Skip to main content
Log in

Identifying the gluc-1 and gluc-2 mutations in Neurospora crassa by genome resequencing

  • Research Note
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Genome resequencing is an efficient strategy for associating mutant phenotypes with physical genomic loci (Baker 2009). A pilot study of this approach demonstrated that the Neurospora crassa genetic map was critical in narrowing the possible candidate mutations in a strain to a small number in a limited, defined region of the genome (McCluskey et al. 2011). In this study, we utilize a resequencing strategy to identify the mutations underlying the gluc-1 and gluc-2 genes in N. crassa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Baker S. 2009 Selection to sequence: opportunities in fungal genomics. Environ. Microbiol. 11, 2955–2958.

    Article  CAS  Google Scholar 

  • Colot H. V., Park G., Turner G. E., Ringelberg C., Crew C. M., Litvinkova L. et al. 2006 A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc. Natl. Acad. Sci. USA 103, 10352–10357.

    Article  CAS  Google Scholar 

  • Coradetti S. T., Xiong Y. and Glass N. L. 2013 Analysis of a conserved cellulase transcriptional regulator reveals inducer-independent production of cellulolytic enzymes in Neurospora crassa. Microbiologyopen 2, 595–609.

    Article  CAS  Google Scholar 

  • Eberhart B., Cross D. F. and Chase L. R. 1964 β-glucosidase system of Neurospora crassa I. β-Glucosidase and Cellulase Activities of Mutant and Wild-Type Strains. J. Bacteriol. 87, 761–770.

    Article  CAS  Google Scholar 

  • Eberhart B. M. and Beck R. S. 1970 Localization of the beta-glucosidases in Neurospora crassa. J. Bacteriol. 101, 408–417.

    Article  CAS  Google Scholar 

  • Eberhart B. M. and Beck R. S. 1973 Induction of beta-glucosidases in Neurospora crassa. J. Bacteriol. 116, 295–303.

    Article  CAS  Google Scholar 

  • Eberhart B. M., Beck R. S. and Goolsby K. M. 1977 Cellulase of Neurospora crassa. J. Bacteriol. 130, 181–186.

    Article  CAS  Google Scholar 

  • Gabriel R., Thieme N., Liu Q., Li F., Meyer L. T., Harth S. et al. 2021 The F-box protein gene exo-1 is a target for reverse engineering enzyme hypersecretion in filamentous fungi. Proc Natl Acad Sci U S A 118, e2025689118.

    Article  CAS  Google Scholar 

  • Galazka J. M., Tian C., Beeson W. T., Martinez B., Glass N. L. and Cate J. H. 2010 Cellodextrin transport in yeast for improved biofuel production. Science 330, 84–86.

    Article  CAS  Google Scholar 

  • Ha S.-J., Galazka J. M., Rin Kim S., Choi J.-H., Yang X., Seo J.-H. et al. 2011 Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc. Natl. Acad. Sci. USA 108, 504–509.

    Article  CAS  Google Scholar 

  • Karkehabadi S., Hansson H., Mikkelsen N. E., Kim S., Kaper T., Sandgren M. et al. 2018 Structural studies of a glycoside hydrolase family 3 β-glucosidase from the model fungus Neurospora crassa. Acta Crystallogr. f. Struct. Biol. Commun. 74, 787–796.

    Article  CAS  Google Scholar 

  • Ketudat Cairns J. R. and Esen A. 2010 β-Glucosidases. Cell Mol. Life Sci. 67, 3389–3405.

    Article  CAS  Google Scholar 

  • Mahadevan P. and Eberhart B. 1964a The β-glucosidase system of Neurospora crassa: II. Purification and characterization of aryl β-glucosidase. Arch Biochem. Biophys. 108, 22–29.

    Article  CAS  Google Scholar 

  • Mahadevan P. and Eberhart B. 1964b The β-glucosidase system of Neurospora crassa: III. Further studies on an aryl β-glucosidase mutant. Arch Biochem. Biophys. 108, 30–35.

    Article  CAS  Google Scholar 

  • Mahadevan P. and Eberhart B. M. 1962 A dominant regulatory gene for aryl-beta-glucosidase in Neurospora crassa. J. Cell Comp. Physiol. 60, 281–283.

    Article  CAS  Google Scholar 

  • McCluskey K., Wiest A. E., Grigoriev I. V., Lipzen A., Martin J., Schackwitz W. et al. 2011 Rediscovery by whole genome sequencing: classical mutations and genome polymorphisms in Neurospora crassa. G3 (Bethesda) 1, 303–316.

  • Ottum E., Baker S. E. and Bredeweg E. L. 2021 Production of biofuels from biomass by fungi. In Encyclopedia of mycology (ed. O. Zaragoza and A. Casadevall) pp. 555–576. Elsevier. Amsterdam.

  • Reilly M. C., Qin L., Craig J. P., Starr T. L. and Glass N. L. 2015 Deletion of homologs of the SREBP pathway results in hyper-production of cellulases in Neurospora crassa and Trichoderma reesei. Biotechnol. Biofuels 8, 1–18.

    Article  Google Scholar 

  • Schmoll M., Tian C., Sun J., Tisch D. and Glass N. L. 2012 Unravelling the molecular basis for light modulated cellulase gene expression-the role of photoreceptors in Neurospora crassa. BMC Genomics 13, 1–19.

    Article  Google Scholar 

  • Seibert T., Thieme N. and Benz J. P. 2016 The renaissance of Neurospora crassa: how a classical model system is used for applied research. In Gene expression systems in fungi: advancements and applications (eds. M. Schmoll and C. Dattenböck), Springer, Cham, pp. 59–96.

    Chapter  Google Scholar 

  • Sun J., Tian C., Diamond S. and Glass N. L. 2012 Deciphering transcriptional regulatory mechanisms associated with hemicellulose degradation in Neurospora crassa. Eukaryot Cell 11, 482–493.

    Article  CAS  Google Scholar 

  • Tian C., Beeson W. T., Iavarone A. T., Sun J., Marletta M. A., Cate J. H. et al. 2009 Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa. Proc. Natl. Acad. Sci. USA 106, 22157–22162.

    Article  CAS  Google Scholar 

  • Yazdi M., Radford A., Keen J. and Woodward J. 1990a Cellulase production by Neurospora crassa: purification and characterization of cellulolytic enzymes. Enzyme Microb. Technol. 12, 120–123.

    Article  CAS  Google Scholar 

  • Yazdi M., Woodward J. and Radford A. 1990b The cellulase complex of Neurospora crassa: activity, stability and release. Microbiology 136, 1313–1319.

    CAS  Google Scholar 

  • Znameroski E. A., Coradetti S. T., Roche C. M., Tsai J. C., Iavarone A. T., Cate J. H. et al. 2012 Induction of lignocellulose-degrading enzymes in Neurospora crassa by cellodextrins. Proc. Natl. Acad. Sci. USA 109, 6012–6017.

    Article  CAS  Google Scholar 

  • Znameroski E. A. and Glass N. L. 2013 Using a model filamentous fungus to unravel mechanisms of lignocellulose deconstruction. Biotechnol. Biofuels 6, 1–8.

    Article  Google Scholar 

Download references

Acknowledgements

Genome sequence analysis was performed as part of the DOE Joint BioEnergy Institute (https://www.jbei.org/) and genome sequencing was performed by the DOE Joint Genome Institute (https://jgi.doe.gov/), both of which are supported by the US Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research, through Contract DE-AC02- 05CH11231 between Lawrence Berkeley National Laboratory and the US DOE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott E. Baker.

Additional information

Corresponding editor: Durgadas P. Kasbekar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCluskey, K., Baker, S.E. Identifying the gluc-1 and gluc-2 mutations in Neurospora crassa by genome resequencing. J Genet 101, 50 (2022). https://doi.org/10.1007/s12041-022-01394-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-022-01394-7

Keywords

Navigation