Skip to main content

Advertisement

Log in

A Modelling Framework for Optimisation of Commodity Production by Minimising the Impact of Climate Change

  • Published:
Applied Spatial Analysis and Policy Aims and scope Submit manuscript

Abstract

The agricultural sector is vulnerable to the impact of climate change due to decreasing rainfall, increasing temperature, and the frequency of extreme weather events. A modelling framework was developed and applied to identify issues, problems and opportunities arising in regional agricultural systems as a consequence of climate change. This integrated framework blends together land suitability analysis, uncertainty analysis and an optimisation approach to establish optimal agricultural land-use patterns on a regional scale for current and possible future climate scenarios. The framework can also be used to identify (i) regions under threat of productivity decline, and (ii) alternative crops and their locations that can cope better with changing climate. The methods and contents of the framework are presented by means of a case study developed in the South West Region of Victoria, Australia. The results can be used to assess land suitability in support of optimised crop allocations across a local region, and to underpin the development of a regional adaptation policy framework designed to reduce the vulnerability of the agriculture sector to the impacts of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • ABARE (2007). Statistical tables. Australian Commodities, 14(3), 541–577. September quarter.

    Google Scholar 

  • ABS (2002). Ref. 7121.0—Agricultural Commodities: Small Area Data for 2000-1, Australia, Australian Bureau of Statistics, www.abs.gov.au.

  • Abella, E. A. C., & van Westen, C. J. (2007). Generation of a landslide risk index map for cuba using spatial multi-criteria evaluation. Landslide, 4, 311–325.

    Article  Google Scholar 

  • Arbel, A. (1989). Approximate articulation of preference and priority derivation. European Journal of Operational Research, 43, 317–326.

    Article  Google Scholar 

  • Benke, K. K., & Hamilton, A. J. (2008). Quantitative microbial risk assessment: uncertainty and measures of central tendency for skewed distributions. Stochastic Environmental Research and Risk Assessment, 22, 533–539.

    Article  Google Scholar 

  • Benke, K. K., Hamilton, A. J., & Lowell, K. E. (2007). Modelling uncertainty and risk assessment in the management of environmental resources. Australasian Journal of Environmental Management, 14, 16–22.

    Google Scholar 

  • Benke, K. K., Lowell, K. E., & Hamilton, A. J. (2008). Parameter uncertainty, sensitivity analysis and prediction error in a water-balance hydrological model. Mathematical and Computer Modelling, 47, 1134–1149.

    Article  Google Scholar 

  • Carver, S. J. (1991). Integrating multi-criteria evaluation with geographic information systems. International Journal of geographic Information Systems, 5(3), 321–339.

    Article  Google Scholar 

  • Christensen, J. H. and Co-authors (2007). Regional climate projections. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller, Eds., Cambridge University Press, Cambridge, 847–940.

  • Cline, W. (2007). Global warming and agriculture: impact estimates by country. Washington DC: Centre for Global Development and Peterson Institute for International Economics.

    Google Scholar 

  • Collins, M. G., Steiner, F. R., & Rushman, M. J. (2001). Land-use suitability analysis in the United States: historical development and promising technological achievements. Environmental Management, 28(5), 611–621.

    Article  Google Scholar 

  • Crimp, S. J., Flood, N. R., Carter, J. O., Conroy, J. P., & McKeon, G. M. (2002). Evaluation of the potential impact of climate change on native pasture production—implications for livestock carrying capacity. Canberra: A Report to the Australian Greenhouse Office.

    Google Scholar 

  • Duc Uy, P., & Nakagoshi, N. (2008). Application of land suitability analysis and landscape ecology to urban greenspace planning in Hanoi, Vietnam. Urban Forestry and Urban Greening, 7, 25–40.

    Article  Google Scholar 

  • Eickhout, B., Van Meijl, H., Tabeau, A., & Stehfest, E. (2009). The impact of environmental and climate constraints on global food supply. In T. Hertel, S. Rose, & R. Tol (Eds.), Economic analysis of land use in global climate change policy. New York: Routledge.

    Google Scholar 

  • FAO (2010). Ch.5, Land evaluation for development. Food and Agriculture Organisation of the United Nations, www.fao.org.

  • Geertman, S., & Stillwell, J. (2002). Planning support systems in practice. Heidelberg: Springer.

    Google Scholar 

  • Geertman, S., & Stillwell, J. (2004). Planning support systems: an inventory of current practice. Computers, Environment and Urban Systems, 28, 291–310.

    Article  Google Scholar 

  • Geertman, S. & Stillwell, J. (2009). Planning support systems: Content, issues and trends. Chapter 1. In: Planning Support Systems Best Practice and New Methods. Springer, Netherlands, pp. 1–26.

  • Goklany, I. M. (2005). A climate policy for the short and medium term: stabilization or adaptation? Energy Environment, 16, 667–680.

    Article  Google Scholar 

  • Gunasekera, D., Kim, Y., Tulloh, C., & Ford, M. (2007). Climate change: impacts on Australia agriculture. Australian Commodities, 14(4), 657–676. December quarter.

    Google Scholar 

  • Gunasekera, D., Tulloh, C., Ford, M., & Heyhoe, E. (2008). Climate change: Opportunities and challenges in Australian Agriculture. Proceedings of Faculty of Agriculture, Food and Natural Resources Annual Symposium (FAFNR 08), June 13, University of Sydney, Australia.

  • Hahn, E. D. (2003). Decision making with uncertain judgements: a stochastic formulation of the analytic hierarchy process. Decision Sciences, 34, 443–466.

    Article  Google Scholar 

  • Haines, L. M. (1998). A statistical approach to the analytic hierarchy process with interval judgements. (I). Distributions on feasible regions. European Journal of Operational Research, 110, 112–125.

    Article  Google Scholar 

  • Helton, J. C. (1993). Uncertainty & sensitivity analysis techniques for use in performance assessment for radioactive waste disposal. Reliability Engineering & System Safety, 42, 327–367.

    Google Scholar 

  • Helton, J. C., & Burmaster, D. E. (1996). Guest editorial, Treatment of aleatory & epistemic uncertainty in performance assessments for complex systems. Reliability Engineering & System Safety, 54, 91–94.

    Google Scholar 

  • Hennessy, K., Page, C., Durack, P., & Bathols, J. (2006). Climate change projections for Victoria, prepared for the Victorian department of primary industries. Melbourne: CSIRO Marine and Atmospheric Research.

    Google Scholar 

  • Heyhoe, E., Kim, Y., Kokic, P., Levantis, C., Ahammad, H., Schneider, K., et al. (2007). Adapting to climate change. Australian Commodities, 14(3), 167–178.

    Google Scholar 

  • Hossain, H., Sposito, V., & Evans, C. (2006). Sustainable land resource assessment in regional and urban systems. Applied GIS, 2(3), 24.1–24.21.

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2000). In N. Nakicenovic & R. Swart (Eds.), Emissions scenarios. Special report of the intergovernmental panel on climate change. England: Cambridge University Press.

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2007a). Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. England: Cambrigde University Press.

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2007b). Climate change 2007: Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. England: Cambridge University Press.

    Google Scholar 

  • Iman, R. L. & Conover, W. J. (1983). A modern approach to statistics Wiley, New York.

  • Isbell, R. F. (2002). Australian soil classification (2nd ed.). Melbourne: CSIRO.

    Google Scholar 

  • Jablonsky, J. (2005). Measuring efficiency of production units by AHP models ISAHP 2005. Hawaii: Honolulu.

    Google Scholar 

  • Jankowski, P. (1995). Integrating geographical information systems and multiple criteria decision making methods. International Journal of Geographic Information Systems, 3(2), 251–273.

    Article  Google Scholar 

  • Jankowski, P., & Richard, L. (1994). Integration of GIS-based suitability analysis and multi-criteria evaluation in a spatial decision support system for route selection. Environmental and Planning B: Planning and Design, 21, 323–340.

    Article  Google Scholar 

  • Keating, B. A., Carberry, P. S., Hammer, G. L., et al. (2003). An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 18, 267–288.

    Article  Google Scholar 

  • Keeney, R., & Raiffa, H. (Eds.). (1993). Decision with multiple objectives: preferences and value trade-offs. Cambridge: Cambridge University Press.

    Google Scholar 

  • Klein, R. J. T., Huq, S., Denton, F., Downing, T. E., Richels, R. G., Robinson, J. B., et al. (2007). In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, & C. E. Hanson (Eds.), Inter-relationships between adaptation and mitigation. Climate change 2007: Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change (pp. 745–777). Cambridge: Cambridge University Press.

    Google Scholar 

  • McKay, M. D., Conover, W. J., & Beckman, R. J. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21, 239–245.

    Article  Google Scholar 

  • Meehl, G. & Co-authors (2007). Global climate projections. climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., & Miller, H. L. (eds.), Cambridge University Press, Cambridge, 747–846.

  • Oberkampf, W. L., Helton, J. C., Joslyn, C. A., Wojtiewicz, S. F., & Ferson, S. (2004). Challenge problems, uncertainty in systems response given uncertainty parameters. Reliability Engineering & Safety, 85, 11–19.

    Google Scholar 

  • Preston, B. L. & Jones, R. N. (2006). Climate change impacts on Australia and the benefits of early action to reduce global greenhouse gas emissions. A consultancy report for the Australian Business Roundtable on Climate Change, CSIRO, Canberra, February (www.csiro.au/files/files/p6fy.pdf).

  • Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill.

    Google Scholar 

  • Saaty, T. L. (1994). Fundamentals of decision making and priority theory with the analytic hierarchy process. Pittsburgh: RWS.

    Google Scholar 

  • Saaty, T. L. (1995). Decision making for leaders: The analytic hierarchy process for decisions in a complex world. Pittsburgh: RWS.

    Google Scholar 

  • Soanes, C., & Hawker, S. (2005). Compact Oxford english dictionary (3rd ed.). United Kingdom: Oxford University Press.

    Google Scholar 

  • Sposito, V., Benke, K., Pelizaro, C., & Wyatt, R. (2010). Adaptation to climate change in regional Australia: A decision-making framework for modelling policy for rural production. Geography Compass, 4, 335–354.

    Google Scholar 

  • Vonk, G., Geertman, S., & Schot, P. (2005). Bottlenecks blocking widespread usage of planning support systems. Environment and Planning A, 37, 909–924.

    Article  Google Scholar 

  • Voogd, H. (1983). Multicriteria evaluation for urban and regional planning. London: Pion.

    Google Scholar 

  • Vose, D. (2000). Risk analysis. Chichester: Wiley.

    Google Scholar 

  • Whitaker, R. (2007). Validation examples of the analytic hierarchy process and analytic network process. Mathematical and Computer Modelling, 46, 840–859.

    Article  Google Scholar 

  • Wijnmalen, D. J. D. (2007). Analysis of benefits, opportunities, costs and risks (BOCR) with the AHP-ANP: a critical validation. Mathematical and Computer Modelling, 46, 892–905.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Benke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelizaro, C., Benke, K. & Sposito, V. A Modelling Framework for Optimisation of Commodity Production by Minimising the Impact of Climate Change. Appl. Spatial Analysis 4, 201–222 (2011). https://doi.org/10.1007/s12061-010-9051-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12061-010-9051-7

Keywords

Navigation