Skip to main content

Advertisement

Log in

The Protective Effects of Policosanol on Learning and Memory Impairments in a Male Rat Model of Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD), the most common form of dementia, is characterized by a progressive decline in cognitive performance and memory formation. The present study was designed to investigate the effect of policosanol (PCO) on cognitive function, oxidative-antioxidative status, and amyloid-beta (Aβ) plaque formation in an AD rat model induced by intracerebroventricular (ICV) injection of Aβ1–40. Healthy adult male Wistar rats were randomly divided into seven groups: control, sham (5 μL, ICV injection of phosphate-buffered saline), AD model (5 μL, ICV injection of Aβ), acacia gum (50 mg/kg, 8 weeks, gavage), PCO (50 mg/kg, 8 weeks, gavage), AD + acacia gum (50 mg/kg, 8 weeks, gavage), and AD + PCO (50 mg/kg, 8 weeks, gavage). During the ninth and tenth weeks of the study, the cognitive function of the rats was assessed by commonly used behavioral paradigms. Subsequently, oxidative-antioxidative status was examined in the serum. Moreover, compact Aβ plaques were detected by Congo red staining. The results showed that injection of Aβ impaired recognition memory in the novel object recognition test, reduced the spatial cognitive ability in the Morris water maze, and alleviated retention and recall capability in the passive avoidance task. Additionally, injection of Aβ resulted in increased total oxidant status, decreased total antioxidant capacity, and enhanced Aβ plaque formation in the rats. Intriguingly, PCO treatment improved all the above-mentioned neuropathological changes in the Aβ-induced AD rats. The results suggest that PCO improves Aβ-induced cognitive decline, possibly through modulation of oxidative-antioxidative status and inhibition of Aβ plaque formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All relevant data and material are within the manuscript and its supporting information files.

References

  1. Ramachandran AK, Das S, Joseph A, Shenoy GG, Alex AT, Mudgal J (2021) Neurodegenerative pathways in Alzheimer’s disease: a review. Curr Neuropharmacol 19:679–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wenk GL (2003) Neuropathologic changes in Alzheimer’s disease. J Clin Psychiatry 64:7–10

    PubMed  Google Scholar 

  3. Huang H-C, Jiang Z-F (2009) Accumulated amyloid-β peptide and hyperphosphorylated tau protein: relationship and links in Alzheimer’s disease. J Alzheimer’s dis 16:15–27

    Article  CAS  Google Scholar 

  4. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1:a006189

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yan Y, Yang H, Xie Y, Ding Y, Kong D, Yu H (2020) Research progress on Alzheimer’s disease and resveratrol. Neurochem Res 45:989–1006

    Article  PubMed  Google Scholar 

  6. Belviranlı M, Okudan N (2019) Voluntary, involuntary and forced exercises almost equally reverse behavioral impairment by regulating hippocampal neurotrophic factors and oxidative stress in experimental Alzheimer’s disease model. Behav Brain Res 364:245–255

    Article  PubMed  Google Scholar 

  7. Abeysinghe A, Deshapriya R, Udawatte C (2020) Alzheimer’s disease; a review of the pathophysiological basis and therapeutic interventions. Life Sci 256:117996

    Article  CAS  PubMed  Google Scholar 

  8. Ionescu-Tucker A, Cotman CW (2021) Emerging roles of oxidative stress in brain aging and Alzheimer’s disease. Neurobiol Aging 107:86–95

    Article  CAS  PubMed  Google Scholar 

  9. Bai R, Guo J, Ye XY, Xie Y, Xie T (2022) Oxidative stress: the core pathogenesis and mechanism of Alzheimer’s disease. Ageing Res Rev 77:101619

    Article  CAS  PubMed  Google Scholar 

  10. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  CAS  PubMed  Google Scholar 

  11. Lee CC, Wu DY, Chen SY, Lin YP, Lee TM (2021) Exercise intensities modulate cognitive function in spontaneously hypertensive rats through oxidative mediated synaptic plasticity in hippocampus. J Cell Mol Med 25:8546–8557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Singh A, Kukreti R, Saso L, Kukreti S (2019) Oxidative stress: a key modulator in neurodegenerative diseases. Molecules 24:1583

  13. Rummel NG, Butterfield DA (2022) Altered metabolism in Alzheimer disease brain: role of oxidative stress. Antioxid Redox Signal 36:1289–1305

    Article  CAS  PubMed  Google Scholar 

  14. Uddin M, Kabir M (2019) Oxidative stress in Alzheimer’s disease: molecular hallmarks of underlying vulnerability. In: Biological, Diagnostic and Therapeutic Advances in Alzheimer's Disease: Springer, p 91–115.

  15. Aliev G, Obrenovich ME, Reddy VP, Shenk JC, Moreira PI, Nunomura A, Zhu X, Smith MA, Perry G (2008) Antioxidant therapy in Alzheimer’s disease: theory and practice. Mini Rev Med Chem 8:1395–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tadokoro K, Ohta Y, Inufusa H, Loon AFN, Abe K (2020) Prevention of cognitive decline in Alzheimer’s disease by novel antioxidative supplements. Int J Mol Sci 21:1974

  17. Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y (2020) Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol Neurodegener 15:40

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chen JX, Yan SD (2007) Amyloid-beta-induced mitochondrial dysfunction. J Alzheimers Dis 12:177–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Misrani A, Tabassum S, Yang L (2021) Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease. Front Aging Neurosci 13:617588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ferreira ST, Klein WL (2011) The Aβ oligomer hypothesis for synapse failure and memory loss in Alzheimer’s disease. Neurobiol Learn Mem 96:529–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rashno M, Gholipour P, Salehi I, Komaki A, Rashidi K, Khoshnam SE, Ghaderi S (2022) p-Coumaric acid mitigates passive avoidance memory and hippocampal synaptic plasticity impairments in aluminum chloride-induced Alzheimer’s disease rat model. J Funct Foods 94:105117

    Article  CAS  Google Scholar 

  22. Shen J, Luo F, Lin Q (2019) Policosanol: extraction and biological functions. J Funct Foods 57:351–360

    Article  CAS  Google Scholar 

  23. Musto D, Martorelli L, Russo M, Esposito G, Amato M, Esposito P, Riegler G (2010) Non-alcoholic hepatic steatosis: the role of policosanols in associated hyperlipidemia. Minerva Gastroenterol Dietol 56:389–395

    CAS  PubMed  Google Scholar 

  24. Gong J, Qin X, Yuan F, Hu M, Chen G, Fang K, Wang D, Jiang S, Li J, Zhao Y (2018) Efficacy and safety of sugarcane policosanol on dyslipidemia: a meta-analysis of randomized controlled trials. Mol Nutr Food Res 62:1700280

    Article  Google Scholar 

  25. Dulin MF, Hatcher LF, Sasser HC, Barringer TA (2006) Policosanol is ineffective in the treatment of hypercholesterolemia: a randomized controlled trial. Am J Clin Nutr 84:1543–1548

    Article  CAS  PubMed  Google Scholar 

  26. Sun L, Li X, Ma C, He Z, Zhang X, Wang C, Zhao M, Gan J, Feng Y (2022) Improving effect of the policosanol from Ericerus pela wax on learning and memory impairment caused by scopolamine in mice. Foods 11:2095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang X, Ma C, Sun L, He Z, Feng Y, Li X, Gan J, Chen X (2021) Effect of policosanol from insect wax on amyloid β-peptide-induced toxicity in a transgenic Caenorhabditis elegans model of Alzheimer’s disease. BMC Complement Med Ther 21:103

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ma J, Li K, Zhang W, Ma L, Xu J, Liu L, Chen X, Zhang H (2022) Acute toxicity and chromosomal aberration toxicity of insect wax and its policosanol. Food Sci Human Wellness 11:356–365

    Article  CAS  Google Scholar 

  29. Guerra YP, Cuevas VM, Ferreiro RM, Yera AO, Despaigne SJ (2015) Effects of policosanol pre-treatment on blood-brain barrier damage induced by ischemia-reperfusion in rats. Int J Pharm Sci Rev Res 32:1–6

    CAS  Google Scholar 

  30. Elseweidy MM, Zein N, Aldhamy SE, Elsawy MM, Saeid SA (2016) Policosanol as a new inhibitor candidate for vascular calcification in diabetic hyperlipidemic rats. Exp Biol Med 241:1943–1949

    Article  CAS  Google Scholar 

  31. Asadbegi M, Komaki A, Salehi I, Yaghmaei P, Ebrahim-Habibi A, Shahidi S, Sarihi A, Soleimani Asl S, Golipoor Z (2018) Effects of thymol on amyloid-β-induced impairments in hippocampal synaptic plasticity in rats fed a high-fat diet. Brain Res Bull 137:338–350

    Article  CAS  PubMed  Google Scholar 

  32. Lorenzo A, Yankner BA (1994) Beta-amyloid neurotoxicity requires fibril formation and is inhibited by Congo red. Proc Natl Acad Sci U S A 91:12243–12247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates: Elsevier Academic Press. San Diego, CA

  34. Zarrinkalam E, Heidarianpour A, Salehi I, Ranjbar K, Komaki A (2016) Effects of endurance, resistance, and concurrent exercise on learning and memory after morphine withdrawal in rats. Life Sci 157:19–24

    Article  CAS  PubMed  Google Scholar 

  35. Benzie IF, Strain J (1999) [2] Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol 299:15–27

    Article  CAS  PubMed  Google Scholar 

  36. Erel O (2005) A new automated colorimetric method for measuring total oxidant status. Clin Biochem 38:1103–1111

    Article  CAS  PubMed  Google Scholar 

  37. Ahmadi N, Safari S, Mirazi N, Karimi SA, Komaki A (2021) Effects of vanillic acid on Aβ(1–40)-induced oxidative stress and learning and memory deficit in male rats. Brain Res Bull 170:264–273

    Article  CAS  PubMed  Google Scholar 

  38. Park J, Lee SY, Shon J, Kim K, Lee HJ, Kim KA, Lee BY, Oh SH, Kim NK, Kim OJ (2019) Adalimumab improves cognitive impairment, exerts neuroprotective effects and attenuates neuroinflammation in an Aβ(1–40)-injected mouse model of Alzheimer’s disease. Cytotherapy 21:671–682

    Article  CAS  PubMed  Google Scholar 

  39. Ahmadi N, Mirazi N, Komaki A, Safari S, Hosseini A (2021) Vanillic acid attenuates amyloid β1-40-induced long-term potentiation deficit in male rats: an in vivo investigation. Neurol Res 43:562–569

    Article  CAS  PubMed  Google Scholar 

  40. Prediger RD, Franco JL, Pandolfo P, Medeiros R, Duarte FS, Di Giunta G, Figueiredo CP, Farina M, Calixto JB, Takahashi RN, Dafre AL (2007) Differential susceptibility following beta-amyloid peptide-(1–40) administration in C57BL/6 and Swiss albino mice: evidence for a dissociation between cognitive deficits and the glutathione system response. Behav Brain Res 177:205–213

    Article  CAS  PubMed  Google Scholar 

  41. Sun L, Li X, Ma C, He Z, Zhang X, Wang C, Zhao M, Gan J, Feng Y (2022) Improving effect of the policosanol from ericerus pela wax on learning and memory impairment caused by scopolamine in mice. Foods 11:2095

  42. Fontani G, Lodi L, Migliorini S, Corradeschi F (2009) Effect of omega-3 and policosanol supplementation on attention and reactivity in athletes. J Am Coll Nutr 28(Suppl):473s–481s

    Article  CAS  PubMed  Google Scholar 

  43. Betteridge DJ (2000) What is oxidative stress? Metab 49:3–8

    Article  CAS  Google Scholar 

  44. Garbarino VR, Orr ME, Rodriguez KA, Buffenstein R (2015) Mechanisms of oxidative stress resistance in the brain: lessons learned from hypoxia tolerant extremophilic vertebrates. Arch Biochem Biophys 576:8–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gholipour P, Komaki A, Parsa H, Ramezani M (2022) Therapeutic effects of high-intensity interval training exercise alone and its combination with ecdysterone against amyloid beta-induced rat model of Alzheimer’s disease: a behavioral, biochemical, and histological study. Neurochem Res 47:2090–2108

    Article  CAS  PubMed  Google Scholar 

  46. Gholipour P, Komaki A, Ramezani M, Parsa H (2022) Effects of the combination of high-intensity interval training and Ecdysterone on learning and memory abilities, antioxidant enzyme activities, and neuronal population in an amyloid-beta-induced rat model of Alzheimer’s disease. Physiol Behav 251:113817

    Article  CAS  PubMed  Google Scholar 

  47. Hasanzadeh Z, Nourazarian A, Nikanfar M, Laghousi D, Vatankhah AM, Sadrirad S (2021) Evaluation of the serum Dkk-1, tenascin-C, oxidative stress markers levels and Wnt signaling pathway genes expression in patients with Alzheimer’s disease. J Mol Neurosci 71:879–887

    Article  CAS  PubMed  Google Scholar 

  48. Franzoni F, Scarfò G, Guidotti S, Fusi J, Asomov M, Pruneti C (2021) Oxidative stress and cognitive decline: the neuroprotective role of natural antioxidants. Front Neurosci 15:729757

    Article  PubMed  PubMed Central  Google Scholar 

  49. Erel O (2004) A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 37:277–285

    Article  CAS  PubMed  Google Scholar 

  50. Cakirca G, Manav V, Celik H, Saracoglu G, Yetkin EN (2020) Effects of anxiety and depression symptoms on oxidative stress in patients with alopecia areata. Postepy Dermatol Alergol 37:412–416

    Article  PubMed  Google Scholar 

  51. Wang T, Liu YY, Wang X, Yang N, Zhu HB, Zuo PP (2010) Protective effects of octacosanol on 6-hydroxydopamine-induced Parkinsonism in rats via regulation of ProNGF and NGF signaling. Acta Pharmacol Sin 31:765–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Molina V, Ravelo Y, Noa M, Mas R, Pérez Y, Oyarzábal A, Mendoza N, Valle M, Jiménez S, Sánchez J (2013) Therapeutic effects of policosanol and atorvastatin against global brain ischaemia-reperfusion injury in gerbils. Indian J Pharm Sci 75:635–641

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Rahman MM, Lendel C (2021) Extracellular protein components of amyloid plaques and their roles in Alzheimer’s disease pathology. Mol Neurodegener 16:59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Araki W, Kametani F (2022) Protection against amyloid-β oligomer neurotoxicity by small molecules with antioxidative properties: potential for the prevention of Alzheimer’s disease dementia. Antioxidants 11:132

  55. Simunkova M, Alwasel SH, Alhazza IM, Jomova K, Kollar V, Rusko M, Valko M (2019) Management of oxidative stress and other pathologies in Alzheimer’s disease. Arch Toxicol 93:2491–2513

    Article  CAS  PubMed  Google Scholar 

  56. Calvo-Rodriguez M, Hou SS, Snyder AC, Kharitonova EK, Russ AN, Das S, Fan Z, Muzikansky A, Garcia-Alloza M, Serrano-Pozo A, Hudry E, Bacskai BJ (2020) Increased mitochondrial calcium levels associated with neuronal death in a mouse model of Alzheimer’s disease. Nat Commun 11:2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cascella R, Cecchi C (2021) Calcium Dyshomeostasis in Alzheimer’s Disease Pathogenesis. Int J Mol Sci 22:4914

  58. Oliver DMA, Reddy PH (2019) Small molecules as therapeutic drugs for Alzheimer’s disease. Mol Cell Neurosci 96:47–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Giordano CR, Terlecky LJ, Bollig-Fischer A, Walton PA, Terlecky SR (2014) Amyloid-beta neuroprotection mediated by a targeted antioxidant. Sci Rep 4:4983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Manczak M, Mao P, Calkins MJ, Cornea A, Reddy AP, Murphy MP, Szeto HH, Park B, Reddy PH (2010) Mitochondria-targeted antioxidants protect against amyloid-beta toxicity in Alzheimer’s disease neurons. J Alzheimers Dis 20(Suppl 2):S609-631

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ono K, Hamaguchi T, Naiki H, Yamada M (2006) Anti-amyloidogenic effects of antioxidants: implications for the prevention and therapeutics of Alzheimer’s disease. Biochim Biophys Acta 1762:575–586

    Article  CAS  PubMed  Google Scholar 

  62. Rajasekhar K, Samanta S, Bagoband V, Murugan NA, Govindaraju T (2020) Antioxidant berberine-derivative inhibits multifaceted amyloid toxicity. iScience 23:101005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tramutola A, Lanzillotta C, Perluigi M, Butterfield DA (2017) Oxidative stress, protein modification and Alzheimer disease. Brain Res Bull 133:88–96

    Article  CAS  PubMed  Google Scholar 

  64. Marsillach J, Adorni MP, Zimetti F, Papotti B, Zuliani G, Cervellati C (2020) HDL proteome and Alzheimer’s disease: evidence of a link. Antioxidants 9:1224

  65. Wingo TS, Cutler DJ, Wingo AP, Le NA, Rabinovici GD, Miller BL, Lah JJ, Levey AI (2019) Association of early-onset Alzheimer disease with elevated low-density lipoprotein cholesterol levels and rare genetic coding variants of APOB. JAMA Neurol 76:809–817

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lewis TL, Cao D, Lu H, Mans RA, Su YR, Jungbauer L, Linton MF, Fazio S, LaDu MJ, Li L (2010) Overexpression of human apolipoprotein A-I preserves cognitive function and attenuates neuroinflammation and cerebral amyloid angiopathy in a mouse model of Alzheimer disease. J Biol Chem 285:36958–36968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Reitz C, Tang MX, Schupf N, Manly JJ, Mayeux R, Luchsinger JA (2010) Association of higher levels of high-density lipoprotein cholesterol in elderly individuals and lower risk of late-onset Alzheimer disease. Arch Neurol 67:1491–1497

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zhou Z, Liang Y, Zhang X, Xu J, Lin J, Zhang R, Kang K, Liu C, Zhao C, Zhao M (2020) Low-density lipoprotein cholesterol and Alzheimer’s disease: a systematic review and meta-analysis. Front Aging Neurosci 12:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Castaño G, Menéndez R, Más R, Amor A, Fernández JL, González RL, Lezcay M, Alvarez E (2002) Effects of policosanol and lovastatin on lipid profile and lipid peroxidation in patients with dyslipidemia associated with type 2 diabetes mellitus. Int J Clin Pharmacol Res 22:89–99

    PubMed  Google Scholar 

  70. Gong J, Qin X, Yuan F, Hu M, Chen G, Fang K, Wang D, Jiang S, Li J, Zhao Y (2018) Efficacy and safety of sugarcane policosanol on dyslipidemia: A meta‐analysis of randomized controlled trials. Mol Nutri Food Res 62:1700280

Download references

Acknowledgements

The authors are grateful to the staff of the Neurophysiology Research Center, Hamadan University of Medical Sciences, for the role they had in doing this project.

Funding

The current study was funded (Grant No. IR.BASU.REC.1399.371) by the Faculty of Basic Sciences, Bu-Ali Sina University, Hamedan, Iran.

Author information

Authors and Affiliations

Authors

Contributions

Samaneh Safari: study concept and design, data acquisition, data analysis, interpretation, drafting of the manuscript, critical revision of the manuscript for important intellectual content, and statistical analysis.

Naser Mirazi: supervision, conceptualization, writing, review and editing, and data curation.

Nesa Ahmadi: preparation of the original draft and resources.

Masoumeh Asadbegi: data analysis and interpretation, formal analysis, and software validation.

Alireza Nourian: method validation.

Shahab Ghaderi: data analysis and revision of the manuscript.

Masome Rashno: data analysis and revision of the manuscript.

Alireza Komaki: study concept and design, critical revision of the manuscript for important intellectual content, and study supervision.

Corresponding author

Correspondence to Alireza Komaki.

Ethics declarations

Ethics Approval

According to the Guidelines of the National Institutes of Health, the experiments were carried out on the principles of laboratory animal care (NIH Publication 80–23, 1996). The Local Ethical Committee approved all planned experimental procedures.

Consent to Participate

Because this research has been done on animal models, “Consent to Participate” is not relevant.

Consent for Publication

All authors read and approved the final manuscript. All authors of this article are completely satisfied with its publication.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper was carried out as a part of Samaneh Safari’s MSc thesis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safari, S., Mirazi, N., Ahmadi, N. et al. The Protective Effects of Policosanol on Learning and Memory Impairments in a Male Rat Model of Alzheimer’s Disease. Mol Neurobiol 60, 2507–2519 (2023). https://doi.org/10.1007/s12035-023-03225-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03225-x

Keywords

Navigation