Skip to main content
Log in

IGFBP-2 - taking the lead in growth, metabolism and cancer

  • REVIEW
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

The activity of the Insulin-like Growth Factors (IGFs) ligands elicited via their receptors and transduced by various intracellular signal pathways is modulated by the IGF Binding Proteins (IGFBPs). Among all the IGFBPs, IGFBP-2 has been implicated in the regulation of IGF activity in most tissue and organs. Besides binding to IGFs in the circulation these IGF-regulatory activities of IGFBP-2 involve interactions with components of the extracellular matrix, cell surface proteoglycans and integrin receptors. In addition to these local peri-cellular activities, IGFBP-2 exerts other key functions within the nucleus, where IGFBP-2 directly or indirectly promotes transcriptional activation of specific genes. All of these IGFBP-2 activities, intrinsic or dependent on IGFs, contribute to its functional roles in growth/development, metabolism and malignancy as evidenced by studies in IGFBP-2 animal models and also by many in vitro studies. Finally, preclinical studies have demonstrated that IGFBP-2 administration can be beneficial in improving metabolic responses (inhibition of adipogenesis and enhanced insulin sensitivity), while blockade of IGFBP-2 appears to be an effective approach to inhibiting tumour growth and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Zapf J, Froesch ER (1986) Insulin-like growth factors/somatomedins: structure, secretion, biological actions and physiological role. Horm Res 24:121–130

    CAS  PubMed  Google Scholar 

  • Daughaday WH, Rotwein P (1989) Insulin-like growth factors I and II. Peptide messenger ribonucleic acid and gene structures, serum, and tissue concentrations. Endocr Rev 10:68–91

    CAS  PubMed  Google Scholar 

  • Han VK, D’Ercole AJ, Lund PK (1987) Cellular localization of somatomedin (insulin-like growth factor) messenger RNA in the human fetus. Science 236:193–197

    CAS  PubMed  Google Scholar 

  • Murphy LJ, Bell GI, Friesen HG (1987) Tissue distribution of insulin-like growth factor I and II messenger ribonucleic acid in the adult rat. Endocrinology 120:1279–1282

    CAS  PubMed  Google Scholar 

  • Sepp-Lorenzino L (1998) Structure and function of the insulin-like growth factor I receptor. Breast Cancer Res Treat 47:235–253

    CAS  PubMed  Google Scholar 

  • Milazzo G, Yip CC, Maddux BA, Vigneri R, Goldfine ID (1992) High-affinity insulin binding to an atypical insulin-like growth factor-I receptor in human breast cancer cells. J Clin Investig 89:899–908

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moxham CP, Duronio V, Jacobs S (1989) Insulin-like growth factor I receptor beta-subunit heterogeneity. Evidence for hybrid tetramers composed of insulin- like growth factor I and insulin receptor heterodimers. J Biol Chem 264:13238–13244

    CAS  PubMed  Google Scholar 

  • Siddle K, Soos MA, Field CE, Nave BT (1994) Hybrid and atypical insulin/insulin-like growth factor I receptors. Horm Res 41(Suppl 2):56–64

    CAS  PubMed  Google Scholar 

  • Sakano K, Enjoh T, Numata F, Fujiwara H, Marumoto Y, Higashihashi N, Sato Y, Perdue JF, Fujita-Yamaguchi Y (1991) The design, expression, and characterization of human insulin- like growth factor II (IGF-II) mutants specific for either the IGF-II/cation-independent mannose 6-phosphate receptor or IGF-I receptor. J Biol Chem 266:20626–20635

    CAS  PubMed  Google Scholar 

  • Braulke T (1999) Type-2 IGF receptor: a multi-ligand binding protein. Horm Metab Res 31:242–246

    CAS  PubMed  Google Scholar 

  • Firth SM, Baxter RC (2002) Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev 23:824–854

    CAS  PubMed  Google Scholar 

  • Twigg SM, Kiefer MC, Zapf J, Baxter RC (2000) A central domain binding site in insulin-like growth factor binding protein-5 for the acid-labile subunit. Endocrinology 141:454–457

    CAS  PubMed  Google Scholar 

  • Galea CA, Mobli M, McNeil KA, Mulhern TD, Wallace JC, King GF, Forbes BE, Norton RS (2012) Insulin-like growth factor binding protein-2: NMR analysis and structural characterization of the N-terminal domain. Biochimie 94:608–616

    CAS  PubMed  Google Scholar 

  • Forbes BE, Turner D, Hodge SJ, McNeil KA, Forsberg G, Wallace JC (1998) Localization of an insulin-like growth factor (IGF) binding site of bovine IGF binding protein-2 using disulfide mapping and deletion mutation analysis of the C-terminal domain. J Biol Chem 273:4647–4652

    CAS  PubMed  Google Scholar 

  • Ho PJ, Baxter RC (1997a) Insulin-like growth factor-binding protein-2 in patients with prostate carcinoma and benign prostatic hyperplasia. Clin Endocrinol 46:333–342

    CAS  Google Scholar 

  • Russo VC, Rekaris G, Baker NL, Bach LA, Werther GA (1999) Basic fibroblast growth factor induces proteolysis of secreted and cell membrane-associated insulin-like growth factor binding protein-2 in human neuroblastoma cells. Endocrinology 140:3082–3090

    CAS  PubMed  Google Scholar 

  • Graham ME, Kilby DM, Firth SM, Robinson PJ, Baxter RC (2007) The in vivo phosphorylation and glycosylation of human insulin-like growth factor-binding protein-5. Mol Cell Proteomics 6:1392–1405

    CAS  PubMed  Google Scholar 

  • Coverley JA, Baxter RC (1997) Phosphorylation of insulin-like growth factor binding proteins. Mol Cell Endocrinol 128:1–5

    CAS  PubMed  Google Scholar 

  • Daza DO, Sundström G, Bergqvist CA, Duan C, Larhammar D (2011) Evolution of the insulin-like growth factor binding protein (IGFBP) family. Endocrinology 152:2278–2289

    CAS  PubMed  Google Scholar 

  • Song SW, Fuller GN, Khan A, Kong S, Shen W, Taylor E, Ramdas L, Lang FF, Zhang W (2003) IIp45, an insulin-like growth factor binding protein 2 (IGFBP-2) binding protein, antagonizes IGFBP-2 stimulation of glioma cell invasion. Proc Natl Acad Sci U S A 100:13970–13975

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frommer KW, Reichenmiller K, Schutt BS, Hoeflich A, Ranke MB, Dodt G, Elmlinger MW (2006) IGF-independent effects of IGFBP-2 on the human breast cancer cell line Hs578T. J Mol Endocrinol 37:13–23

    CAS  PubMed  Google Scholar 

  • Pereira JJ, Meyer T, Docherty SE, Reid HH, Marshall J, Thompson EW, Rossjohn J, Price JT (2004) Bimolecular interaction of insulin-like growth factor (IGF) binding protein-2 with alphavbeta3 negatively modulates IGF-I-mediated migration and tumor growth. Cancer Res 64:977–984

    CAS  PubMed  Google Scholar 

  • Perks CM, Vernon EG, Rosendahl AH, Tonge D, Holly JM (2007) IGF-II and IGFBP-2 differentially regulate PTEN in human breast cancer cells. Oncogene 26:5966–5972

    CAS  PubMed  Google Scholar 

  • Foulstone EJ, Zeng L, Perks CM, Holly JM (2013) Insulin-like growth factor binding protein 2 (IGFBP-2) promotes growth and survival of breast epithelial cells: novel regulation of the estrogen receptor. Endocrinology

  • Russo VC, Schutt BS, Andaloro E, Ymer SI, Hoeflich A, Ranke MB, Bach LA, Werther GA (2005) Insulin-like growth factor binding protein-2 binding to extracellular matrix plays a critical role in neuroblastoma cell proliferation, migration, and invasion. Endocrinology 146:4445–4455

    CAS  PubMed  Google Scholar 

  • Shen X, Xi G, Maile LA, Wai C, Rosen CJ, Clemmons DR (2012) Insulin-like growth factor binding protein-2 functions coordinately with receptor protein tyrosine phosphatase beta and the IGF-I receptor to regulate IGF-I-stimulated signaling. Mol Cell Biol 32:4116–4130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuang Z, Yao S, Keizer DW, Wang CC, Bach LA, Forbes BE, Wallace JC, Norton RS (2006) Structure, dynamics and heparin binding of the C-terminal domain of insulin-like growth factor-binding protein-2 (IGFBP-2). J Mol Biol 364:690–704

    CAS  PubMed  Google Scholar 

  • Besnard V, Corroyer S, Trugnan G, Chadelat K, Nabeyrat E, Cazals V, Clement A (2001) Distinct patterns of insulin-like growth factor binding protein (IGFBP)-2 and IGFBP-3 expression in oxidant exposed lung epithelial cells. Biochim Biophys Acta (BBA) Mol Cell Res 1538:47–58

    CAS  Google Scholar 

  • Terrien X, Bonvin E, Corroyer S, Tabary O, Clement A, Henrion Caude A (2005) Intracellular colocalization and interaction of IGF-binding protein-2 with the cyclin-dependent kinase inhibitor p21CIP1/WAF1 during growth inhibition. Biochem J 392:457–465

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyako K, Cobb LJ, Francis M, Huang A, Peng B, Pintar JE, Ariga H, Cohen P (2009) PAPA-1 Is a nuclear binding partner of IGFBP-2 and modulates its growth-promoting actions. Mol Endocrinol 23:169–175

    CAS  PubMed Central  PubMed  Google Scholar 

  • Azar WJ, Azar SH, Higgins S, Hu JF, Hoffman AR, Newgreen DF, Werther GA, Russo VC (2011) IGFBP-2 enhances VEGF gene promoter activity and consequent promotion of angiogenesis by neuroblastoma cells. Endocrinology 152:3332–3342

    CAS  PubMed  Google Scholar 

  • Azar WJ, Zivkovic S, Werther GA, Russo VC (2014) IGFBP-2 nuclear translocation is mediated by a functional NLS sequence and is essential for its pro-tumorigenic actions in cancer cells. Oncogene 33:578–588

    CAS  PubMed  Google Scholar 

  • Schedlich LJ, Le Page SL, Firth SM, Briggs LJ, Jans DA, Baxter RC (2000) Nuclear import of insulin-like growth factor-binding protein-3 and -5 is mediated by the importin beta subunit. J Biol Chem 275:23462–23470

    CAS  PubMed  Google Scholar 

  • Iosef C, Gkourasas T, Jia CY, Li SS, Han VK (2008) A functional nuclear localization signal in insulin-like growth factor binding protein-6 mediates its nuclear import. Endocrinology 149:1214–1226

    CAS  PubMed  Google Scholar 

  • Chelsky D, Ralph R, Jonak G (1989) Sequence requirements for synthetic peptide-mediated translocation to the nucleus. Mol Cell Biol 9:2487–2492

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pintar JE, Cerro JA, Wood TL (1996) Genetic approaches to the function of insulin-like growth factor- binding proteins during rodent development. Horm Res 45:172–177

    CAS  PubMed  Google Scholar 

  • Wood TL, Rogler LE, Czick ME, Schuller AG, Pintar JE (2000) Selective alterations in organ sizes in mice with a targeted disruption of the insulin-like growth factor binding protein-2 gene. Mol Endocrinol 14:1472–1482

    CAS  PubMed  Google Scholar 

  • Chen TL, Chang LY, DiGregorio DA, Perlman AJ, Huang YF (1993) Growth factor modulation of insulin-like growth factor-binding proteins in rat osteoblast-like cells. Endocrinology 133:1382–1389

    CAS  PubMed  Google Scholar 

  • Palermo C, Manduca P, Gazzerro E, Foppiani L, Segat D, Barreca A (2004) Potentiating role of IGFBP-2 on IGF-II-stimulated alkaline phosphatase activity in differentiating osteoblasts. Am J Physiol Endocrinol Metab 286:E648–E657

    CAS  PubMed  Google Scholar 

  • Wang E, Wang J, Chin E, Zhou J, Bondy CA (1995) Cellular patterns of insulin-like growth factor system gene expression in murine chondrogenesis and osteogenesis. Endocrinology 136:2741–2751

    CAS  PubMed  Google Scholar 

  • Conover CA, Johnstone EW, Turner RT, Evans GL, John Ballard F, Doran PM, Khosla S (2002) Subcutaneous administration of insulin-like growth factor (IGF)-II/IGF binding protein-2 complex stimulates bone formation and prevents loss of bone mineral density in a rat model of disuse osteoporosis. Growth Hormon IGF Res 12:178–183

    CAS  Google Scholar 

  • Fisher MC, Meyer C, Garber G, Dealy CN (2005) Role of IGFBP2, IGF-I and IGF-II in regulating long bone growth. Bone 37:741–750

    CAS  PubMed  Google Scholar 

  • DeMambro VE, Clemmons DR, Horton LG, Bouxsein ML, Wood TL, Beamer WG, Canalis E, Rosen CJ (2008) Gender-specific changes in bone turnover and skeletal architecture in Igfbp-2-null mice. Endocrinology 149:2051–2061

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kawai M, Breggia AC, DeMambro VE, Shen X, Canalis E, Bouxsein ML, Beamer WG, Clemmons DR, Rosen CJ (2011) The heparin-binding domain of IGFBP-2 has IGF binding-independent biologic activity in the growing skeleton. J Biol Chem 286:14670–14680

    CAS  PubMed Central  PubMed  Google Scholar 

  • DeMambro VE, Maile L, Wai C, Kawai M, Cascella T, Rosen CJ, Clemmons D (2012) Insulin-like growth factor-binding protein-2 is required for osteoclast differentiation. J Bone Miner Res 27:390–400

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xi G, Wai C, DeMambro V, Rosen CJ, Clemmons DR (2014) IGFBP-2 directly stimulates osteoblast differentiation. J Bone Miner Res 29:2427–2438

    CAS  PubMed  Google Scholar 

  • Hoeflich A, Wu M, Mohan S, Foll J, Wanke R, Froehlich T, Arnold GJ, Lahm H, Kolb HJ, Wolf E (1999) Overexpression of insulin-like growth factor-binding protein-2 in transgenic mice reduces postnatal body weight gain. Endocrinology 140:5488–5496

    CAS  PubMed  Google Scholar 

  • Hoeflich A, Nedbal S, Blum WF, Erhard M, Lahm H, Brem G, Kolb HJ, Wanke R, Wolf E (2001) Growth inhibition in giant growth hormone transgenic mice by overexpression of insulin-like growth factor-binding protein-2. Endocrinology 142:1889–1898

    CAS  PubMed  Google Scholar 

  • Russo VC, Bach LA, Werther GA (1995) Cell membrane association of insulin-like growth factor binding protein-2 (IGFBP-2) in the rat brain olfactory bulb. Prog Growth Factor Res 6:329–336

    CAS  PubMed  Google Scholar 

  • Rehfeldt C, Renne U, Sawitzky M, Binder G, Hoeflich A (2010) Increased fat mass, decreased myofiber size, and a shift to glycolytic muscle metabolism in adolescent male transgenic mice overexpressing IGFBP-2. Am J Physiol Endocrinol Metab 299:E287–E298

    CAS  PubMed  Google Scholar 

  • Eckstein F, Pavicic T, Nedbal S, Schmidt C, Wehr U, Rambeck W, Wolf E, Hoeflich A (2002) Insulin-like growth factor-binding protein-2 (IGFBP-2) overexpression negatively regulates bone size and mass, but not density, in the absence and presence of growth hormone/IGF-I excess in transgenic mice. Anat Embryol (Berlin) 206:139–148

    CAS  Google Scholar 

  • Hoeflich A, Schmidt P, Foll J, Rottmann O, Weber MM, Kolb HJ, Pirchner F, Wolf E (1998) Altered growth of mice divergently selected for body weight is associated with complex changes in the growth hormone/insulin-like growth factor system. Growth Hormon IGF Res 8:113–123

    CAS  Google Scholar 

  • Barrios V, Buno M, Pozo J, Munoz MT, Argente J (2000) Insulin-like growth factor-binding protein-2 levels in pediatric patients with growth hormone deficiency, eating disorders and acute lymphoblastic leukemia. Horm Res 53:221–227

    CAS  PubMed  Google Scholar 

  • Hall K, Lundin G, Povoa G (1988) Serum levels of the low molecular weight form of insulin-like growth factor binding protein in healthy subjects and patients with growth hormone deficiency, acromegaly and anorexia nervosa. Acta Endocrinol (Copenh) 118:321–326

    CAS  Google Scholar 

  • Hotta M, Fukuda I, Sato K, Hizuka N, Shibasaki T, Takano K (2000) The relationship between bone turnover and body weight, serum insulin-like growth factor (IGF) I, and serum IGF-binding protein levels in patients with anorexia nervosa. J Clin Endocrinol Metab 85:200–206

    CAS  PubMed  Google Scholar 

  • Wheatcroft SB, Kearney MT, Shah AM, Ezzat VA, Miell JR, Modo M, Williams SCR, Cawthorn WP, Medina-Gomez G, Vidal-Puig A, Sethi JK, Crossey PA (2007a) IGF-binding protein-2 protects against the development of obesity and insulin resistance. Diabetes 56:285–294

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hedbacker K, Birsoy K, Wysocki RW, Asilmaz E, Ahima RS, Farooqi IS, Friedman JM (2010) Antidiabetic effects of IGFBP2, a leptin-regulated gene. Cell Metab 11:11–22

    CAS  PubMed  Google Scholar 

  • Claudio M, Benjamim F, Riccardo B, Massimiliano C, Francesco B, Luciano C (2010a) Adipocytes IGFBP-2 expression in prepubertal obese children. Obesity (Silver Spring) 18:2055–2057

    CAS  Google Scholar 

  • Ballerini MG, Ropelato MG, Domene HM, Pennisi P, Heinrich JJ, Jasper HG (2004) Differential impact of simple childhood obesity on the components of the growth hormone-insulin-like growth factor (IGF)-IGF binding proteins axis. J Pediatr Endocrinol Metab 17:749–757

    CAS  PubMed  Google Scholar 

  • Frystyk J, Skjaerbaek C, Vestbo E, Fisker S, Orskov H (1999) Circulating levels of free insulin-like growth factors in obese subjects: the impact of type 2 diabetes. Diabetes Metab Res Rev 15:314–322

    CAS  PubMed  Google Scholar 

  • Levitt RJ, Georgescu M-M, Pollak M (2005) PTEN-induction in U251 glioma cells decreases the expression of insulin-like growth factor binding protein-2. Biochem Biophys Res Commun 336:1056–1061

    CAS  PubMed  Google Scholar 

  • Mehrian-Shai R, Chen CD, Shi T, Horvath S, Nelson SF, Reichardt JK, Sawyers CL (2007) Insulin growth factor-binding protein 2 is a candidate biomarker for PTEN status and PI3K/Akt pathway activation in glioblastoma and prostate cancer. Proc Natl Acad Sci U S A 104:5563–5568

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martin JL, Baxter RC (2007) Expression of insulin-like growth factor binding protein-2 by MCF-7 breast cancer cells is regulated through the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin pathway. Endocrinology 148:2532–2541

    CAS  PubMed  Google Scholar 

  • Dean SJR, Perks CM, Holly JMP, Bhoo-Pathy N, Looi L-M, Mohammed NAT, Mun K-S, Teo S-H, Koobotse MO, Yip C-H, Rhodes A (2014) Loss of PTEN expression is associated with IGFBP2 expression, younger age, and late stage in triple-negative breast cancer. Am J Clin Pathol 141:323–333

    PubMed  Google Scholar 

  • Grimberg A, Coleman CM, Shi Z, Burns TF, MacLachlan TK, Wang W, El-Deiry WS (2006) Insulin-like growth factor factor binding protein-2 is a novel mediator of p53 inhibition of insulin-like growth factor signaling. Cancer Biol Ther 5:1408–1414

    CAS  PubMed Central  PubMed  Google Scholar 

  • Villani RM, Adolphe C, Palmer J, Waters MJ, Wainwright BJ (2010) Patched1 inhibits epidermal progenitor cell expansion and basal cell carcinoma formation by limiting Igfbp2 activity. Cancer Prev Res 3:1222–1234

    CAS  Google Scholar 

  • Rao G, Pedone CA, Valle LD, Reiss K, Holland EC, Fults DW (2004) Sonic hedgehog and insulin-like growth factor signaling synergize to induce medulloblastoma formation from nestin-expressing neural progenitors in mice. Oncogene 23:6156–6162

    CAS  PubMed  Google Scholar 

  • Feldser D, Agani F, Iyer NV, Pak B, Ferreira G, Semenza GL (1999) Reciprocal positive regulation of hypoxia-inducible factor 1alpha and insulin-like growth factor 2. Cancer Res 59:3915–3918

    CAS  PubMed  Google Scholar 

  • Harris AL (2002) Hypoxia–a key regulatory factor in tumour growth. Nat Rev Cancer 2:38–47

    CAS  PubMed  Google Scholar 

  • Semenza GL (1999) Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 15:551–578

    CAS  PubMed  Google Scholar 

  • Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732

    CAS  PubMed  Google Scholar 

  • Poomthavorn P, Wong SHX, Higgins S, Werther GA, Russo VC (2009) Activation of a prometastatic gene expression program in hypoxic neuroblastoma cells. Endocr Relat Cancer 16:991–1004

    CAS  PubMed  Google Scholar 

  • Matsumoto T, Gargosky SE, Iwasaki K, Rosenfeld RG (1996) Identification and characterization of insulin-like growth factors (IGFs), IGF-binding proteins (IGFBPs), and IGFBP proteases in human synovial fluid. J Clin Endocrinol Metab 81:150–155

    CAS  PubMed  Google Scholar 

  • Ishikawa K, Ohe Y, Tatemoto K (1995) Synthesis and secretion of insulin-like growth factor (IGF)-II and IGF binding protein-2 by cultivated brain meningeal cells. Brain Res 697:122–129

    CAS  PubMed  Google Scholar 

  • Mark S, Kübler B, Höning S, Oesterreicher S, John H, Braulke T, Forssmann W-G, Ständker L (2005) Diversity of human insulin-like growth factor (IGF) binding protein-2 fragments in plasma: primary structure, IGF-binding properties, and disulfide bonding pattern†. Biochemistry 44:3644–3652

    CAS  PubMed  Google Scholar 

  • Ho PJ, Baxter RC (1997b) Characterization of truncated insulin-like growth factor-binding protein-2 in human milk. Endocrinology 138:3811–3818

    CAS  PubMed  Google Scholar 

  • Giudice LC, Farrell EM, Pham H, Lamson G, Rosenfeld RG (1990) Insulin-like growth factor binding proteins in maternal serum throughout gestation and in the puerperium: effects of a pregnancy-associated serum protease activity. J Clin Endocrinol Metab 71:806–816

    CAS  PubMed  Google Scholar 

  • Pucilowska JB, Davenport ML, Kabir I, Clemmons DR, Thissen JP, Butler T, Underwood LE (1993) The effect of dietary protein supplementation on insulin-like growth factors (IGFs) and IGF-binding proteins in children with shigellosis. J Clin Endocrinol Metab 77:1516–1521

    CAS  PubMed  Google Scholar 

  • Brandt K, Lundell K, Brismar K (2011) Neutrophil-derived azurocidin cleaves insulin-like growth factor-binding protein-1, −2 and −4. Growth Hormon IGF Res 21:167–173

    CAS  Google Scholar 

  • DeGraff DJ, Malik M, Chen Q, Miyako K, Rejto L, Aguiar AA, Bancroft DRE, Cohen P, Sikes RA (2007) Hormonal regulation of IGFBP-2 proteolysis is attenuated with progression to androgen insensitivity in the LNCaP progression model. J Cell Physiol 213:261–268

    CAS  PubMed  Google Scholar 

  • Russo VC, Andaloro E, Fornaro SA, Najdovska S, Newgreen DF, Bach LA, Werther GA (2004) Fibroblast growth factor-2 over-rides insulin-like growth factor-I induced proliferation and cell survival in human neuroblastoma cells. J Cell Physiol 199:371–380

    CAS  PubMed  Google Scholar 

  • Hoeflich A, Reisinger R, Schuett BS, Elmlinger MW, Russo VC, Vargas GA, Jehle PM, Lahm H, Renner-Muller I, Wolf E (2004) Peri/nuclear localization of intact insulin-like growth factor binding protein-2 and a distinct carboxyl-terminal IGFBP-2 fragment in vivo. Biochem Biophys Res Commun 324:705–710

    CAS  PubMed  Google Scholar 

  • Si M, Nakamura M, Yano K, Ishii G, Hasebe T, Endoh Y, Sangai T, Maeda H, Shi-chuang Z, Chiba T, Ochiai A (2007) Matrix metalloproteinase-7 triggers the matricrine action of insulin-like growth factor-II via proteinase activity on insulin-like growth factor binding protein 2 in the extracellular matrix. Cancer Sci 98:685–691

    Google Scholar 

  • Sunderic M, Miljus G, Nedic O (2013) Interaction of insulin-like growth factor-binding protein 2 with alpha2-macroglobulin in the circulation. Protein J 32:138–142

    CAS  PubMed  Google Scholar 

  • Gerard N, Delpuech T, Oxvig C, Overgaard M, Monget P (2004) Proteolytic degradation of IGF-binding protein (IGFBP)-2 in equine ovarian follicles: involvement of pregnancy-associated plasma protein-A (PAPP-A) and association with dominant but not subordinated follicles. J Endocrinol 182:457–466

    CAS  PubMed  Google Scholar 

  • Qin X, Wergedal JE, Rehage M, Tran K, Newton J, Lam P, Baylink DJ, Mohan S (2006) Pregnancy-associated plasma protein-A increases osteoblast proliferation in vitro and bone formation in vivo. Endocrinology 147:5653–5661

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–715

    CAS  PubMed  Google Scholar 

  • Schutt B, Langkamp M, Rauschnabel U, Ranke M, Elmlinger M (2004) Integrin-mediated action of insulin-like growth factor binding protein-2 in tumor cells. J Mol Endocrinol 32:859–868

    CAS  PubMed  Google Scholar 

  • Mendes KN, Wang GK, Fuller GN, Zhang W (2010) JNK mediates insulin-like growth factor binding protein 2/integrin alpha5-dependent glioma cell migration. Int J Oncol 37:143–153

    CAS  PubMed  Google Scholar 

  • Uzoh CC, Holly JM, Biernacka KM, Persad RA, Bahl A, Gillatt D, Perks CM (2011) Insulin-like growth factor-binding protein-2 promotes prostate cancer cell growth via IGF-dependent or -independent mechanisms and reduces the efficacy of docetaxel. Br J Cancer 104:1587–1593

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arai T, Clarke J, Parker A, Busby W Jr, Nam T, Clemmons DR (1996) Substitution of specific amino acids in insulin-like growth factor (IGF) binding protein 5 alters heparin binding and its change in affinity for IGF-I response to heparin. J Biol Chem 271:6099–6106

    CAS  PubMed  Google Scholar 

  • Kiepe D, Van Der Pas A, Ciarmatori S, Standker L, Schutt B, Hoeflich A, Hugel U, Oh J, Tonshoff B (2008) Defined carboxy-terminal fragments of insulin-like growth factor (IGF) binding protein-2 exert similar mitogenic activity on cultured rat growth plate chondrocytes as IGF-I. Endocrinology 149:4901–4911

    CAS  PubMed  Google Scholar 

  • Xi G, Solum MA, Wai C, Maile LA, Rosen CJ, Clemmons DR (2013) The heparin-binding domains of IGFBP-2 mediate its inhibitory effect on preadipocyte differentiation and fat development in male mice. Endocrinology 154:4146–4157

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shitara K, Yamada H, Watanabe K, Shimonaka M, Yamaguchi Y (1994) Brain-specific receptor-type protein-tyrosine phosphatase RPTP beta is a chondroitin sulfate proteoglycan in vivo. J Biol Chem 269:20189–20193

    CAS  PubMed  Google Scholar 

  • Sabin MA, Russo VC, Azar WJ, Yau SW, Kiess W, Werther GA (2011a) IGFBP-2 at the interface of growth and metabolism–implications for childhood obesity. Pediatr Endocrinol Rev 8:382–393

    PubMed  Google Scholar 

  • Nam SY, Lee EJ, Kim KR, Cha BS, Song YD, Lim SK, Lee HC, Huh KB (1997a) Effect of obesity on total and free insulin-like growth factor (IGF)-1, and their relationship to IGF-binding protein (BP)-1, IGFBP-2, IGFBP-3, insulin, and growth hormone. Int J Obes Relat Metab Disord 21:355–359

    CAS  PubMed  Google Scholar 

  • Heald AH, Kaushal K, Siddals KW, Rudenski AS, Anderson SG, Gibson JM (2006) Insulin-like growth factor binding protein-2 (IGFBP-2) is a marker for the metabolic syndrome. Exp Clin Endocrinol Diabetes 114:371–376

    CAS  PubMed  Google Scholar 

  • Li Z, Picard F (2010a) Modulation of IGFBP2 mRNA expression in white adipose tissue upon aging and obesity. Horm Metab Res 42:787–791

    CAS  PubMed  Google Scholar 

  • Krassas GE (2003) Endocrine abnormalities in Anorexia Nervosa. Pediatr Endocrinol Rev 1:46–54

    PubMed  Google Scholar 

  • Counts DR, Gwirtsman H, Carlsson LM, Lesem M, Cutler GB (1992) The effect of anorexia nervosa and refeeding on growth hormone-binding protein, the insulin-like growth factors (IGFs), and the IGF-binding proteins. J Clin Endocrinol Metab 75:762–767

    CAS  PubMed  Google Scholar 

  • Bereket A, Lang CH, Wilson TA (1999) Alterations in the growth hormone-insulin-like growth factor axis in insulin dependent diabetes mellitus. Horm Metab Res 31:172–181

    CAS  PubMed  Google Scholar 

  • Frystyk J, Bek T, Flyvbjerg A, Skjærbæk C, Ørskov H (2003) The relationship between the circulating IGF system and the presence of retinopathy in Type 1 diabetic patients. Diabet Med 20:269–276

    CAS  PubMed  Google Scholar 

  • Street ME, Smerieri A, Montanini L, Predieri B, Iughetti L, Valenzise M, De Luca F, Vigone M, Weber G, Maghnie M, Bernasconi S (2013) Interactions among pro-inflammatory cytokines, IGF system and thyroid function in pre-pubertal obese subjects. J Biol Regul Homeost Agents 27:259–266

    CAS  PubMed  Google Scholar 

  • Smerieri A, Petraroli M, Ziveri MA, Volta C, Bernasconi S, Street ME (2011) Effects of cord serum insulin, IGF-II, IGFBP-2, IL-6 and cortisol concentrations on human birth weight and length: pilot study. PLoS One 6:e29562

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giudice LC, de Zegher F, Gargosky SE, Dsupin BA, de las Fuentes L, Crystal RA, Hintz RL, Rosenfeld RG (1995) Insulin-like growth factors and their binding proteins in the term and preterm human fetus and neonate with normal and extremes of intrauterine growth. J Clin Endocrinol Metab 80:1548–1555

    CAS  PubMed  Google Scholar 

  • Ko JM, Park HK, Yang S, Hwang IT (2012) Influence of catch-up growth on IGFBP-2 levels and association between IGFBP-2 and cardiovascular risk factors in Korean children born SGA. Endocr J 59:725–733

    CAS  PubMed  Google Scholar 

  • de Kort SW, van Doorn J, van de Sande AG, Leunissen RW, Hokken-Koelega AC (2010) Serum insulin-like growth factor-binding protein-2 levels and metabolic and cardiovascular risk factors in young adults and children born small for gestational age. J Clin Endocrinol Metab 95:864–871

    PubMed  Google Scholar 

  • Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770

    CAS  PubMed  Google Scholar 

  • Yau SW, Henry BA, Russo VC, McConell GK, Clarke IJ, Werther GA, Sabin MA (2014a) Leptin enhances insulin sensitivity by direct and sympathetic nervous system regulation of muscle Igfbp-2 expression - evidence from non-rodent models. Endocrinology 155:2133–2143

    PubMed  Google Scholar 

  • Sabin MA, Yau SW, Russo VC, Clarke IJ, Dunshea FR, Chau J, Cox M, Werther GA (2011b) Dietary monounsaturated fat in early life regulates IGFBP2: implications for fat mass accretion and insulin sensitivity. Obesity 19:2374–2381

    CAS  PubMed  Google Scholar 

  • Nam S, Lee E, Kim K, Cha B, Song Y, Lim S (1997b) Effect of obesity on total and free insulin-like growth factor (IGF)-1, and their relationship to IGF-binding protein (BP)-1, IGFBP-2, IGFBP-3, insulin, and growth hormone. Int J Obes Relat Metab Disord 21:355–359

    CAS  PubMed  Google Scholar 

  • Claudio M, Benjamim F, Riccardo B, Massimiliano C, Francesco B, Luciano C (2010b) Adipocytes IGFBP-2 expression in prepubertal obese children. Obesity 18:2055–2057

    CAS  PubMed  Google Scholar 

  • Li Z, Picard F (2010) Modulation of IGFBP2 mRNA expression in white adipose tissue upon aging and obesity. Horm Metab Res:787–791

  • Wheatcroft S, Kearney M, Shah A, Ezzat V, Miell J, Modo M (2007b) IGF-binding protein-2 protects against the development of obesity and insulin resistance. Diabetes 56:284–294

    Google Scholar 

  • Yau SW, Russo VC, Clarke IJ, Dunshea FR, Werther GA, Sabin MA (2014b) IGFBP-2 inhibits adipogenesis and lipogenesis in human visceral, but not subcutaneous, adipocytes. Int J Obes. doi:10.1038/ijo.2014.192

    Google Scholar 

  • Reeve JG, Kirby LB, Brinkman A, Hughes SA, Schwander J, Bleehen NM (1992a) Insulin-like growth-factor-binding protein gene expression and protein production by human tumour cell lines. Int J Cancer 51:818–821

    CAS  PubMed  Google Scholar 

  • Tennant MK, Thrasher JB, Twomey PA, Birnbaum RS, Plymate SR (1996) Insulin-like growth factor-binding protein-2 and −3 expression in benign human prostate epithelium, prostate intraepithelial neoplasia, and adenocarcinoma of the prostate. J Clin Endocrinol Metab 81:411–420

    CAS  PubMed  Google Scholar 

  • Wex H, Vorwerk P, Mohnike K, Bretschneider D, Kluba U, Aumann V, Blum WF, Mittler U (1998) Elevated serum levels of IGFBP-2 found in children suffering from acute leukaemia is accompanied by the occurrence of IGFBP-2 mRNA in the tumour clone. Br J Cancer 78:515–520

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang H, Shen W, Huang H, Hu L, Ramdas L, Zhou YH, Liao WS, Fuller GN, Zhang W (2003) Insulin-like growth factor binding protein 2 enhances glioblastoma invasion by activating invasion-enhancing genes. Cancer Res 63:4315–4321

    CAS  PubMed  Google Scholar 

  • Fukushima T, Kataoka H (2007) Roles of insulin-like growth factor binding protein-2 (IGFBP-2) in glioblastoma. Anticancer Res 27:3685–3692

    CAS  PubMed  Google Scholar 

  • Becher OJ, Peterson KM, Khatua S, Santi MR, MacDonald TJ (2008) IGFBP2 is overexpressed by pediatric malignant astrocytomas and induces the repair enzyme DNA-PK. J Child Neurol 23:1205–1213

    PubMed Central  PubMed  Google Scholar 

  • Moore LM, Holmes KM, Smith SM, Wu Y, Tchougounova E, Uhrbom L, Sawaya R, Bruner JM, Fuller GN, Zhang W (2009) IGFBP2 is a candidate biomarker for Ink4a-Arf status and a therapeutic target for high-grade gliomas. Proc Natl Acad Sci U S A 106:16675–16679

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fukushima T, Tezuka T, Shimomura T, Nakano S, Kataoka H (2007) Silencing of insulin-like growth factor-binding protein-2 in human glioblastoma cells reduces both invasiveness and expression of progression-associated gene CD24. J Biol Chem 282:18634–18644

    CAS  PubMed  Google Scholar 

  • Heinlein CA, Chang C (2004) Androgen receptor in prostate cancer. Endocr Rev 25:276–308

    CAS  PubMed  Google Scholar 

  • Karantanos T, Corn PG, Thompson TC (2013) Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene 32:5501–5511

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kimura G, Kasuya J, Giannini S, Honda Y, Mohan S, Kawachi M, Akimoto M, Fujita-Yamaguchi Y (1996) Insulin-like growth factor (IGF) system components in human prostatic cancer cell-lines: LNCaP, DU145, and PC-3 cells. Intl J Urol : Off J Jpn Urol Assoc 3:39–46

    CAS  Google Scholar 

  • Cohen P, Peehl DM, Stamey TA, Wilson KF, Clemmons DR, Rosenfeld RG (1993) Elevated levels of insulin-like growth factor-binding protein-2 in the serum of prostate cancer patients. J Clin Endocrinol Metab 76:1031–1035

    CAS  PubMed  Google Scholar 

  • Degraff DJ, Aguiar AA, Sikes RA (2009) Disease evidence for IGFBP-2 as a key player in prostate cancer progression and development of osteosclerotic lesions. Am J Transl Res 1:115–130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang H, Arun BK, Wang H, Fuller GN, Zhang W, Middleton LP, Sahin AA (2008) IGFBP2 and IGFBP5 overexpression correlates with the lymph node metastasis in T1 breast carcinomas. Breast J 14:261–267

    PubMed  Google Scholar 

  • Juncker-Jensen A, Lykkesfeldt AE, Worm J, Ralfkiær U, Espelund U, Jepsen JS (2006) Insulin-like growth factor binding protein 2 is a marker for antiestrogen resistant human breast cancer cell lines but is not a major growth regulator. Growth Hormon IGF Res 16:224–239

    CAS  Google Scholar 

  • Sohn J, Do KA, Liu S, Chen H, Mills GB, Hortobagyi GN, Meric-Bernstam F, Gonzalez-Angulo AM (2013) Functional proteomics characterization of residual triple-negative breast cancer after standard neoadjuvant chemotherapy. Ann Oncol 24:2522–2526

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mireuta M, Darnel A, Pollak M (2010) IGFBP-2 expression in MCF-7 cells is regulated by the PI3K/AKT/mTOR pathway through Sp1-induced increase in transcription. Growth Factors 28:243–255

    CAS  PubMed  Google Scholar 

  • Karasik A, Menczer J, Pariente C, Kanety H (1994) Insulin-like growth factor-I (IGF-I) and IGF-binding protein-2 are increased in cyst fluids of epithelial ovarian cancer. J Clin Endocrinol Metab 78:271–276

    CAS  PubMed  Google Scholar 

  • Kanety H, Kattan M, Goldberg I, Kopolovic J, Ravia J, Menczer J, Karasik A (1996) Increased insulin-like growth factor binding protein-2 (IGFBP-2) gene expression and protein production lead to high IGFBP-2 content in malignant ovarian cyst fluid. Br J Cancer 73:1069–1073

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang H, Rosen DG, Wang H, Fuller GN, Zhang W, Liu J (2006) Insulin-like growth factor-binding protein 2 and 5 are differentially regulated in ovarian cancer of different histologic types. Mod Pathol 19:1149–1156

    CAS  PubMed  Google Scholar 

  • Lee EJ, Mircean C, Shmulevich I, Wang H, Liu J, Niemisto A, Kavanagh JJ, Lee JH, Zhang W (2005) Insulin-like growth factor binding protein 2 promotes ovarian cancer cell invasion. Mol Cancer 4:7

    PubMed Central  PubMed  Google Scholar 

  • Inaba H, Greaves M, Mullighan CG (2013) Acute lymphoblastic leukaemia. Lancet 381:1943–1955

    PubMed  Google Scholar 

  • Lo Nigro L (2013) Biology of childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol 35:245–252

    CAS  PubMed  Google Scholar 

  • Carroll WL, Raetz EA (2012) Clinical and laboratory biology of childhood acute lymphoblastic leukemia. J Pediatr 160:10–18

    PubMed  Google Scholar 

  • Rivera GK, Crist WM, Sallan SE (1994) Biology and therapy of childhood acute lymphoblastic leukemia. Revista de investigacion clinica; organo del Hospital de Enfermedades de la Nutricion Suppl: 26–33

  • Rodríguez-Vicente AE, Díaz MG, Hernández-Rivas JM (2013) Chronic lymphocytic leukemia: a clinical and molecular heterogenous disease. Cancer Genet 206:49–62

    PubMed  Google Scholar 

  • Shanshal M, Haddad RY (2012) Chronic lymphocytic leukemia. Dis Mon 58:153–167

    PubMed  Google Scholar 

  • Hillmen P (2011) Using the biology of chronic lymphocytic leukemia to choose treatment. ASH Educ Program Book 2011:104–109

    Google Scholar 

  • Estey EH (2013) Acute myeloid leukemia: 2013 update on risk-stratification and management. Am J Hematol 88:317–327

    Google Scholar 

  • Puumala SE, Ross JA, Aplenc R, Spector LG (2013) Epidemiology of childhood acute myeloid leukemia. Pediatr Blood Cancer 60:728–733

    PubMed Central  PubMed  Google Scholar 

  • Gamis AS, Alonzo TA, Perentesis JP, Meshinchi S, COGAMLC (2013) Children’s Oncology Group’s 2013 blueprint for research: Acute myeloid leukemia. Pediatr Blood Cancer 60:964–971

    PubMed  Google Scholar 

  • Jabbour E, Kantarjian H (2012) Chronic myeloid leukemia: 2012 update on diagnosis, monitoring, and management. Am J Hematol 87:1037–1045

    CAS  PubMed  Google Scholar 

  • Maru Y (2012) Molecular biology of chronic myeloid leukemia. Cancer Sci 103:1601–1610

    CAS  PubMed  Google Scholar 

  • Zhang Y, Rowley JD (2011) Chronic myeloid leukemia: current perspectives. Clin Lab Med 31:687–698

    CAS  PubMed  Google Scholar 

  • Mohnike KL, Kluba U, Mittler U, Aumann V, Vorwerk P, Blum WF (1996) Serum levels of insulin-like growth factor-I, −II and insulin- like growth factor binding proteins −2 and −3 in children with acute lymphoblastic leukaemia. Eur J Pediatr 155:81–86

    CAS  PubMed  Google Scholar 

  • Dawczynski K, Kauf E, Zintl F (2003) Changes of serum growth factors (IGF-I,-II and IGFBP-2,-3) prior to and after stem cell transplantation in children with acute leukemia. Bone Marrow Transplant 32:411–415

    CAS  PubMed  Google Scholar 

  • Elmlinger MW, Wimmer K, Biemer E, Blum WF, Ranke MB, Dannecker GE (1996) Insulin-like growth factor binding protein 2 is differentially expressed in leukaemic B- and T-cell lines. Growth Regul 6:152–157

    CAS  PubMed  Google Scholar 

  • Attard-Montalto SP, Camacho-Hübner C, Cotterill AM, D’Souza-Li L, Daley S, Bartlett K, Halliday D, Eden OB (1998) Changes in protein turnover, IGF-I and IGF binding proteins in children with cancer. Acta Paediatr 87:54–60

    CAS  PubMed  Google Scholar 

  • Vorwerk P, Mohnike K, Wex H, Rohl FW, Zimmermann M, Blum WF, Mittler U (2005) Insulin-like growth factor binding protein-2 at diagnosis of childhood acute lymphoblastic leukemia and the prediction of relapse risk. J Clin Endocrinol Metab 90:3022–3027

    CAS  PubMed  Google Scholar 

  • Dawczynski K, Kauf E, Schlenvoigt D, Gruhn B, Fuchs D, Zintl F (2006) Elevated serum insulin-like growth factor binding protein-2 is associated with a high relapse risk after hematopoietic stem cell transplantation in childhood AML. Bone Marrow Transplant 37:589–594

    CAS  PubMed  Google Scholar 

  • Hattori H, Matsuzaki A, Suminoe A, Koga Y, Tashiro K, Hara T (2006) Identification of novel genes with prognostic value in childhood leukemia using cDNA microarray and quantitative RT-PCR. Pediatr Hematol Oncol 23:115–127

    CAS  PubMed  Google Scholar 

  • Dawczynski K, Steinbach D, Wittig S, Pfaffendorf N, Kauf E, Zintl F (2008) Expression of components of the IGF axis in childhood acute myelogenous leukemia. Pediatr Blood Cancer 50:24–28

    PubMed  Google Scholar 

  • Kuhnl A, Kaiser M, Neumann M, Fransecky L, Heesch S, Radmacher M, Marcucci G, Bloomfield CD, Hofmann WK, Thiel E, Baldus CD (2011) High expression of IGFBP2 is associated with chemoresistance in adult acute myeloid leukemia. Leuk Res 35:1585–1590

    PubMed Central  PubMed  Google Scholar 

  • Kitszel A, Krawczuk-Rybak M (2007) Are elevated serum levels of IGFBP-2 after intensive chemotherapy of childhood acute lymphoblastic leukemia a risk factor of relapse? Adv Med Sci 52:147–153

    CAS  PubMed  Google Scholar 

  • Elmlinger M, Sanatani M, Bell M, Dannecker G, Ranke M (1998) Elevated insulin-like growth factor (IGF) binding protein (IGFBP)-2 and IGFBP-4 expression of leukemic T-cells is affected by autocrine/paracrine IGF-II action but not by IGF type I receptor expression. Eur J Endocrinol 138:337–343

    CAS  PubMed  Google Scholar 

  • Jaques G, Kiefer P, Schoneberger HJ, Wegmann B, Kaiser U, Brandscheid D, Havemann K (1992) Differential expression of insulin-like growth factor binding proteins in human non-small cell lung cancer cell lines. Eur J Cancer 28A:1899–1904

    CAS  PubMed  Google Scholar 

  • Reeve JG, Brinkman A, Hughes S, Mitchell J, Schwander J, Bleehen NM (1992b) Expression of Insulinlike Growth Factor (IGF) and IGF-binding protein genes in human lung tumor cell lines. J Natl Cancer Inst 84:628–634

    CAS  PubMed  Google Scholar 

  • Hu Q, Huang L, Kuang X, Zhang H, Ling G, Chen X, Li K, Deng Z, Zhou J (2014) Is insulin-like growth factor binding protein 2 associated with metastasis in lung cancer? Clin Exp Metastasis 31:535–541

    CAS  PubMed  Google Scholar 

  • Reeve JG, Morgan J, Schwander J, Bleehen NM (1993) Role for membrane and secreted insulin-like growth factor- binding protein-2 in the regulation of insulin-like growth factor action in lung tumors. Cancer Res 53:4680–4685

    CAS  PubMed  Google Scholar 

  • Dong F, Wu HB, Hong J, Rechler MM (2002) Insulin-like growth factor binding protein-2 mediates the inhibition of DNA synthesis by transforming growth factor-beta in mink lung epithelial cells. J Cell Physiol 190:63–73

    CAS  PubMed  Google Scholar 

  • Lee DY, Kim SJ, Lee YC (1999) Serum insulin-like growth factor (IGF)-I and IGF-binding proteins in lung cancer patients. J Korean Med Sci 14:401–404

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guo C, Lu H, Gao W, Wang L, Lu K, Wu S, Pataer A, Huang M, El-Zein R, Lin T, Roth JA, Mehran R, Hofstetter W, Swisher SG, Wu X, Fang B (2013) Insulin-like growth factor binding protein-2 level is increased in blood of lung cancer patients and associated with poor survival. PLoS One 8:e74973

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yazawa T, Sato H, Shimoyamada H, Okudela K, Woo T, Tajiri M, Ogura T, Ogawa N, Suzuki T, Mitsui H, Ishii J, Miyata C, Sakaeda M, Goto K, Kashiwagi K, Masuda M, Takahashi T, Kitamura H (2009) Neuroendocrine cancer-specific up-regulating mechanism of insulin-like growth factor binding protein-2 in small cell lung cancer. Am J Pathol 175:976–987

    CAS  PubMed Central  PubMed  Google Scholar 

  • Migita T, Narita T, Asaka R, Miyagi E, Nagano H, Nomura K, Matsuura M, Satoh Y, Okumura S, Nakagawa K, Seimiya H, Ishikawa Y (2010) Role of insulin-like growth factor binding protein 2 in lung adenocarcinoma: IGF-independent antiapoptotic effect via caspase-3. Am J Pathol 176:1756–1766

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Ying X, Han S, Wang J, Zhou X, Bai E, Zhang J, Zhu Q (2013) Autoantibodies against insulin-like growth factorbinding protein-2 as a serological biomarker in the diagnosis of lung cancer. Int J Oncol 42:93–100

    PubMed Central  PubMed  Google Scholar 

  • Moser AR, Dove WF, Roth KA, Gordon JI (1992) The Min (multiple intestinal neoplasia) mutation: its effect on gut epithelial cell differentiation and interaction with a modifier system. J Cell Biol 116:1517–1526

    CAS  PubMed  Google Scholar 

  • Burgess AW (1998) Growth control mechanisms in normal and transformed intestinal cells. Philos Trans R Soc Lond Ser B Biol Sci 353:903–909

    CAS  Google Scholar 

  • Rowan AJ, Lamlum H, Ilyas M, Wheeler J, Straub J, Papadopoulou A, Bicknell D, Bodmer WF, Tomlinson IPM (2000) APC mutations in sporadic colorectal tumors: A mutational “hotspot” and interdependence of the “two hits”. Proc Natl Acad Sci U S A 97:3352–3357

    CAS  PubMed Central  PubMed  Google Scholar 

  • Valenta T, Hausmann G, Basler K (2012) The many faces and functions of beta-catenin. EMBO J 31:2714–2736

    CAS  PubMed Central  PubMed  Google Scholar 

  • Naishiro Y, Yamada T, Idogawa M, Honda K, Takada M, Kondo T, Imai K, Hirohashi S (2005) Morphological and transcriptional responses of untransformed intestinal epithelial cells to an oncogenic [beta]-catenin protein. 24:3141–3153

  • Ben-Shmuel A, Shvab A, Gavert N, Brabletz T, Ben-Ze’ev A (2013) Global analysis of L1-transcriptomes identified IGFBP-2 as a target of ezrin and NF-[kappa]B signaling that promotes colon cancer progression. Oncogene 32:3220–3230

    CAS  PubMed  Google Scholar 

  • Renehan AG, Painter JE, O’Halloran D, Atkin WS, Potten CS, O’Dwyer ST, Shalet SM (2000) Circulating insulin-like growth factor II and colorectal adenomas. J Clin Endocrinol Metab 85:3402–3408

    CAS  PubMed  Google Scholar 

  • Mishra L, Bass B, Ooi BS, Sidawy A, Korman L (1998) Role of insulin-like growth factor-I (IGF-I) receptor, IGF-I, and IGF binding protein-2 in human colorectal cancers. Growth Horm IGF Res 8:473–479

    CAS  PubMed  Google Scholar 

  • el Atiq F, Garrouste F, Remacle-Bonnet M, Sastre B, Pommier G (1994) Alterations in serum levels of insulin-like growth factors and insulin-like growth-factor-binding proteins in patients with colorectal cancer. Int J Cancer 57:491–497

    PubMed  Google Scholar 

  • Liou J-M, Shun C-T, Liang J-T, Chiu H-M, Chen M-J, Chen CC, Wang H-P, Wu M-S, Lin J-T (2010) Plasma insulin-like growth factor-binding protein-2 levels as diagnostic and prognostic biomarker of colorectal cancer. J Clin Endocrinol Metab 95:1717–1725

    CAS  PubMed  Google Scholar 

  • Miraki-Moud F, Jenkins PJ, Fairclough PD, Jordan S, Bustin SA, Jones AM, Lowe DG, Monson JP, Grossman AB, Besser GM, Camacho-Hubner C (2001) Increased levels of insulin-like growth factor binding protein-2 in sera and tumours from patients with colonic neoplasia with and without acromegaly. Clin Endocrinol (Oxford) 54:499–508

    CAS  Google Scholar 

  • Ben-Shmuel A, Shvab A, Gavert N, Brabletz T, Ben-Ze’ev A (2012) Global analysis of L1-transcriptomes identified IGFBP-2 as a target of ezrin and NF-[kappa]B signaling that promotes colon cancer progression. Oncogene

  • Hoflich A, Lahm H, Blum W, Kolb H, Wolf E (1998) Insulin-like growth factor-binding protein-2 inhibits proliferation of human embryonic kidney fibroblasts and of IGF- responsive colon carcinoma cell lines. FEBS Lett 434:329–334

    CAS  PubMed  Google Scholar 

  • Corkins MR, Vanderhoof JA, Slentz DH, MacDonald RG, Park JH (1995) Growth stimulation by transfection of intestinal epithelial cells with an antisense insulin-like growth factor binding protein-2 construct. Biochem Biophys Res Commun 211:707–713

    CAS  PubMed  Google Scholar 

  • Michell NP, Langman MJ, Eggo MC (1997) Insulin-like growth factors and their binding proteins in human colonocytes: preferential degradation of insulin-like growth factor binding protein 2 in colonic cancers. Br J Cancer 76:60–66

    CAS  PubMed Central  PubMed  Google Scholar 

  • Diehl D, Hessel E, Oesterle D, Renner-Muller I, Elmlinger M, Langhammer M, Gottlicher M, Wolf E, Lahm H, Hoeflich A (2009) IGFBP-2 overexpression reduces the appearance of dysplastic aberrant crypt foci and inhibits growth of adenomas in chemically induced colorectal carcinogenesis. Int J Cancer 124:2220–2225

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Health and Medical Research Council (NHMRC) of Australia (Project Grant, # 1008062) awarded to GAW and VCR. MAS is supported through a National Health and Medical Research Council Professional Training Fellowship (APP1012201). SWY is a recipient of an Australian Postgraduate Award scholarship. We also wish to acknowledge the generous support from the Murdoch Childrens Research Institute and the Royal Children’s Hospital Foundation to GAW, MAS and VCR. We also like to thank the Victorian Government Operational Infrastructure Support Program.

Disclosure statement

This work was supported by the National Health and Medical Research Council (NHMRC) of Australia (Project Grant, # 1008062) awarded to GAW, VCR, and by the Victorian Government Operational Infrastructure Support Program. SWY is a recipient of an Australian Postgraduate Award scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo C. Russo.

Additional information

S. W. Yau and W. J. Azar contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yau, S.W., Azar, W.J., Sabin, M.A. et al. IGFBP-2 - taking the lead in growth, metabolism and cancer. J. Cell Commun. Signal. 9, 125–142 (2015). https://doi.org/10.1007/s12079-015-0261-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-015-0261-2

Keywords

Navigation