Skip to main content
Log in

Hard X-ray polarimetry—an overview of the method, science drivers, and recent findings

  • Review
  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

The last decade has seen a leapfrog in the interest of X-ray polarimetry with a number of new polarization measurements in hard X-rays from AstroSat, POLAR, GAP, and PoGO+. The measurements provide some interesting insights into various astrophysical phenomena such as coronal geometry and disk–jet connection in black hole X-ray binaries, hard X-ray emission mechanism in pulsars, and gamma-ray bursts. They also highlight an increase in polarization with energy, which makes hard X-ray polarimetry extremely appealing. There are a number of confirmed hard X-ray polarimetry experiments which along with the existing instruments (AstroSat and INTEGRAL) make this field further exciting. Polarization experiments may also see significant progress in sensitivity with new developments in scintillator readouts, active pixel sensors, and cadmium zinc telluride detectors. In particular, the advent of hard X-ray focusing optics will enable the designing of compact focal plane polarimeters with a multifold enhancement in sensitivity. In this review, we will focus on the recent polarimetry findings and science potential of hard X-ray polarimetry along with possible improvements in the measurement techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32

Similar content being viewed by others

Notes

  1. https://www.star-iitb.in/research/daksha.

  2. https://eljentechnology.com/products/plastic-scintillators.

  3. https://www.crystals.saint-gobain.com/products/bc-408-bc-412-bc-416.

  4. http://www.cryos-beta.kharkov.ua/organic.php.

  5. https://www.hamamatsu.com/us/en/product/optical-sensors/pmt/index.html.

  6. https://www.hamamatsu.com/us/en/product/optical-sensors/mppc/index.html.

  7. https://www.ketek.net/sipm/.

References

  • Agrawal P. C. 2006, Adv. Space Res., 38, 2989

    Article  ADS  Google Scholar 

  • Aharonian F., Akamatsu H., Akimoto F. et al. 2018, Publ. Astron. Soc. Japan, 70, 113, https://doi.org/10.1093/pasj/psy118

  • Angel J. R. P., Weisskopf M. C. 1970, Astron. J., 75, 231

    Article  ADS  Google Scholar 

  • Angel J. R., Novick R., vanden Bout P. et al. 1969, Phys. Rev. Lett., 22, 861

  • Asakura K., Hayashida K., Hanasaka T. et al. 2019, X-ray imaging polarimetry with a 2.5-m pixel CMOS sensor for visible light at room temperature, preprint arXiv:1906.00012

  • Bai T., Ramaty R. 1978, Astrophys. J., 219, 705

    Article  ADS  Google Scholar 

  • Bai Y., Bajaj J., Beletic J. W. et al. 2008, Proc. SPIE – Int. Soc. Opt. Eng., 7021, 702102

  • Baring M. G., Harding A. K. 2006, Resonant compton upscattering in anomalous X-ray pulsars, preprint arXiv:astro-ph/0610382

  • Barrière N. M., Natalucci L., Ubertini P. 2011, Hard X/soft gamma ray polarimetry using a Laue lens, preprint arXiv:1109.1313

  • Barthelmy S. D., Barbier L. M., Cummings J. R. et al. 2005, Space Sci. Rev., 120, 143

    Article  ADS  Google Scholar 

  • Basak R., Rao A. R. 2015, Astrophys. J., 807, 34

    Article  ADS  Google Scholar 

  • Beilicke M., Kislat F., Zajczyk A. et al. 2014, J. Astron. Instrum., 3, 40008

    Article  Google Scholar 

  • Bellazzini R., Angelini F., Baldini L. et al. 2006, Nucl. Instrum. Methods Phys. Res. A, 560, 425

    Article  ADS  Google Scholar 

  • Bellazzini R., Spandre G., Minuti M. et al. 2007, Nucl. Instrum. Methods Phys. Res. A, 579, 853

    Article  ADS  Google Scholar 

  • Beloborodov A. M. 2012, Astrophys. J., 762, 13

    Article  ADS  Google Scholar 

  • Bhalerao V., Bhattacharya D., Vibhute A. et al. 2017, J. Astrophys. Astron., 38, 31

    Article  ADS  Google Scholar 

  • Black J. K., Baker R. G., Deines-Jones P. et al. 2007, Nucl. Instrum. Methods Phys. Res. A, 581, 755

    Article  ADS  Google Scholar 

  • Bloser P. F., Legere J. S., McConnell M. L. et al. 2009, Nucl. Instrum. Methods Phys. Res. A, 600, 424

    Article  ADS  Google Scholar 

  • Bloser P. F., Legere J., Bancroft C. et al. 2013, Proc. SPIE – Int. Soc. Opt. Eng., 8859, 88590A

  • Boggs S. E., Coburn W., Kalemci E. 2006, Astrophys. J., 638, 1129

    Article  ADS  Google Scholar 

  • Bogomolov A. V., Denisov Y. I., Kuznetsov S. N. et al. 2003, Solar Syst. Res., 37, 112

    ADS  Google Scholar 

  • Buzhan P., Dolgoshein B., Ilyin A. et al. 2002, in Barone M., Borchi E., Huston J. et al. (eds). Advanced Technology and Particle Physics, World Scientific, Italy. p 717

  • Buzhan P., Dolgoshein B., Filatov L. et al. 2003, Nucl. Instrum. Methods Phys. Res. A, 504, 48

    Article  ADS  Google Scholar 

  • Bykov A. M., Uvarov Y. A., Bloemen J. B. G. M. et al. 2009, Mon. Not. R. Astron. Soc., 399, 1119

    Article  ADS  Google Scholar 

  • Caroli E., Alvarez J. M., Auricchio N. et al. 2012, Proc. SPIE – Int. Soc. Opt. Eng., 8443, 844340

  • Caroli E., Moita M., da Silva R. et al. 2018, Galaxies, 6, 69

    Article  ADS  Google Scholar 

  • Cebrián S., Cuesta C., Amaré J. et al. 2012, Astropart. Phys., 37, 60

    Article  ADS  Google Scholar 

  • Celotti A., Matt G. 1994, Mon. Not. R. Astron. Soc., 268, 451

    Article  ADS  Google Scholar 

  • Chand V., Chattopadhyay T., Iyyani S. et al. 2018, Astrophys. J., 862, 154

    Article  ADS  Google Scholar 

  • Chand V., Chattopadhyay T., Oganesyan G. et al. 2019, Astrophys. J., 874, 70

    Article  ADS  Google Scholar 

  • Chattopadhyay T., Vadawale S. V., Pendharkar J. 2013, Exp. Astron., 35, 391

    Article  ADS  Google Scholar 

  • Chattopadhyay T., Vadawale S. V., Rao A. R. et al. 2014a, Exp. Astron., 37, 555

    Article  ADS  Google Scholar 

  • Chattopadhyay T., Vadawale S. V., Shanmugam M. et al. 2014b, Astrophys. J. Suppl., 212, 12

    Article  ADS  Google Scholar 

  • Chattopadhyay T., Vadawale S., Goyal S. et al. 2015, Exp. Astron., 41, 1

  • Chattopadhyay T., Vadawale S. V., Rao A. R. et al. 2016, Proc. SPIE – Int. Soc. Opt. Eng., 9905, 99054D

  • Chattopadhyay T., Falcone A. D., Burrows D. N. et al. 2018, Proc. SPIE – Int. Soc. Opt. Eng., 10699, 106992E

  • Chattopadhyay T., Vadawale S. V., Aarthy E. et al. 2019, Astrophys. J., 884, 123

    Article  ADS  Google Scholar 

  • Chauvin M., Roques J. P., Clark D. J. et al. 2013, Astrophys. J., 769, 137

    Article  ADS  Google Scholar 

  • Chauvin M., Jackson M., Kawano T. et al. 2016a, Astropart. Phys., 82, 99

    Article  ADS  Google Scholar 

  • Chauvin M., Jackson M., Kawano T. et al. 2016b, Astropart. Phys., 72, 1

    Article  ADS  Google Scholar 

  • Chauvin M., Florén H. G., Friis M. et al. 2018a, Nature Astron., 2, 652

    Article  ADS  Google Scholar 

  • Chauvin M., Florén H. G., Friis M. et al. 2018b, Mon. Not. R. Astron. Soc., 477, L45

    Article  ADS  Google Scholar 

  • Chauvin M., Florén H.-G., Jackson M. et al. 2019, Mon. Not. R. Astron. Soc., 483, L138

    Article  ADS  Google Scholar 

  • Cheng K. S., Ruderman M., Zhang L. 2000, Astrophys. J., 537, 964

    Article  ADS  Google Scholar 

  • Coburn W., Boggs S. E. 2003, Nature, 423, 415

    Article  ADS  Google Scholar 

  • Costa E., Soffitta P., Bellazzini R. et al. 2001, Nature, 411, 662

    Article  ADS  Google Scholar 

  • Covino S., Gotz D. 2016, Astron. Astrophys. Trans., 29, 205

    ADS  Google Scholar 

  • Daugherty J. K., Harding A. K. 1982, Astrophys. J., 252, 337

    Article  ADS  Google Scholar 

  • De Angelis A., Tatischeff V., Grenier I. et al. 2018, J. High Energy Astrophys., 19, 1

    Article  ADS  Google Scholar 

  • Dean A. J., Clark D. J., Stephen J. B. et al. 2008, Science, 321, 1183

    Article  ADS  Google Scholar 

  • den Hartog P. R., Kuiper L., Hermsen W. et al. 2008, Detailed high-energy characteristics of AXP 4U 0142+61—multi-year observations with INTEGRAL, RXTE, XMM-Newton and ASCA, preprint arXiv:0804.1640

  • Dergachev V. A., Matveev G. A., Kruglov E. M. et al. 2009, Bull. Russ. Acad. Sci. Phys., 73, 419

    Article  Google Scholar 

  • Dovčiak M., Muleri F., Goosmann R. W. et al. 2008, Mon. Not. R. Astron. Soc., 391, 32

    Article  ADS  Google Scholar 

  • Duncan R. C., Thompson C. 1992, Astrophys. J. Lett., 392, L9

    Article  ADS  Google Scholar 

  • Dyks J., Rudak B. 2003, Astrophys. J., 598, 1201

    Article  ADS  Google Scholar 

  • Elsner R. F., Ramsey B. D., O’dell S. L. et al. 1997, in Bulletin of the American Astronomical Society, Vol. 29, American Astronomical Society Meeting Abstracts #190, p 790

  • Emslie A. G., Brown J. C. 1980, Astrophys. J., 237, 1015

    Article  ADS  Google Scholar 

  • Enoto T., Shibata S., Kitaguchi T. et al. 2017, Magnetar broadband X-ray spectra correlated with magnetic fields: Suzaku archive of SGRs and AXPs combined with NuSTAR, Swift, and RXTE, preprint arXiv:1704.07018

  • Esposito P., Rea N., Israel G. L. 2018, Magnetars: a short review and some sparse considerations, preprint arXiv:1803.05716

  • Fabiani S. 2018, Galaxies, 6, 54

    Article  ADS  Google Scholar 

  • Fabiani S., Campana R., Costa E. et al. 2013, Astropart. Phys., 44, 91

    Article  ADS  Google Scholar 

  • Feng H., Li H., Long X. et al. 2020, Nature Astron., 4, 511

    Article  ADS  Google Scholar 

  • Forot M., Laurent P., Grenier I. A. et al. 2008, Astrophys. J. Lett., 688, L29

    Article  ADS  Google Scholar 

  • Friis M., Kiss M., Mikhalev V. et al. 2018, Galaxies, 6, 30

    Article  ADS  Google Scholar 

  • Gehrels N., Mészáros P. 2012, Science, 337, 932

    Article  ADS  Google Scholar 

  • Gehrels N., Chincarini G., Giommi P. et al. 2004, Astrophys. J., 611, 1005

    Article  ADS  Google Scholar 

  • Ghisellini G., Celotti A. 1999, Astrophys. J. Lett., 511, L93

    Article  ADS  Google Scholar 

  • Ghisellini G., Lazzati D. 1999, Mon. Not. R. Astron. Soc., 309, L7

    Article  ADS  Google Scholar 

  • Ghisellini G., Lazzati D., Celotti A. et al. 2000, Mon. Not. R. Astron. Soc., 316, L45

    Article  ADS  Google Scholar 

  • Gill R., Granot J., Kumar P. 2018, arXiv e-prints, preprint arXiv:1811.11555

  • Goosmann R. W., Matt G. 2011, Mon. Not. R. Astron. Soc., 415, 3119

    Article  ADS  Google Scholar 

  • Götz D., Laurent P., Lebrun F. et al. 2009, Astrophys. J. Lett., 695, L208

    Article  ADS  Google Scholar 

  • Götz D., Covino S., Fernández-Soto A. et al. 2013, Mon. Not. R. Astron. Soc., 431, 3550

  • Götz D., Laurent P., Antier S. et al. 2014, Mon. Not. R. Astron. Soc., 444, 2776

    Article  ADS  Google Scholar 

  • Gowen R. A., Cooke B. A., Griffiths R. E. et al. 1977, Mon. Not. R. Astron. Soc., 179, 303

    Article  ADS  Google Scholar 

  • Goyal S. K., Naik A. P., Mithun N. P. S. et al. 2018, J. Astron. Telescopes, Instrum. Syst., 5, 1

  • Granot J., Königl A. 2003, Astrophys. J. Lett., 594, L83

    Article  ADS  Google Scholar 

  • Griffith C. V., Falcone A. D., Prieskorn Z. R. et al. 2016, J. Astron. Telescopes, Instrum. Syst., 2, 016001

  • Griffiths R. E., Ricketts M. J., Cooke B. A. 1976, Mon. Not. R. Astron. Soc., 177, 429

    Article  ADS  Google Scholar 

  • Gruner S. M., Tate M. W., Eikenberry E. F. 2002, Rev. Sci. Instrum., 73, 2815

    Article  ADS  Google Scholar 

  • Gunji S., Kishimoto Y., Sakurai H. et al. 2008, in Polarimetry Days in Rome: Crab Status, Theory and Prospects, Proceedings of Science, Rome, Italy, p 5

  • Guo Q., Garson A., Beilicke M. et al. 2011, ArXiv e-prints, preprint arXiv:1101.0595

  • Guo Q., Beilicke M., Garson A. et al. 2013, Astropart. Phys., 41, 63

    Article  ADS  Google Scholar 

  • Hahn C., Weber G., Märtin R. et al. 2016, Rev. Sci. Instrum., 87, 043106

    Article  ADS  Google Scholar 

  • Harding A. K. 2019, Astrophys. Space Sci. Libr. 460, 277

    Article  ADS  Google Scholar 

  • Harrison F. A., Craig W. W., Christensen F. E. et al. 2013, Astrophys. J., 770, 103

    Article  ADS  Google Scholar 

  • Hayashida K., Yonetoku D., Gunji S. et al. 2014, Proc. SPIE – Int. Soc. Opt. Eng., 9144, 91440K

  • Heitler W. 1954, International Series of Monographs on Physics, 3rd edn., Clarendon, Oxford

  • Heyl J. S., Shaviv N. J. 2002, Phys. Rev. D, 66, 023002

    Article  ADS  Google Scholar 

  • Hill J. E., Holland A. D., Castelli C. M. et al. 1997, Proc. SPIE – Int. Soc. Opt. Eng., 3114, 241

  • Hong J., Allen B., Grindlay J. et al. 2009, Nucl. Instrum. Methods Phys. Res. A, 605, 364

    Article  ADS  Google Scholar 

  • Hughes J. P., Long K. S., Novick R. 1984, Astrophys. J., 280, 255

    Article  ADS  Google Scholar 

  • Hull S. V., Falcone A. D., Burrows D. N. et al. 2017, Proc. SPIE – Int. Soc. Opt. Eng., 10397, 1039704

  • Ichiro S., Takahashi T., Watanabe S. et al. 2008, SPIE Newsroom

  • Iyudin A., Bogomolov V., Svertilov S. et al. 2009, Instrum. Exp. Tech. (Engl. Transl.), 52, 774

  • Iyyani S., Ryde F., Ahlgren B. et al. 2015, Mon. Not. R. Astron. Soc., 450, 1651

    Article  ADS  Google Scholar 

  • Jahoda K. 2010, Proc. SPIE – Int. Soc. Opt. Eng., 7732, 77320W

  • Jeffrey N. L. S., Kontar E. P. 2011, Astron. Astrophys., 536, A93

    Article  ADS  Google Scholar 

  • Jourdain E., Roques J.-P. 2019, Astrophys. J., 882, 129

    Article  ADS  Google Scholar 

  • Jourdain E., Roques J. P., Chauvin M. et al. 2012, Astrophys. J., 761, 27

    Article  ADS  Google Scholar 

  • Kaaret P. 2014, preprint arXiv:1408.5899

  • Kaaret P. E., Schwartz J., Soffitta P. et al. 1994, Proc. SPIE – Int. Soc. Opt. Eng., 2010, 22

  • Kalemci E., Matteson J. L. 2002, Nucl. Instrum. Methods Phys. Res. A, 478, 527

    Article  ADS  Google Scholar 

  • Kalemci E., Boggs S. E., Kouveliotou C. et al. 2007, Astrophys. J., 169, 75

    Article  Google Scholar 

  • Kantzas D., Markoff S., Beuchert T. et al. 2020, Mon. Not. R. Astron. Soc., 500, 2112

    Article  ADS  Google Scholar 

  • Kaspi V. M., Beloborodov A. M. 2017, Annu. Rev. Astron. Astrophys., 55, 261

    Article  ADS  Google Scholar 

  • Kim J. C., Anderson S. E., Kaye W. et al. 2011, Nucl. Instrum. Methods Phys. Res. A, 654, 233

    Article  ADS  Google Scholar 

  • Kim Y., Lee T., Lee W. 2019, Nucl. Eng. Technol., 51, 1417

    Article  Google Scholar 

  • Kirk J. G., Skjæraasen O., Gallant Y. A. 2002, Astron. Astrophys., 388, L29

    Article  ADS  Google Scholar 

  • Kishimoto Y., Gunji S., Ishigaki Y. et al. 2007, IEEE Trans. Nucl. Sci., 54, 561

    Article  ADS  Google Scholar 

  • Kislat F., Abarr Q., Bose R. et al. 2019, AAS/High Energy Astrophysics Division. p 109.78

  • Kole M. 2019, in 36th International Cosmic Ray Conference (ICRC2019), Madison, WI, USA, p 572

  • Kole M., De Angelis N., Berlato F. et al. 2020, Astron. Astrophys., 644, A124

    Article  Google Scholar 

  • Kotov Y. D., Yurov V. N., Glyanenko A. S. et al. 2016, Adv. Space Res., 58, 635

    Article  ADS  Google Scholar 

  • Kotthaus R., Buschhorn G., Rzepka M. et al. 1998, Proc. SPIE – Int. Soc. Opt. Eng., 3443, 105

  • Krawczynski H., Garson A., Guo Q. et al. 2011, Astropart. Phys., 34, 550

    Article  ADS  Google Scholar 

  • Kumar P., Zhang B. 2015, Phys. Rep., 561, 1

    Article  ADS  Google Scholar 

  • Kunieda H., Awaki H., Furuzawa A. et al. 2010, Proc. SPIE – Int. Soc. Opt. Eng., 7732, 773214

  • Kuvvetli I., Budt\(z\)-Jørgensen C., Zappettini A. et al. 2014, Proc. SPIE – Int. Soc. Opt. Eng., 9154, 272

  • Laurent P., Rodriguez J., Wilms J. et al. 2011, Science, 332, 438

    Article  ADS  Google Scholar 

  • Laurent P., Gouiffes C., Rodriguez J. et al. 2017, PoS(INTEGRAL2016)022

  • Lazzati D., Rossi E., Ghisellini G. et al. 2004, Mon. Not. R. Astron. Soc., 347, L1

    Article  ADS  Google Scholar 

  • Leach J., Emslie A. G., Petrosian V. 1985, Solar Phys., 96, 331

    Article  ADS  Google Scholar 

  • Lei F., Dean A. J., Hills G. L. 1997, Space Sci. Rev., 82, 309

    Article  ADS  Google Scholar 

  • Lesser M. 2015, Publ. Astron. Soc. Pacific, 127, 1097

    Article  ADS  Google Scholar 

  • Llopart X., Ballabriga R., Campbell M. et al. 2007, Nucl. Instrum. Methods Phys. Res. A, 581, 485

    Article  ADS  Google Scholar 

  • Long K. S., Chanan G. A., Novick R. 1980, Astrophys. J., 238, 710

    Article  ADS  Google Scholar 

  • Lowell A. W., Boggs S. E., Chiu C. L. et al. 2017, Astrophys. J., 848, 120

    Article  ADS  Google Scholar 

  • Lumb D. H., Berthiaume G. D., Burrows D. N. et al. 1991, Exp. Astron., 2, 179

    Article  ADS  Google Scholar 

  • Lyutikov M., Pariev V. I., Blandford R. D. 2003, Astrophys. J., 597, 998

    Article  ADS  Google Scholar 

  • Madsen K. K., Reynolds S., Harrison F. et al. 2015, Astrophys. J., 801, 66

    Article  ADS  Google Scholar 

  • Marin F. 2018, Galaxies, 6, 38

    Article  ADS  Google Scholar 

  • Markoff S., Falcke H., Fender R. 2001, Astron. Astrophys., 372, L25

    Article  ADS  Google Scholar 

  • Marshall H. L., Murray S. S., Chappell J. H. et al. 2003, Proc. SPIE – Int. Soc. Opt. Eng., 4843, 360

  • Marshall H. L., Heilmann R. K., Schulz N. S. et al. 2010, Proc. SPIE – Int. Soc. Opt. Eng., 7732, 103

  • Marshall H. L., Günther H. M., Heilmann R. K. et al. 2018, J. Astron. Telescopes, Instrum. Syst., 4, 1

  • McConnell M. L., Ryan J. M., Smith D. M. et al. 2002, Solar Phys., 210, 125

    Article  ADS  Google Scholar 

  • McConnell M. L., Ryan J. M., Smith D. M. et al. 2007, in American Astronomical Society Meeting Abstracts, Vol. 210, American Astronomical Society Meeting Abstracts #210, p 93.01

  • McConnell M. L., Bancroft C., Bloser P. F. et al. 2009, Proc. SPIE – Int. Soc. Opt. Eng., 7435, 74350J

  • McConnell M. L. 2016, ArXiv e-prints, preprint arXiv:1611.06579

  • McConnell M. L., LEAP Collaboration. 2016, in Eighth Huntsville Gamma-Ray Burst Symposium, Vol. 1962, 4051

  • McConnell M. L., Bloser P. F., Legere J. S. et al. 2018, Proc. SPIE – Int. Soc. Opt. Eng., 10699, 659

  • McConnell M., Ajello M., Baring M. et al. 2019, Bull. AAS, 51, 100

    Google Scholar 

  • McEnery J., Barrio J. A., Agudo I. et al. 2019, All-sky medium energy gamma-ray observatory: exploring the extreme multimessenger universe, preprint arXiv:1907.07558

  • McGlynn S., Clark D. J., Dean A. J. et al. 2007, Astron. Astrophys., 466, 895

    Article  ADS  Google Scholar 

  • McGlynn S., Foley S., McBreen B. et al. 2009, Astron. Astrophys., 499, 465

    Article  ADS  Google Scholar 

  • McNamara A. L., Kuncic Z., Wu K. 2009, Mon. Not. R. Astron. Soc., 395, 1507

    Article  ADS  Google Scholar 

  • Medvedev M. V. 2007, Astrophys. Space Sci., 307, 245

    Article  ADS  Google Scholar 

  • Medvedev M. V., Loeb A. 1999, Astrophys. J., 526, 697

    Article  ADS  Google Scholar 

  • Meegan C., Lichti G., Bhat P. N. et al. 2009, Astrophys. J., 702, 791

    Article  ADS  Google Scholar 

  • Mereghetti S., Pons J. A., Melatos A. 2015, Space Sci. Rev., 191, 315

    Article  ADS  Google Scholar 

  • Meszaros P., Rees M. J. 1993, Astrophys. J., 405, 278

    Article  ADS  Google Scholar 

  • Meszaros P., Novick R., Szentgyorgyi A. et al. 1988, Astrophys. J., 324, 1056

    Article  ADS  Google Scholar 

  • Mi W., Nillius P., Pearce M. et al. 2019, Nature Astron., 3, 867

    Article  ADS  Google Scholar 

  • Michel T., Durst J. 2008, Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip., 594, 188

  • Moran P., Shearer A., Gouiffes C. et al. 2013, ArXiv e-prints, preprint arXiv:1302.3622

  • Nakamura Y., Shibata S. 2007, Mon. Not. R. Astron. Soc., 381, 1489

    Article  ADS  Google Scholar 

  • Nakar E., Piran T., Waxman E. 2003, J. Cosmol. Astropart. Phys., 10, 005

    Article  ADS  Google Scholar 

  • Nandi A., Palit S., Debnath D. et al. 2011, Exp. Astron., 29, 55

    Article  ADS  Google Scholar 

  • Novick R. 1975, Space Sci. Rev., 18, 389

    Article  ADS  Google Scholar 

  • Novick R., Weisskopf M. C., Berthelsdorf R. et al. 1972, Astrophys. J. Lett., 174, L1

    Article  ADS  Google Scholar 

  • Orsi S., Polar Collaboration. 2011, Astrophys. Space Sci. Trans., 7, 43

    Article  ADS  Google Scholar 

  • Otte N. 2006, in IX International Symposium on Detectors for Particle, Astroparticle and Synchrotron Radiation Experiments, SNIC Symposium, Stanford, California, p 1

  • Paul B., Rishin P. V., Maitra C. et al. 2010, in The First Year of MAXI: Monitoring Variable X-ray Sources, 68P

  • Paul B., Gopala Krishna M. R., Puthiya Veetil R. 2016, in 41st COSPAR Scientific Assembly, Vol. 41, p E1.15-8-16

  • Pavlov G. G., Zavlin V. E. 2000, Astrophys. J., 529, 1011

    Article  ADS  Google Scholar 

  • Pearce M., Eliasson L., Kumar Iyer N. et al. 2019, Astropart. Phys., 104, 54

    Article  ADS  Google Scholar 

  • Pe’er A., Ryde F. 2011, Astrophys. J., 732, 49

    Article  ADS  Google Scholar 

  • Pétri J., Kirk J. G. 2005, Astrophys. J. Lett., 627, L37

    Article  ADS  Google Scholar 

  • Produit N., Bao T., Batsch T. et al. 2018, Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip., 877, 259

  • Rao A. R., Chand V., Hingar M. K. et al. 2016, Astrophys. J., 833, 86

    Article  ADS  Google Scholar 

  • Rea N., Esposito P. 2010, Magnetar outbursts: an observational review. In: Torrel D., Rea A. (eds) High-energy emission from pulsars and their sysytems. Astrophys. Space Sci. Proc., Springer, Beriln, Heidelberg. https://doi.org/10.1007/978-3-642-17251-9_21.

  • Romani R. W., Miller A. J., Cabrera B. et al. 2001, Astrophys. J., 563, 221

    Article  ADS  Google Scholar 

  • Romero G. E., Vieyro F. L., Chaty S. 2014, Astron. Astrophys., 562, L7

    Article  ADS  Google Scholar 

  • Roques J.-P., Jourdain E., Bassani L. et al. 2012, Exp. Astron., 34, 489

    Article  ADS  Google Scholar 

  • Rutledge R. E., Fox D. B. 2004, Mon. Not. R. Astron. Soc., 350, 1288

    Article  ADS  Google Scholar 

  • Ryde F. 2004, Astrophys. J., 614, 827

    Article  ADS  Google Scholar 

  • Sanaei B., Baei M. T., Sayyed-Alangi S. Z. 2015, J. Mod. Phys., 6, 425

    Article  Google Scholar 

  • Sari R. 1999, Astrophys. J. Lett., 524, L43

    Article  ADS  Google Scholar 

  • Sauli F. 1997, Nucl. Instrum. Methods Phys. Res. A, 386, 531

    Article  ADS  Google Scholar 

  • Sazonov S. Y., Sunyaev R. A. 2001, Astron. Astrophys., 373, 241

    Article  ADS  Google Scholar 

  • Schnittman J. D., Krolik J. H. 2009, Astrophys. J., 701, 1175

    Article  ADS  Google Scholar 

  • Schnittman J. D., Krolik J. H. 2010, Astrophys. J., 712, 908

    Article  ADS  Google Scholar 

  • Schnopper H. W., Kalata K. 1969, Astron. J., 74, 854

    Article  ADS  Google Scholar 

  • Shahbaz T., Russell D. M., Covino S. et al. 2016, Mon. Not. R. Astron. Soc., 463, 1822

    Article  ADS  Google Scholar 

  • Sharma V., Iyyani S., Bhattacharya D. et al. 2019, arXiv e-prints, preprint arXiv:1908.10885

  • Shaviv N. J., Dar A. 1995, Astrophys. J., 447, 863

    Article  ADS  Google Scholar 

  • Silver E. H., Weisskopf M. C., Kestenbaum H. L. et al. 1979, Astrophys. J., 232, 248

    Article  ADS  Google Scholar 

  • Silver E., Holley J., Ziock K. et al. 1990, Opt. Eng., 29, 759

    Article  ADS  Google Scholar 

  • Singh K. P., Tandon S. N., Agrawal P. C. et al. 2014, Proc. SPIE – Int. Soc. Opt. Eng., 9144, 91441S

  • Słowikowska A., Kanbach G., Kramer M. et al. 2009, Mon. Not. R. Astron. Soc., 397, 103

    Article  ADS  Google Scholar 

  • Smith F. G., Jones D. H. P., Dick J. S. B. et al. 1988, Mon. Not. R. Astron. Soc., 233, 305

    Article  ADS  Google Scholar 

  • Soffitta P. 1997, X-ray polarimetry an almost new frontier for x-ray astronomy in Giovannelli F., Mannocchi G. (eds). Italian Physics Society Conference Series 57: Frontier Objects in Astrophysics and Particle Physics, Italian Physical Society, Italy, p 561

  • Soffitta P. 2017, Proc. SPIE – Int. Soc. Opt. Eng., 10397, 103970I

  • Stȩślicki M., Sylwester J., Płocieniak S. et al. 2016, Soft X-ray polarimeter-spectrometer SOLPEX, in Kosovichev A. G., Hawley S. L., Heinzel P. (eds). IAU Symposium, Vol. 320, Solar and Stellar Flares and their Effects on Planets, Honululu, USA, p 450

  • Suare\(z\)-Garcia E., Hajdas W., Wigger C. et al. 2006, Solar Phys., 239, 149

  • Sun J. C., Wu B. B., Bao T. W. et al. 2016, Proc. SPIE – Int. Soc. Opt. Eng., 9905, 99052P

  • Tajima H., Takeda S. 2010, Polarimetry with ASTRO-H soft gamma-ray detector. In Bellazzini R., Costa E., Matt G., Tagliaferri G. (eds). X-ray Polarimetry: A New Window in Astrophysics. Cambridge University Press, Cambridge, p 275, ISBN: 9780521191845

  • Tavecchio F., Landoni M., Sironi L. et al. 2018, Mon. Not. R. Astron. Soc., 480, 2872

    Article  ADS  Google Scholar 

  • Taverna R., Muleri F., Turolla R. et al. 2014, Mon. Not. R. Astron. Soc., 438, 1686

    Article  ADS  Google Scholar 

  • Toma K., Sakamoto T., Zhang B. et al. 2009, Astrophys. J., 698, 1042

    Article  ADS  Google Scholar 

  • Tomsick J. A., Zoglauer A., Sleator C. et al. 2019, The Compton spectrometer and imager, preprint arXiv:1908.04334

  • Toraskar J. R. 1975, Appl. Opt., 14, 1727

    Article  ADS  Google Scholar 

  • Tsunemi H., Hayashida K., Tamura K. et al. 1992, Nucl. Instrum. Methods Phys. Res. A, 321, 629

    Article  ADS  Google Scholar 

  • Türler M., Chernyakova M., Courvoisier T. J.-L. et al. 2010, Astron. Astrophys., 512, A49

    Article  Google Scholar 

  • Turolla R., Zane S., Watts A. L. 2015, Rep. Prog. Phys., 78, 116901

    Article  ADS  Google Scholar 

  • Ubertini P., Lebrun F., Di Cocco G. et al. 2003, Astron. Astrophys., 411, L131

    Article  ADS  Google Scholar 

  • Uttley P., Cackett E. M., Fabian, A. C. et al. 2014, Astron. Astrophys. Rev., 22, 72

    Article  ADS  Google Scholar 

  • Vadawale S. V., Rao A. R., Chakrabarti S. K. 2001, Astron. Astrophys., 372, 793

    Article  ADS  Google Scholar 

  • Vadawale S. V., Rao A. R., Naik S. et al. 2003, Astrophys. J., 597, 1023

    Article  ADS  Google Scholar 

  • Vadawale S. V., Paul B., Pendharkar J. et al. 2010, Nucl. Instrum. Methods Phys. Res. A, 618, 182

    Article  ADS  Google Scholar 

  • Vadawale S. V., Chattopadhyay T., Pendharkar J. 2012, Proc. SPIE – Int. Soc. Opt. Eng., 8443, 88434P

  • Vadawale S. V., Chattopadhyay T., Rao A. R. et al. 2015, Astron. Astrophys., 578, 73

    Article  Google Scholar 

  • Vadawale S. V., Chattopadhyay T., Mithun N. P. S. et al. 2018, Nature Astron., 2, 50

    Article  ADS  Google Scholar 

  • Veale M. C., Bell S. J., Duarte D. D. et al. 2014, Nucl. Instrum. Methods Phys. Res. A, 767, 218

    Article  ADS  Google Scholar 

  • Vedrenne G., Roques J.-P., Schönfelder V. et al. 2003, Astron. Astrophys., 411, L63

    Article  ADS  Google Scholar 

  • Viironen K., Poutanen J. 2004, Astron. Astrophys., 426, 985

    Article  ADS  Google Scholar 

  • Wadiasingh Z., Baring M. G., Gonthier P. L. et al. 2017, Resonant inverse Compton scattering spectra from highly-magnetized neutron stars, preprint arXiv:1712.09643

  • Wadiasingh Z., Younes G., Baring M. G. et al. 2019, Magnetars as astrophysical laboratories of extreme quantum electrodynamics: the case for a Compton telescope, preprint arXiv:1903.05648

  • Waxman E. 2003, Nature, 423, 388

    Article  ADS  Google Scholar 

  • Weisskopf M. 2018, Galaxies, 6, 33

    Article  ADS  Google Scholar 

  • Weisskopf M. C., Cohen G. G., Kestenbaum H. L. et al. 1976, Astrophys. J. Lett., 208, L125

    Article  ADS  Google Scholar 

  • Weisskopf M. C., Silver E. H., Kestenbaum, H. L. et al. 1978, Astrophys. J. Lett., 220, L117

    Article  ADS  Google Scholar 

  • Weisskopf M. C., Elsner D., Kaspi V. M. et al. 2009, X-ray polarimetry and its potential use for understanding neutron stars. In: Becker W. (ed.), Springer, Berlin, Heidelberg

  • Weisskopf M. C., Ramsey B., O’Dell S. et al. 2016, Proc. SPIE – Int. Soc. Opt. Eng., 9905, 990517

  • Wigger C., Hajdas W., Arzner K. et al. 2004, Astrophys. J., 613, 1088

    Article  ADS  Google Scholar 

  • Willis D. R., Barlow E. J., Bird A. J. et al. 2005, Astron. Astrophys., 439, 245

    Article  ADS  Google Scholar 

  • Winkler C., Courvoisier T. J. L., Di Cocco G. et al. 2003, Astron. Astrophys., 411, L1

    Article  ADS  Google Scholar 

  • Wolff R. S., Angel J. R. P., Novick R. et al. 1970, Astrophys. J. Lett., 160, L21

    Article  ADS  Google Scholar 

  • Wu K., McNamara A., Kuncic Z. 2010. X-ray polarization from accreting white dwanfs and associated systems. In: Bettazzini R., Costa E., et al. (eds) X-ray polarimetery. A New Windows in Astrophysics, Cambridge University Press, Cambridge, p 187. https://doi.org/10.1017/CB09780511750809_029

  • Yang C.-Y., Lowell A., Zoglauer A. et al. 2018, Proc. SPIE – Int. Soc. Opt. Eng., 10699, 642

  • Yonetoku D., Murakami T., Masui H. et al. 2006, Proc. SPIE – Int. Soc. Opt. Eng., 6266, 6662C

  • Yonetoku D., Murakami T., Gunji S. et al. 2011, Astrophys. J. Lett., 743, L30

    Article  ADS  Google Scholar 

  • Yonetoku D., Murakami T., Gunji S. et al. 2012, Astrophys. J. Lett., 758, L1

    Article  ADS  Google Scholar 

  • Zdziarski A. A., Pjanka P., Sikora M. et al. 2014, Mon. Not. R. Astron. Soc., 442, 3243

    Article  ADS  Google Scholar 

  • Zhang B., Yan H. 2011, Astrophys. J., 726, 90

    Article  ADS  Google Scholar 

  • Zhang F., Herman C., He Z. et al. 2012, IEEE Trans. Nucl. Sci., 59, 236

    Article  ADS  Google Scholar 

  • Zhang H., Böttcher M. 2013, Astrophys. J., 774, 18

    Article  ADS  Google Scholar 

  • Zhang H., Chen X., Böttcher M. 2014, Astrophys. J., 789, 66

    Article  ADS  Google Scholar 

  • Zhang S. N., Feroci M., Santangelo A. et al. 2016, Proc. SPIE – Int. Soc. Opt. Eng., 9905, 99051Q

  • Zhang H. 2017, Galaxies, 5, 32

    Article  ADS  Google Scholar 

  • Zhang S.-N., Kole M., Bao T.-W. et al. 2019, Nature Astron., 3, 258

    Article  ADS  Google Scholar 

  • Zharkova V. V., Kuznetsov A. A., Siversky T. V. 2010, Astron. Astrophys., 512, A8

    Article  ADS  Google Scholar 

  • Zhitnik I. A., Logachev Y. I., Bogomolov, A. V. et al. 2006, Solar Syst. Res., 40, 93

    ADS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. A. R. Rao, Prof. Santosh Vadawale, and Prof. David Burrows for the useful discussions while writing this article. Dr. Moszi Kiss and Prof. Maxime Chauvin of PoGO+ collaboration provided some important inputs about the PoGO+ payload and future hard X-ray polarimetry techniques. He is thankful to Prof. Mark McConnell for sharing with me some useful content about GRAPE and LEAP polarimetry designs. Also like to acknowledge Journal of Astrophysics and Astronomy and in particular, Prof. Tushar P. Prabhu for inviting me to write this article. Some of the figures and pictures used in this article are either adapted or taken from published articles. He is grateful to the authors and the publishers of the articles for providing me the necessary copyright permissions for the reuse of the materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanmoy Chattopadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chattopadhyay, T. Hard X-ray polarimetry—an overview of the method, science drivers, and recent findings. J Astrophys Astron 42, 106 (2021). https://doi.org/10.1007/s12036-021-09769-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-021-09769-5

Keywords

Navigation