Skip to main content
Log in

New copper(II) salicylaldimine derivatives for mild oxidation of cyclohexane

  • Rapid Communication
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Two new salicylaldiminato-copper(II) complexes, [\(\hbox {Cu}(\mathbf{L}^{\mathbf{1}})_{2}\)] (1) and [\(\hbox {Cu}(\mathbf{L}^{\mathbf{2}})_{2}\)] (2) (where \(\mathbf{HL}^{\mathbf{1}}=4\)-tert-Butyl-2-[(thiophen-2-ylmethylimino)-methyl]-phenol and \(\mathbf{HL}^{2} = 2,4\)-Di-tert-butyl-6-[(thiophen-2-ylmethylimino)-methyl]-phenol), endowed with a pendant thiophenyl moiety, were synthesized and characterized using standard spectroscopic techniques (FT-IR, UV-Vis, MS) and elemental analysis. Complexes 1 and 2 were unequivocally characterized by single crystal X-ray crystallography, which confirmed bidentate bis-chelation of the deprotonated -\(\mathbf{L}^{\mathbf{1}}\) and -\(\mathbf{L}^{\mathbf{2}}\) ligands to the copper (II) centres via the phenoxo and imine atoms forming square planar complexes. The copper(II)-hydroperoxo derivatives of 1 and 2 ([\((\mathbf{L}^{\mathbf{1}})_{2}\hbox {Cu}^\mathrm{II}\hbox {-OOH}\)] (3) and [\((\mathbf{L}^{\mathbf{2}})_{2}\hbox {Cu}^\mathrm{II}\hbox {-OOH}\)] (4)) were also synthesized and the formation of the active intermediate in solution studied. Complexes 1 and 2 were tested as catalyst precursors in cyclohexane oxidation under mild reaction conditions using hydrogen peroxide (\(\hbox {H}_{2} \hbox {O}_{2}\)) as a terminal oxidant, and were found to catalyse oxidation of the substrate with yields comparable to similar mononuclear and even multinuclear copper complexes.

Graphical Abstract

 Synopsis Synthesis, characterisation, and molecular structure of salicylaldiminato-copper(II) complexes, and their catalytic evaluation in the oxidation of cyclohexane employing hydrogen peroxide as a terminal oxidant have been studied. The complexes catalysed conversion of cyclohexane with appreciable yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Scheme 3

References

  1. Holm R and O’Connor M 1971 The stereochemistry of bis-chelated metal (II) complexes In Progress in Inorganic Chemistry Stephen \(14^{\rm th}\) edn. J Lippard (Ed.) (New York: John Wiley & Sons) p. 241

  2. Garnovskiia A D, Sadimenkob A P, Sadimenkob M I and Garnovskiia D A 1998 Common and less-common coordination modes of the typical chelating and heteroaromatic ligands Coord. Chem. Rev. 173 31

    Article  Google Scholar 

  3. Chaudhuri P and Wieghardt K 2001 Phenoxy radical complexes In Progress in Inorganic Chemistry \(50^{\rm th}\) edn. (New York: John Wiley & Sons) p. 151

  4. Kitajima N, Whang K, Moro-oka Y, Uchida A and Sasada Y 1986 Oxidations of primary alcohols with a copper(II) complex as a possible galactose oxidase model J. Chem. Soc., Chem. Commun. 1504

  5. Kasumov V T, Köksal F and Köseoğlu R 2004 Synthesis, spectroscopy and redox chemistry of bis(\(n\)-aryl-3,5-di-tert-butylsalicylaldiminato)copper(II) complexes J. Coord. Chem. 57 591

    Article  CAS  Google Scholar 

  6. Iglesias A L, Aguirre G, Somanathan R and Parra-Hake M 2004 New chiral Schiff base-Cu(II) complexes as cyclopropanation catalysts Polyhedron 23 3051

    Article  CAS  Google Scholar 

  7. Kasumov V T, Uçar I and Bulut A 2010 Synthesis, structural, spectroscopic and reactivity properties of a new \(N\)-2,3,4-trifluorophenyl-3,5-di-tert-butylsalicylaldimine ligand and its Cu(II) and Pd(II) complexes J. Fluorine Chem. 131 59

    Article  CAS  Google Scholar 

  8. Matsumoto N, Nonaka Y, Kida S, Kawano S and Ueda I 1979 Synthesis and crystal structure of 1:2 molecular complexes of bis(\(N\)-alkyl-2-oxy-1-napthylideneaminato)copper(II) and -nickel(II) with \(7,7^\prime ,8,8^\prime \)-tetracyanoquinodimethane Inorg. Chim. Acta 37 27

    Article  CAS  Google Scholar 

  9. Biswas S, Dutta A, Debnath M, Doloi M, Das K K and Ali M 2013 A novel thermally stable hydroperoxo–copper(II) complex in a \(\text{ Cu }(\text{ N }_{2} \text{ O }_{2}\)) chromophore of a potential \(\text{ N }_{4} \text{ O }_{2}\) donor Schiff base ligand: synthesis, structure and catalytic studies Dalton Trans. 42 13210

    Article  CAS  PubMed  Google Scholar 

  10. Ma Z, Gurbanov A V, Maharramov A M, Guseinov F I, Kopylovich M N, Zubkov F I and Pombeiro A J L 2017 Copper(II) arylhydrazone complexes as catalysts for CH activation in the Henry reaction in water J. Mol. Catal. A Chem. 426 526

    Article  CAS  Google Scholar 

  11. Fernandes R R, Lasri J, Fátima M M, da Silva C G, da Silva J A L, da Silva J J R F and Pombeiro A J L 2011 Mild alkane C–H and O–H oxidations catalysed by mixed-N,S copper, iron and vanadium systems Appl. Catal. A Gen. 402 110

    Article  CAS  Google Scholar 

  12. Pratt R C, Lyons C T, Wasinger E C and Stack T D P 2012 Electrochemical and Spectroscopic Effects of Mixed Substituents in Bis(phenolate)–Copper(II) Galactose Oxidase Model Complexes J. Am. Chem. Soc. 134 7367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Biswas S, Dutta A, Dolai M, Debnath M, Jana A D and Ali M 2014 Copper(II) induced oxidative modification and complexation of a schiff base ligand: synthesis, crystal structure, catalytic oxidation of aromatic hydrocarbons and DFT calculation RSC Adv. 4 34248

    Article  CAS  Google Scholar 

  14. Fernandes T A, André V, Kirillov A M and Kirillova M V 2017 Mild homogeneous oxidation and hydrocarboxylation of cycloalkanes catalyzed by novel dicopper(II) aminoalcohol-driven cores J. Mol. Catal. A Chem. 426 357

    Article  CAS  Google Scholar 

  15. Hatcher L and Karlin K 2004 Oxidant types in copper-dioxygen chemistry: the ligand coordination defines the \(\text{ Cu }_{\rm n}\text{-O }_{2}\) structure and subsequent reactivity J. Biol. Inorg. Chem. 9 669

    Article  CAS  PubMed  Google Scholar 

  16. Lucas H R, Li L, Narducci Sarjeant A A, Vance M A, Solomon E I and Karlin K D 2009 Toluene and ethylbenzene aliphatic C-H bond oxidations initiated by a dicopper(II)-\(\upmu \)-1,2-peroxo complex J. Am. Chem. Soc. 131 3230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kirillov A M, Kirillova M V and Pombeiro A J L 2012 Multicopper complexes and coordination polymers for mild oxidative functionalization of alkanes Coord. Chem. Rev. 256 2741

    Article  CAS  Google Scholar 

  18. (a) Kirillov A M, Kopylovich M N, Kirillova M V, Haukka M, da Silva M F C G and Pombeiro A J L 2005 Multinuclear Copper Triethanolamine Complexes as Selective Catalysts for the Peroxidative Oxidation of Alkanes under Mild Conditions Angew. Chemie Int. Ed. 44 4345; (b) Kirillov A M, Kopylovich M N, Kirillova M V, Karabach E Y, Haukka M, da Silva M F C G and Pombeiro A J L 2006 Mild Peroxidative Oxidation of Cyclohexane Catalyzed by Mono-, Di-, Tri-, Tetra- and Polynuclear Copper Triethanolamine Complexes Adv. Synth. Catal. 348 159

  19. Karabach Y Y, Kirillov A M, Haukka M, Kopylovich M N and Pombeiro A J L 2008 Copper(II) coordination polymers derived from triethanolamine and pyromellitic acid for bioinspired mild peroxidative oxidation of cyclohexane J. Inorg. Biochem. 102 1190

    Article  CAS  PubMed  Google Scholar 

  20. Figiel P J, Kirillov A M, Karabach Y Y, Kopylovich M N and Pombeiro A J L 2009 Mild aerobic oxidation of benzyl alcohols to benzaldehydes in water catalyzed by aqua-soluble multicopper(II) triethanolaminate compounds J. Mol. Catal. A Chem. 305 178

    Article  CAS  Google Scholar 

  21. Saint-Aman E, Me’nage S, Pierre J L, Defrancq E and Gellon G 1998 A functional model of galactose oxidase: catalytic oxidation of primary alcohols with a one-electron oxidized copper(II) complex New J. Chem. 22 393

    Article  CAS  Google Scholar 

  22. Gamez P, Arends I W C E, Reedijk J and Sheldon R A 2003 Copper(II)-catalysed aerobic oxidation of primary alcohols to aldehydes Chem. Commun. 2414

  23. Breza M and Biskupič S 2006 \(N\)-Salicylideneaminoacidato copper(II) complexes as galactose oxidase model compounds J. Mol. Struct.: THEOCHEM 760 141

    Article  CAS  Google Scholar 

  24. Velusamy S, Srinivasan A and Punniyamurthy T 2006 Copper(II) catalyzed selective oxidation of primary alcohols to aldehydes with atmospheric oxygen Tetrahedron Lett. 47 923

    Article  CAS  Google Scholar 

  25. Kasumov V T, Bulut A, Köksal F, Aslanoğlu M, Uçar I, Kazak C 2006 Synthesis, structure, spectroscopic and redox properties of copper(II)-\(N\)-3,5-\(\text{ Bu }_{2}^{t}\)phenylsalicylaldinine complexes: Crystal and molecular structure of bis(N-3,5-\(\text{ Bu }_{2}^{t}\)-phenylsalicylaldininato)copper(II) Polyhedron 25 1133

    Article  CAS  Google Scholar 

  26. Cowley R E, Cirera J, Qayyum M F, Rokhsana D, Hedman B, Hodgson K O, Dooley D M and Solomon E I 2016 Structure of the Reduced Copper Active Site in Preprocessed Galactose Oxidase: Ligand Tuning for One-Electron \(\text{ O }_{2}\) Activation in Cofactor Biogenesis J. Am. Chem. Soc. 138 13219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shepard E M and Dooley D M 2015 Inhibition and Oxygen Activation in Copper Amine Oxidases Acc. Chem. Res. 48 1218

    Article  CAS  PubMed  Google Scholar 

  28. Miller S M and Klinman J P 1983 Magnitude of intrinsic isotope effects in the dopamine beta-monooxygenase reaction Biochemistry 22 3091

    Article  CAS  PubMed  Google Scholar 

  29. Miller S M and Klinman J P 1985 Secondary isotope effects and structure-reactivity correlations in the dopamine beta-monooxygenase reaction: evidence for a chemical mechanism Biochemistry 24 2114

    Article  CAS  PubMed  Google Scholar 

  30. Tian G, Berry J A and Klinman J P 1994 Oxygen-18 kinetic isotope effects in the dopamine beta-monooxygenase reaction: evidence for a new chemical mechanism in non-heme metallomonooxygenases Biochemistry 33 226

    Article  CAS  PubMed  Google Scholar 

  31. Francisco W A, Merkler D J, Blackburn N J and Klinman J P 1998 Kinetic mechanism and intrinsic isotope effects for the peptidylglycine alpha-amidating enzyme reaction Biochemistry 37 8244

    Article  CAS  PubMed  Google Scholar 

  32. Chen P, Fujisawa K and Solomon E I 2000 Spectroscopic and Theoretical Studies of Mononuclear Copper(II) Alkyl- and Hydroperoxo Complexes: Electronic Structure Contributions to Reactivity J. Am. Chem. Soc. 122 10177

    Article  CAS  Google Scholar 

  33. Kodera M, Kita T, Miura I, Nakayama N, Kawata T, Kano K and Hirota S 2001 Hydroperoxo–Copper(II) Complex Stabilized by \(\text{ N }_{3}\)S-Type Ligand Having a Phenyl Thioether J. Am. Chem. Soc. 123 7715

    Article  CAS  PubMed  Google Scholar 

  34. (a) Wada A, Harata M, Hasegawa K, Jitsukawa K, Masuda H, Mukai M, Kitagawa T and Einaga H 1998 Structure and spectroscopic characterization of a mononuclear hydroperoxo-copper(II) complex with tripodal pyridylamine ligands Angew. Chem., Int. Ed. 37 798; (b) Fujii T, Naito A, Yamaguchi S, Wada A, Funahashi Y, Jitsukawa K, Nagatomo S, Kitagawa T and Masuda H 2003 Construction of a square-planar hydroperoxo-copper(II) complex inducing a higher catalytic reactivity Chem. Commun. 42 2700

  35. Evans J P, Ahn K and Klinman J P 2003 Evidence That Dioxygen and Substrate Activation Are Tightly Coupled in Dopamine \(\upbeta \)-Monooxygenase J. Biol. Chem. 278 49691

    Article  CAS  PubMed  Google Scholar 

  36. (a) Motswainyana W M, Ojwach S O, Onani M O, Iwuoha E I and Darkwa J 2011 Novel hemi-labile pyridyl-imine palladium complexes: Synthesis, molecular structures and reactions with ethylene Polyhedron 30 2574; (b) Motswainyana W M, Onani M O, Ojwach S O and Omondi B 2012 New imino-pyridyl nickel(II) complexes: Synthesis, molecular structures and application as Heck coupling catalysts Inorganica. Chim. Acta 391 93; (c) Motswainyana W M, Onani M O and Madiehe A 2012 Bis(ferrocenylimine)palladium(II) and platinum(II) complexes: Synthesis, molecular structures and evaluation as antitumor agents Polyhedron 41 44

  37. Kundu S, Biswas S, Mondal AS, Roy P and Mondal T K 2015 Template synthesis of square-planar Ni(II) complexes with new thiophene appended Schiff base ligands: Characterization, X-ray structure and DFT calculation J. Mol. Struct. 1100 27

    Article  CAS  Google Scholar 

  38. Kundu S, Pramanik A K, Mondal A S and Mondal T K 2016 Ni(II) and Pd(II) complexes with new N,O donor thiophene appended Schiff base ligand: Synthesis, electrochemistry, X-ray structure and DFT calculation J. Mol. Struct. 1116 1

    Article  CAS  Google Scholar 

  39. Elantabli F M, Radebe M P, Motswainyana W M, Owaga B O, El-Medani S M, Ekengard E, Haukka M, Nordlander E and Onani M O 2017 Thiophene based imino-pyridyl palladium(II) complexes: Synthesis, molecular structures and Heck coupling reactions J. Organomet. Chem. 843 40

    Article  CAS  Google Scholar 

  40. Cai Y P, Su C Y, Xu A W, Kang B S, Tong Y X, Liu H Q and Jie S 2001 Syntheses and characterization of copper(II) complexes of bis(acetylacetone)trimethylenediimine Polyhedron 20 657

    Article  CAS  Google Scholar 

  41. Fujii T, Yamaguchi S, Funahashi Y, Ozawa T, Tosha T, Kitagawa T and Masuda H 2006 Mononuclear copper(II)–hydroperoxo complex derived from reaction of copper(I) complex with dioxygen as a model of \(\text{ D }\upbeta \text{ M }\) and PHM Chem. Commun. 110 4428

    Article  Google Scholar 

  42. Mizuno M, Honda K, Cho J, Furutachi H, Tosha T, Matsumoto T, Fujinami S, Kitagawa T and Suzuki M 2006 A Mononuclear Alkylperoxocopper(II) Complex as a Reaction Intermediate in the Oxidation of the Methyl Group of the Supporting Ligand Angew. Chemie Int. Edit. 45 6911

    Article  CAS  Google Scholar 

  43. Tano T, Ertem M Z, Yamaguchi S, Kunishita A, Sugimoto H, Fujieda N, Ogura T, Cramer C J and Itoh S 2011 Reactivity of copper(II)-alkylperoxo complexes Dalton Trans. 40 10326

    Article  CAS  PubMed  Google Scholar 

  44. Kirillova M V, Kuznetsov M L, Kozlov Y N, Shul’pina L S, Kitaygorodskiy A K, Pombeiro A J L and Shul’pin G B 2011 Participation of Oligovanadates in Alkane Oxidation with \(\text{ H }_{2} \text{ O }_{2}\) Catalyzed by Vanadate Anion in Acidified Acetonitrile: Kinetic and DFT Studies ACS Catal. 1 1511

  45. (a) Bruker 2006 SAINT Version 7.60a (Madison, Wisconsin, USA: Bruker AXS Inc.); (b) Sheldrick G M 1997 SHELXS-97, SHELXL-2014 and SADABS version 2.05, University of Göttingen, Germany; (c) Barbour L J 2001 X-Seed-A software tool for supramolecular crystallography J. Supramol. Chem. 1 189; (d) Atwood J L and Barbour L J 2003 Molecular graphics: from science to art Cryst. Growth Des. 3 3; (e) http://www.povray.org (Accessed on: 2 November 2017)

  46. (a) Atzori M, Pop F, Cauchy T, Mercuri M L and Avarvari N 2014 Thiophene- benzoquinone: synthesis, crystal structure and preliminary coordination of anilate ligands Org. Biomol. Chem. 12 8752; (b) Adhikary J, Chakraborty A, Dasgupta S, Chattopadhyay S K, Kruszynski R, Trzesowska-Kruszynska A, Stepanović S, Gruden- Pavlović M, Swart M and Das D 2016 Unique mononuclear MnII complexes of an end-off compartment Schiff base ligand: experimental and theoretical studies on their bio-relevant catalytic promiscuity Dalton Trans. 45 12409; (c) Rani C V, Mitu L, Chakkaravarthi G and Rajagopal G 2017 Bis3,5-di-tert-butyl-N-[(4–methylamino)phenyl]salicylaldiminatocobalt(II) IUCrData 2 x170525

  47. Samanta S, Ray S, Joardar S and Dutta S 2015 Synthesis and characterization of mononuclear copper (II) complexes of pyridine 2-carboxamide: Their application as catalyst in peroxidative oxidation agents and antimicrobial agents J. Chem. Sci. 127 1451

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the following financial entities for funding this work: CSIR and NRF (South Africa), the European Union Erasmus Mundus scheme (EUROSA), and Senate Research and Postdoctoral (UWC). Authors also would like to thank Prof. Magda Monari of the University of Bologna for correcting the disorders in the crystal structures for us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asanda V Busa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 627 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Busa, A.V., Lalancette, R., Nordlander, E. et al. New copper(II) salicylaldimine derivatives for mild oxidation of cyclohexane. J Chem Sci 130, 59 (2018). https://doi.org/10.1007/s12039-018-1455-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-018-1455-y

Keywords

Navigation