/NF-κB signaling pathway. Cell Signal 93:110300. https://doi.org/10.1016/j.cellsig.2022.110300

    Article  CAS  PubMed  Google Scholar 

  28. Fani M, Mohammadipour A, Ebrahimzadeh-Bideskan A (2018) The effect of crocin on testicular tissue and sperm parameters of mice offspring from mothers exposed to atrazine during pregnancy and lactation periods: an experimental study. Int J Reprod Biomed 16(8):519–528 (PMID: 30288486)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Malvandi AM, Shahba S, Mohammadipour A, Rastegar-Moghaddam SH, Abudayyak M (2021) Cell and molecular toxicity of lanthanum nanoparticles: are there possible risks to humans? Nanotoxicology 15(7):951–972. https://doi.org/10.1080/17435390.2021.1940340

    Article  PubMed  Google Scholar 

  30. Nong A, Li Q, Huang Z, Xu Y, He K, Jia Y, Cen Z, Liao L, Huang Y (2021) MicroRNA miR-126 attenuates brain injury in septic rats via NF-κB signaling pathway. Bioengineered 12(1):2639–2648. https://doi.org/10.1080/21655979.2021.1937905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang JH, Xu Y, Yin XM, Lin FY (2020) Exosomes derived from miR-126-modified MSCs promote angiogenesis and neurogenesis and attenuate apoptosis after spinal cord injury in rats. Neuroscience 424:133–145. https://doi.org/10.1016/j.neuroscience.2019.10.043

    Article  CAS  PubMed  Google Scholar 

  32. Sun Z, Zhao X, Zhang M, Li N, Zhao Y, Chen C, Li J, Guo Y, Feng Q (2022) MicroRNA-126 protects SH-SY5Y cells from ischemia/reperfusion injury-induced apoptosis by inhibiting RAB3IP. Mol Med Rep 25(2):62. https://doi.org/10.3892/mmr.2021.12578

    Article  CAS  PubMed  Google Scholar 

  33. Jurcau A, Simion A (2021) Neuroinflammation in cerebral ischemia and ischemia/reperfusion injuries: from pathophysiology to therapeutic strategies. Int J Mol Sci 23(1):14. https://doi.org/10.3390/ijms23010014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang HF, Wang YQ, Dou L, Gao HM, Wang B, Luo N, Li Y (2019) Influences of up-regulation of miR-126 on septic inflammation and prognosis through AKT/Rac1 signaling pathway. Eur Rev Med Pharmacol Sci 23(5):2132–2138. https://doi.org/10.26355/eurrev_201903_17257

    Article  PubMed  Google Scholar 

  35. Kim H, Banerjee N, Barnes RC, Pfent CM, Talcott ST, Dashwood RH, Mertens-Talcott SU (2017) Mango polyphenolics reduce inflammation in intestinal colitis-involvement of the miR-126/PI3K/AKT/mTOR axis in vitro and in vivo. Mol Carcinog 56(1):197–207. https://doi.org/10.1002/mc.22484

    Article  CAS  PubMed  Google Scholar 

  36. Yu B, Jiang Y, Wang X, Wang S (2020) An integrated hypothesis for miR-126 in vascular disease. Med Res Arch 8(5):2133. https://doi.org/10.18103/mra.v8i5.2133

    Article  PubMed  PubMed Central  Google Scholar 

  37. Al Mamun A, Chauhan A, Qi S, Ngwa C, Xu Y, Sharmeen R, Hazen AL, Li J, Aronowski JA, McCullough LD, Liu F (2020) Microglial IRF5-IRF4 regulatory axis regulates neuroinflammation after cerebral ischemia and impacts stroke outcomes. Proc Natl Acad Sci U S A 117(3):1742–1752. https://doi.org/10.1073/pnas.1914742117

    Article  CAS  PubMed  Google Scholar 

  38. Cheng Y, Wang D, Wang B, Li H, Xiong J, Xu S, Chen Q, Tao K, Yang X, Zhu Y, He S (2017) HMGB1 translocation and release mediate cigarette smoke-induced pulmonary inflammation in mice through a TLR4/MyD88-dependent signaling pathway. Mol Biol Cell 28(1):201–209. https://doi.org/10.1091/mbc.E16-02-0126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu J, Wei E, Wei J, Zhou W, Webster KA, Zhang B, Li D, Zhang G, Wei Y, Long Y, Qi X, Zhang Q, Xu D (2021) MiR-126-HMGB1-HIF-1 axis regulates endothelial cell inflammation during exposure to hypoxia-acidosis. Dis Markers 2021:4933194. https://doi.org/10.1155/2021/4933194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cerutti C, Edwards LJ, de Vries HE, Sharrack B, Male DK, Romero IA (2017) MiR-126 and miR-126* regulate shear-resistant firm leukocyte adhesion to human brain endothelium. Sci Rep 7:45284. https://doi.org/10.1038/srep45284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hatakeyama M, Ninomiya I, Kanazawa M (2020) Angiogenesis and neuronal remodeling after ischemic stroke. Neural Regen Res 15(1):16–19. https://doi.org/10.4103/1673-5374.264442

    Article  CAS  PubMed  Google Scholar 

  42. Du J, Yin G, Hu Y, Shi S, Jiang J, Song X, Zhang Z, Wei Z, Tang C, Lyu H (2020) Coicis semen protects against focal cerebral ischemia-reperfusion injury by inhibiting oxidative stress and promoting angiogenesis via the TGFβ/ALK1/Smad1/5 signaling pathway. Aging (Albany NY) 13(1):877–893. https://doi.org/10.18632/aging.202194

    Article  PubMed  Google Scholar 

  43. Chen C, Ling C, Gong J, Li C, Zhang L, Gao S, Li Z, Huang T, Wang H, Guo Y (2020) Increasing the expression of microRNA-126-5p in the temporal muscle can promote angiogenesis in the chronically ischemic brains of rats subjected to two-vessel occlusion plus encephalo-myo-synangiosis. Aging (Albany NY) 12(13):13234–13254. https://doi.org/10.18632/aging.103431

    Article  CAS  PubMed  Google Scholar 

  44. Guenther SP, Schrepfer S (2016) miR-126: a potential new key player in hypoxia and reperfusion?. Ann Transl Med 4:377. https://doi.org/10.21037/atm.2016.08.22

  45. Pan Q, Wang Y, Lan Q, Wu W, Li Z, Ma X, Yu L (2019) Exosomes derived from mesenchymal stem cells ameliorate hypoxia/reoxygenation-injured ECs via transferring microRNA-126. Stem Cells Int 2019:2831756. https://doi.org/10.1155/2019/2831756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shan C, Ma Y (2018) MicroRNA-126/stromal cell-derived factor 1/C-X-C chemokine receptor type 7 signaling pathway promotes post-stroke angiogenesis of endothelial progenitor cell transplantation. Mol Med Rep 17(4):5300–5305. https://doi.org/10.3892/mmr.2018.8513

    Article  CAS  PubMed  Google Scholar 

  47. Qu M, Pan J, Wang L, Zhou P, Song Y, Wang S, Jiang L, Geng J, Zhang Z, Wang Y, Tang Y, Yang GY (2019) MicroRNA-126 regulates angiogenesis and neurogenesis in a mouse model of focal cerebral ischemia. Mol Ther Nucleic Acids 16:15–25. https://doi.org/10.1016/j.omtn.2019.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rastegar-Moghaddam SH, Bigham M, Hosseini M, Ebrahimzadeh-Bideskan A, Malvandi AM, Mohammadipour A (2022) Grape seed extract effects on hippocampal neurogenesis, synaptogenesis and dark neurons production in old mice Can this extract improve learning and memory in aged animals? Nutr Neurosci 25(9):1962–1972. https://doi.org/10.1080/1028415X.2021.1918983

    Article  CAS  PubMed  Google Scholar 

  49. Ruan L, Wang B, ZhuGe Q, Jin K (2015) Coupling of neurogenesis and angiogenesis after ischemic stroke. Brain Res 1623:166–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Geng W, Tang H, Luo S, Lv Y, Liang D, Kang X, Hong W (2019) Exosomes from miRNA-126-modified ADSCs promotes functional recovery after stroke in rats by improving neurogenesis and suppressing microglia activation. Am J Transl Res 11(2):780–792

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen J, Ning R, Zacharek A, Cui C, Cui X, Yan T, Venkat P, Zhang Y, Chopp M (2016) MiR-126 contributes to human umbilical cord blood cell-induced neurorestorative effects after stroke in type-2 diabetic mice. Stem Cells 34(1):102–113. https://doi.org/10.1002/stem.2193

    Article  CAS  PubMed  Google Scholar 

  52. Can U, Marzioglu E, Akdu S (2022) Some miRNA expressions and their targets in ischemic stroke. Nucleosides, Nucleotides Nucleic Acids 41(11):1224–1262

    Article  CAS  PubMed  Google Scholar 

  53. Qu Q, Bing W, Meng X, Xi J, Bai X, Liu Q, Guo Y, Zhao X, Bi Y (2017) Upregulation of miR-126-3p promotes human saphenous vein endothelial cell proliferation in vitro and prevents vein graft neointimal formation ex vivo and in vivo. Oncotarget 8(63):106790–106806. https://doi.org/10.18632/oncotarget.22365

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zhou Q, Anderson C, Hanus J, Zhao F, Ma J, Yoshimura A, Wang S (2016) Strand and cell type-specific function of microRNA-126 in angiogenesis. Mol Ther 24(10):1823–1835. https://doi.org/10.1038/mt.2016.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen L, Wang J, Wang B, Yang J, Gong Z, Zhao X, Zhang C, Du K (2016) MiR-126 inhibits vascular endothelial cell apoptosis through targeting PI3K/Akt signaling. Ann Hematol 95(3):365–374. https://doi.org/10.1007/s00277-015-2567-9

    Article  CAS  PubMed  Google Scholar 

  56. Esser JS, Saretzki E, Pankratz F, Engert B, Grundmann S, Bode C, Moser M, Zhou Q (2017) Bone morphogenetic protein 4 regulates microRNAs miR-494 and miR-126-5p in control of endothelial cell function in angiogenesis. Thromb Haemost 117(4):734–749. https://doi.org/10.1160/TH16-08-0643

    Article  PubMed  Google Scholar 

  57. Austin MW, Ploughman M, Glynn L, Corbett D (2014) Aerobic exercise effects on neuroprotection and brain repair following stroke: a systematic review and perspective. Neurosci Res 87:8–15. https://doi.org/10.1016/j.neures.2014.06.007

    Article  PubMed  Google Scholar 

  58. Nie J, Yang X (2017) Modulation of synaptic plasticity by exercise training as a basis for ischemic stroke rehabilitation. Cell Mol Neurobiol 37(1):5–16. https://doi.org/10.1007/s10571-016-0348-1

    Article  CAS  PubMed  Google Scholar 

  59. Li C, Ke C, Su Y, Wan C (2021) Exercise intervention promotes the growth of synapses and regulates neuroplasticity in rats with ischemic stroke through exosomes. Front Neurol 12:752595. https://doi.org/10.3389/fneur.2021.752595

    Article  PubMed  PubMed Central  Google Scholar 

  60. Nemchek V, Haan EM, Mavros R, Macuiba A, Kerr AL (2021) Voluntary exercise ameliorates the good limb training effect in a mouse model of stroke. Exp Brain Res 239(2):687–697. https://doi.org/10.1007/s00221-020-05994-6

    Article  PubMed  Google Scholar 

  61. Yamaguchi N, Sawano T, Fukumoto K, Nakatani J, Inoue S, Doe N, Yanagisawa D, Tooyama I, Nakagomi T, Matsuyama T, Tanaka H (2021) Voluntary running exercise after focal cerebral ischemia ameliorates dendritic spine loss and promotes functional recovery. Brain Res 1767:147542. https://doi.org/10.1016/j.brainres.2021.147542

    Article  CAS  PubMed  Google Scholar 

  62. Donghui T, Shuang B, Xulong L, Meng Y, Yujing G, Yujie H, Juan L, Dongsheng Y (2019) Improvement of microvascular endothelial dysfunction induced by exercise and diet is associated with microRNA-126 in obese adolescents. Microvasc Res 123:86–91. https://doi.org/10.1016/j.mvr.2018.10.009

    Article  CAS  PubMed  Google Scholar 

  63. Ma C, Wang J, Liu H, Chen Y, Ma X, Chen S, Chen Y, Bihl JI, Yang YI (2018) Moderate exercise enhances endothelial progenitor cell exosomes release and function. Med Sci Sports Exerc 50(10):2024–2032. https://doi.org/10.1249/MSS.0000000000001672

    Article  PubMed  Google Scholar 

  64. Otero-Ortega L, Laso-García F, Gómez-de Frutos MD, Rodríguez-Frutos B, Pascual-Guerra J, Fuentes B, Díez-Tejedor E, Gutiérrez-Fernández M (2017) White matter repair after extracellular vesicles administration in an experimental animal model of subcortical stroke. Sci Rep 7:44433. https://doi.org/10.1038/srep44433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Venkat P, Cui C, Chopp M, Zacharek A, Wang F, Landschoot-Ward J, Shen Y, Chen J (2019) MiR-126 mediates brain endothelial cell exosome treatment-induced neurorestorative effects after stroke in type 2 diabetes mellitus mice. Stroke 50(10):2865–2874. https://doi.org/10.1161/STROKEAHA.119.025371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Luo L, Li C, Du X, Shi Q, Huang Q, Xu X, Wang Q (2019) Effect of aerobic exercise on BDNF/proBDNF expression in the ischemic hippocampus and depression recovery of rats after stroke. Behav Brain research 362:323–331

    Article  CAS  Google Scholar 

  67. Dastah S, Tofighi A, Bonab SB (2021) The effect of aerobic exercise on the expression of mir-126 and related target genes in the endothelial tissue of the cardiac muscle of diabetic rats. Microvasc Res 138:104212. https://doi.org/10.1016/j.mvr.2021.104212

    Article  CAS  PubMed  Google Scholar 

  68. Song W, Liang Q, Cai M, Tian Z (2020) HIF-1α-induced up-regulation of microRNA-126 contributes to the effectiveness of exercise training on myocardial angiogenesis in myocardial infarction rats. J Cell Mol Med 24(22):12970–12979. https://doi.org/10.1111/jcmm.15892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Naderi R, Mohaddes G, Mohammadi M, Alihemmati A, Khamaneh A, Ghyasi R, Ghaznavi R (2019) The effect of garlic and voluntary exercise on cardiac angiogenesis in diabetes: the role of MiR-126 and MiR-210. Arq Bras Cardiol 112(2):154–162. https://doi.org/10.5935/abc.20190002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We express our sincere gratitude for the Vice Chancellor’s support for Research, Mashhad University of Medical Sciences, Iran.

Funding

Mashhad University of medical sciences.

Author information

Authors and Affiliations

Authors

Contributions

VE contributed to the drafting of the manuscript. AM and SHRM contributed to overall conceptual design, drafting and final edits and approval.

Corresponding authors

Correspondence to Seyed Hamidreza Rastegar-moghaddam or Abbas Mohammadipour.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, V., Rastegar-moghaddam, S.H. & Mohammadipour, A. Therapeutic Potentials of MicroRNA-126 in Cerebral Ischemia. Mol Neurobiol 60, 2062–2069 (2023). https://doi.org/10.1007/s12035-022-03197-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03197-4

Keywords

Navigation