Skip to main content

Advertisement

Log in

Novel antiangiogenic therapies against advanced hepatocellular carcinoma (HCC)

  • Educational Series – Red Series*
  • New Trends in Clinical Oncology
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Angiogenesis is a cornerstone in the process of hepatocarcinogenesis. In the sorafenib era, other antiangiogenic targeted drugs, such as monoclonal antibodies and a new generation of tyrosine kinase inhibitors, have been shown in phase II trials to be safe and effective in the treatment of advanced hepatocellular carcinoma. Several currently active phase III trials are testing these drugs, both in first- and second-line settings. Strategies to overcome primary and acquired resistance to antiangiogenic therapy are urgently needed. Novel biomarkers may help in improving the efficacy of drugs targeting angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2011) GLOBOCAN 2008, Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 10 [Internet]. International Agency for Research on Cancer 2010, Lyon, France. http://globocan.iarc.fr. Accessed 15 September 2011

  2. Altekruse SF, McGlynn KA, Reichman ME (2009) Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005. J Clin Oncol 27:1485–1491

    PubMed  Google Scholar 

  3. American Cancer Society (2010) Cancer facts and figures 2010. American Cancer Society, Atlanta

  4. Perz JF, Armstrong GL, Farrington LA, Hutin YJ, Bell BP (2006) The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol 45:529–538

    PubMed  Google Scholar 

  5. Liaw YF, Chu CM (2006) Hepatitis B virus infection. Lancet 373:582–592

    Google Scholar 

  6. Armstrong GL, Wasley A, Simard EP et al (2006) The prevalence of hepatitis C virus infection in the United States, 1999 through 2002. Ann Intern Med 144:705–714

    PubMed  Google Scholar 

  7. Caldwell SH, Crespo DM, Kang HS, Al-Osaimi AM (2004) Obesity and hepatocellular carcinoma. Gastroenterology 127(5 Suppl 1):S97–S103

    PubMed  CAS  Google Scholar 

  8. Siegel AB, Zhu AX (2009) Metabolic syndrome and hepatocellular carcinoma: two growing epidemics with a potential link. Cancer 115:5651–5661

    PubMed  Google Scholar 

  9. Sanyal AJ, Yoon SK, Lencioni R (2010) The etiology of hepatocellular carcinoma and consequences for treatment. Oncologist 15(4 Suppl):14–22

    PubMed  Google Scholar 

  10. Palmer DH, Hussain SA, Johnson PJ (2004) Systemic therapies for hepatocellular carcinoma. Expert Opin Investig Drugs 13:1555–1568

    PubMed  CAS  Google Scholar 

  11. Zhu A (2006) Systemic therapy of advanced hepatocellular carcinoma: how hopeful should we be? Oncologist 11:790–800

    PubMed  CAS  Google Scholar 

  12. Llovet JM, Bruix J (2008) Molecular targeted therapies in hepatocellular carcinoma. Hepatology 48:1312–1327

    PubMed  CAS  Google Scholar 

  13. Wilhelm SM, Adnane L, Newell P et al (2008) Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther 7:3129–3140

    PubMed  CAS  Google Scholar 

  14. Chen KF, Tai WT, Liu TH et al (2010) Sorafenib overcomes TRAIL resistance of hepatocellular carcinoma cells through the inhibition of STAT3. Clin Cancer Res 16(21):5189–5199

    PubMed  CAS  Google Scholar 

  15. Llovet JM, Ricci S, Mazzaferro V et al (2008) SHARP Investigators Study Group. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359:378–390

    PubMed  CAS  Google Scholar 

  16. Cheng AL, Kang YK, Chen Z et al (2009) Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomized, double-blind, placebo-controlled trial. Lancet Oncol 10:25–34

    PubMed  CAS  Google Scholar 

  17. Abou-Alfa GK, Schwartz L, Ricci S et al (2006) Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol 24:4293–4300

    PubMed  CAS  Google Scholar 

  18. Verslype C, Van Cutsem E, Dicato M et al (2009) The management of hepatocellular carcinoma. Current expert opinion and recommendations derived from the 10th World Congress on Gastrointestinal Cancer, Barcelona, 2008. Ann Oncol 20(7 Suppl):vii1–vii6

    Google Scholar 

  19. Peck-Radosavljevic M, Greten TF, Lammer J et al (2010) Consensus on the current use of sorafenib for the treatment of hepatocellular carcinoma. Eur J Gastroenterol Hepatol 22:391–398

    PubMed  CAS  Google Scholar 

  20. Sun H, Tang Z (2004) Angiogenesis in hepatocellular carcinoma: the retrospectives and perspectives. J Cancer Res Clin Oncol 130:307–319

    PubMed  Google Scholar 

  21. Pang R, Poon RT (2006) Angiogenesis and antiangiogenic therapy in hepatocellular carcinoma. Cancer Lett 242:151–167

    PubMed  CAS  Google Scholar 

  22. Hoshida Y, Toffanin S, Lachenmayer A et al (2010) Molecular classification and novel targets in hepatocellular carcinoma: recent advancements. Semin Liver Dis 30:35–51

    PubMed  CAS  Google Scholar 

  23. Farazi PA, DePinho RA (2006) Hepatocellular carcinoma pathogenesis of human hepatocellular carcinoma: from genes to environment. Nat Rev Cancer 6:674–687

    PubMed  CAS  Google Scholar 

  24. Suzuki K, Hayashi N, Miyamoto Y et al (1996) Expression of vascular permeability factor/vascular endothelial growth factor in human hepatocellular carcinoma. Cancer Res 56:3004–3009

    PubMed  CAS  Google Scholar 

  25. Miura H, Miyazaki T, Kuroda M et al (1997) Increased expression of vascular endothelial growth factor in human hepatocellular carcinoma. J Hepatol 27:854–861

    PubMed  CAS  Google Scholar 

  26. Abou-Alfa G, Johnson P, Knox J et al (2010) Doxorubicin plus sorafenib vs. doxorubicin alone in patients with advanced hepatocellular carcinoma. JAMA 19:2154–2160

    Google Scholar 

  27. Griffiths L, Stratford IJ (1997) Platelet-derived endothelial cell growth factor thymidine phosphorylase in tumor growth and response to therapy. Br J Cancer 76:689–693

    PubMed  CAS  Google Scholar 

  28. Asahara T, Bauters C, Zheng LP et al (1995) Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo. Circulation 92(9 Suppl):II365–II371

    Google Scholar 

  29. Zhang ZL, Liu ZS, Sun Q (2006) Expression of angiopoietins, Tie2 and vascular endothelial growth factor in angiogenesis and progression of hepatocellular carcinoma. World J Gastroenterol 12:4241–4245

    PubMed  CAS  Google Scholar 

  30. Baeriswyl V, Christofori G (2009) The angiogenic switch in carcinogenesis. Semin Cancer Biol 19:329–337

    PubMed  CAS  Google Scholar 

  31. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Eng J Med 285:1182–1186

    CAS  Google Scholar 

  32. Brun P, Castagliuolo I, Pinzani M, Palù G, Martines D (2005) Exposure to bacterial cell wall products triggers an inflammatory phenotype in hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 289:G571–G578

    PubMed  CAS  Google Scholar 

  33. De Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6:24–37

    PubMed  Google Scholar 

  34. Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8:618–631

    PubMed  CAS  Google Scholar 

  35. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71–78

    PubMed  CAS  Google Scholar 

  36. Zhu AX, Dushyant VS, Duda DG et al (2009) Efficacy, safety, and potential biomarkers of sunitinib monotherapy in advanced hepatocellular carcinoma: a phase II study. J Clin Oncol 27:3027–3035

    PubMed  CAS  Google Scholar 

  37. Butler JM, Kobayashi H, Rafii S (2010) Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat Rev Cancer 10:138–146

    PubMed  CAS  Google Scholar 

  38. Lyden D, Hattori K, Dias S et al (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7:1194–1201

    PubMed  CAS  Google Scholar 

  39. Cao Y, Zhong W, Sun Y (2009) Improvement of antiangiogenic cancer therapy by understanding the mechanisms of angiogenic factor interplay and drug resistance. Semin Cancer Biol 19:338–343

    PubMed  CAS  Google Scholar 

  40. Siegel AB, Cohen EI, Ocean A et al (2008) Phase II trial evaluating the clinical and biologic effects of bevacizumab in unresectable hepatocellular carcinoma. J Clin Oncol 26:2992–2998

    PubMed  CAS  Google Scholar 

  41. Ho J, Pang R, Lau C et al (2006) Significance of circulating endothelial progenitor cells in hepatocellular carcinoma. Hepatology 44:836–843

    PubMed  CAS  Google Scholar 

  42. Sieghart W, Fellner S, Reiberger T et al (2009) Differential role of circulating endothelial progenitor cells in cirrhotic patients with or without hepatocellular carcinoma. Dig Liver Dis 41:902–906

    PubMed  CAS  Google Scholar 

  43. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    PubMed  CAS  Google Scholar 

  44. Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23:1011–1027

    PubMed  CAS  Google Scholar 

  45. Gluzman-Poltorak Z, Cohen T, Herzog Y, Neufeld G (2000) Neuropilin-2 and neuropilin-1 are receptors for the 165-amino acid form of vascular endothelial growth factor (VEGF) and of placenta growth factor-2, but only neuropilin-2 functions as a receptor for the 145-amino acid form of VEGF. J Biol Chem 275:18040–18045

    PubMed  CAS  Google Scholar 

  46. Schmitt M, Horbach A, Kubitz R, Frilling A, Häussinger D (2004) Disruption of hepatocellular tight junctions by vascular endothelial growth factor (VEGF): a novel mechanism for tumor invasion. J Hepatol 41:274–283

    PubMed  CAS  Google Scholar 

  47. Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the premetastatic niche. Nature 438:820–827

    PubMed  CAS  Google Scholar 

  48. Chouaib S, Kieda C, Benlalam H et al (2010) Endothelial cells as key determinants of the tumor microenvironment: interaction with tumor cells, extracellular matrix and immune killer cells. Crit Rev Immunol 30:529–545

    PubMed  CAS  Google Scholar 

  49. Carmeliet P, Moons L, Luttun A et al (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7:575–583

    PubMed  CAS  Google Scholar 

  50. Ferrara N (2005) The role of VEGF in the regulation of physiological and pathological angiogenesis. EXS 94:209–231

    PubMed  Google Scholar 

  51. Joukov V, Pajusola K, Kaipainen A et al (1996) A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine-kinases. EMBO J 15:290–298

    PubMed  CAS  Google Scholar 

  52. Achen MG, Jeltsch M, Kukk E et al (1998) Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci USA 95:548–553

    PubMed  CAS  Google Scholar 

  53. Shibuya M, Claesson-Welsh L (2006) Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res 312:549–560

    PubMed  CAS  Google Scholar 

  54. Kuhnert F, Tam BY, Sennino B et al (2008) Soluble receptor-mediated selective inhibition of VEGFR and PDGFRbeta signaling during physiologic and tumor angiogenesis. Proc Natl Acad Sci USA 105:10185–10190

    PubMed  CAS  Google Scholar 

  55. Presta M, Dell′Era P, Mitola S et al (2005) Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 16:159–178

    PubMed  CAS  Google Scholar 

  56. Park YN, Kim YB, Yang KM, Park C (2000) Increased expression of vascular endothelial growth factor and angiogenesis in the early stage of multistep hepatocarcinogenesis. Arch Pathol Lab Med 124:1061–1065

    PubMed  CAS  Google Scholar 

  57. Moon WS, Rhyu KH, Kang MJ et al (2003) Overexpression of VEGF and angiopoietin 2: a key to high vascularity of hepatocellular carcinoma? Mod Pathol 16:552–557

    PubMed  Google Scholar 

  58. Imura S, Miyake H, Izumi K, Tashiro S, Uehara H (2004) Correlation of vascular endothelial cell proliferation with microvessel density and expression of vascular endothelial growth factor and basic fibroblast growth factor in hepatocellular carcinoma. J Med Invest 51:202–209

    PubMed  Google Scholar 

  59. Jia JB, Zhuang PY, Sun HC et al (2009) Protein expression profiling of vascular endothelial growth factor and its receptors identifies subclasses of hepatocellular carcinoma and predicts survival. J Cancer Res Clin Oncol 135:847–854

    PubMed  CAS  Google Scholar 

  60. Schoenleber SJ, Kurtz DM, Talwalkar JA, Roberts LR, Gores GJ (2009) Prognostic role of vascular endothelial growth factor in hepatocellular carcinoma: systematic review and meta-analysis. Br J Cancer 100:1385–1392

    PubMed  CAS  Google Scholar 

  61. Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8:592–603

    PubMed  CAS  Google Scholar 

  62. Tavakoli J, Aragon-Ching JB (2010) Mechanisms of drug resistance to vascular endothelial growth factor (VEGF) inhibitors. Anticancer Agents Med Chem 10:593–600

    PubMed  CAS  Google Scholar 

  63. Ebos JM, Lee CR, Christensen JG et al (2007) Multiple circulating proangiogenic factors induced by sunitinib malate are tumor-independent and correlate with antitumor efficacy. Proc Natl Acad Sci USA 104:17069–17074

    PubMed  CAS  Google Scholar 

  64. Rapisarda A, Melillo G (2009) Role of the hypoxic tumor microenvironment in the resistance to anti-angiogenic therapies. Drug Resist Update 12:74–80

    CAS  Google Scholar 

  65. Pazo RA, Esquerdo G, Puertolas T et al (2010) Bevacizumab (BVZ) as second-line treatment after sorafenib (SFB) progression in patients (pts) with advanced hepatocellular carcinoma (HCC). J Clin Oncol 28 (Suppl) (abstract e14619)

  66. Mancuso MR, Davis R, Norberg SM et al (2006) Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J Clin Invest 116:2610–2621

    PubMed  CAS  Google Scholar 

  67. Pàez-Ribes M, Allen E, Hudock J et al (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15:220–231

    PubMed  Google Scholar 

  68. Raoul JL, Finn RS, Kang YK et al (2009) An open-label phase II study of first- and second-line treatment with brivanib in patients with hepatocellular carcinoma (HCC). J Clin Oncol 27 (15 Suppl) (abstract 4577)

  69. Casanovas O, Hicklin DJ, Bergers G, Hanahan D (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8(4):299–309

    PubMed  CAS  Google Scholar 

  70. Nissen LJ, Cao R, Hedlund EM et al (2007) Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis. J Clin Invest 117:2766–2777

    PubMed  CAS  Google Scholar 

  71. Jin ZG, Ueba H, Tanimoto T et al (2003) Ligand-independent activation of vascular endothelial growth factor receptor 2 by fluid shear stress regulates activation of endothelial nitric oxide synthase. Circ Res 93:354–363

    PubMed  CAS  Google Scholar 

  72. Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    PubMed  CAS  Google Scholar 

  73. Shaked Y, Ciarrochi A, Franco M et al (2006) Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science 313:1785–1787

    PubMed  CAS  Google Scholar 

  74. Du R, Lu KV, Petritsch C et al (2008) HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13:206–220

    PubMed  CAS  Google Scholar 

  75. Mendel DB, Laird AD, Xin X et al (2003) In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factors receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res 9:327–337

    PubMed  CAS  Google Scholar 

  76. Tang TC, Shan M, Xu P et al (2010) Development of a resistance-like phenotype to sorafenib by human hepatocellular carcinoma cells is reversible and can be delayed by metronomic UFT chemotherapy. Neoplasia 12:928–940

    PubMed  CAS  Google Scholar 

  77. Brahimi-Horn MC, Chiche J, Pouyssegur J (2007) Hypoxia and cancer. J Mol Med 85:1301–1307

    PubMed  Google Scholar 

  78. Relf M, LeJeune S, Scott PA et al (1997) Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor beta-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res 57:963–969

    PubMed  CAS  Google Scholar 

  79. Gwak GY, Yoon JH, Kim KM et al (2005) Hypoxia stimulates proliferation of human hepatoma cells through the induction of hexokinase II expression. J Hepatol 42:358–364

    PubMed  CAS  Google Scholar 

  80. Kim KW, Bae SK, Lee OH et al (1998) Insulin-like growth factor II induced by hypoxia may contribute to angiogenesis of human hepatocellular carcinoma. Cancer Res 58:348–351

    PubMed  CAS  Google Scholar 

  81. Miyoshi A, Kitajima Y, Ide T et al (2006) Hypoxia accelerates cancer invasion of hepatoma cells by upregulating MMP expression in an HIF-1alpha-independent manner. Int J Oncol 29:1533–1539

    PubMed  CAS  Google Scholar 

  82. Piret JP, Minet E, Cosse JP et al (2005) Hypoxia-inducible factor-1-dependent overexpression of myeloid cell factor-1 protects hypoxic cells against tert-butyl hydroperoxide-induced apoptosis. J Biol Chem 280:9336–9344

    PubMed  CAS  Google Scholar 

  83. Baek JH, Jang JE, Kang CM et al (2000) Hypoxia-induced VEGF enhances tumor survivability via suppression of serum deprivation-induced apoptosis. Oncogene 19:4621–4631

    PubMed  CAS  Google Scholar 

  84. Zhu H, Chen XP, Luo SF et al (2005) Involvement of hypoxia-inducible factor-1-alpha in multidrug resistance induced by hypoxia in HepG2 cells. J Exp Clin Cancer Res 24:565–574

    PubMed  CAS  Google Scholar 

  85. Williams KJ, Telfer BA, Xenaki D et al (2005) Enhanced response to radiotherapy in tumours deficient in the function of hypoxia-inducible factor-1. Radiother Oncol 75:89–98

    PubMed  CAS  Google Scholar 

  86. Xiong ZP, Yang SR, Liang ZY et al (2004) Association between vascular endothelial growth factor and metastasis after transcatheter arterial chemoembolization in patients with hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 3:386–390

    PubMed  CAS  Google Scholar 

  87. Song BC, Chung YH, Kim JA et al (2001) Association between insulin-like growth factor-2 and metastases after transcatheter arterial chemoembolization in patients with hepatocellular carcinoma: a prospective study. Cancer 91:2386–2393

    PubMed  CAS  Google Scholar 

  88. Sessa C, Guibal A, Del Conte G, Ruegg C (2008) Biomarkers of angiogenesis for the development of antiangiogenic therapies in oncology: tools or decorations? Nat Clin Pract Oncol 5:378–391

    PubMed  CAS  Google Scholar 

  89. Cheng A, Kang Y, Lin D et al (2011) Phase III trial of sunitinib (Su) vs sorafenib (So) in advanced hepatocellular carcinoma (HCC). J Clin Oncol 29:256 (abstr 4000)

    Google Scholar 

  90. Shao YY, Lin ZZ, Hsu Ch et al (2010) Early alpha-fetoprotein response predicts treatment efficacy of antiangiogenic systemic therapy in patients with advanced hepatocellular carcinoma. Cancer 116:4590–4596

  91. Yau T, Yao TJ, Chan P et al (2011) The significance of early alpha-fetoprotein level changes in predicting clinical and survival benefits in advanced hepatocellular carcinoma patients receiving sorafenib. Oncologist 16:1270–1279

    PubMed  CAS  Google Scholar 

  92. Schneider BP, Wang M, Radovich M et al (2008) Association of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 genetic polymorphisms with outcome in a trial of paclitaxel compared with paclitaxel plus bevacizumab in advanced breast cancer: ECOG 2100. J Clin Oncol 26:4672–4678

    PubMed  CAS  Google Scholar 

  93. Llovet J, Pena C, Shan M, Jeffers M, Lathia Ch, Bruix J (2008) Biomarkers predicting outcome of patients with hepatocellular carcinoma: results from the randomized phase III SHARP trial. AASLD 59th Annual Meeting. Hepatology 48(S1) (abstract 149)

  94. Wong ChI, Koh TS, Soo R et al (2009) Phase I and biomarker study of ABT-869, a multiple receptor tyrosine kinase inhibitor, in patients with refractory solid malignancies. J Clin Oncol 27:4718–4726

    PubMed  CAS  Google Scholar 

  95. Zhang Z, Zhou X, Shen H, Wang D, Wang Y (2009) Phosphorylated ERK is a potential predictor of sensitivity to sorafenib when treating hepatocellular carcinoma: evidence from an in vitro study. BMC Med 7:41

    PubMed  Google Scholar 

  96. Yamashita T, Forgues M, Wang W et al (2008) EpCAM and -fetoprotein expression defines novel prognostic subtypes of hepatocellular carcinoma. Cancer Res 68:1451–1461

    PubMed  CAS  Google Scholar 

  97. Yamashita T, Budhu A, Forgues M, Wng XW (2007) Activation of hepatic stem cell marker EpCAM by Wnt-beta-catenin signaling in hepatocellular carcinoma. Cancer Res 67:10831–10839

    PubMed  CAS  Google Scholar 

  98. Shan Y, Huang Y, Xie Y et al (2010) Angiogenesis and clinicopathologic characteristics in different hepatocellular carcinoma subtypes defined by EpCAM and α-fetoprotein expression status. Med Oncol [Epub ahead of print]. doi:10.1007/s12032-010-9600-6

  99. Zhu AX, Holalkere NS, Muzikansky A, Horgan K, Sahani DV (2008) Early antiangiogenic activity of bevacizumab evaluated by computed tomography perfusion scan in patients with advanced hepatocellular carcinoma. Oncologist 13:120–125

    PubMed  CAS  Google Scholar 

  100. Lassau N, Koscielny S, Chami L et al (2011) Advanced hepatocellular carcinoma: early evaluation of response to bevacizumab therapy at dynamic contrast-enhanced US with quantification–preliminary results. Radiology 258:291–300

    PubMed  Google Scholar 

  101. Siemerink EJM, Mulder NJ, Brouwers AH, Hospers GA (2008) 18F-fluorodeoxyglucose positron emission tomography monitoring response to sorafenib treatment in patients with hepatocellular carcinoma. Oncologist 13:734–735

    PubMed  Google Scholar 

  102. Lanzuela M, Pazo Cid RA, Lao J et al (2010) Early response evaluation of sorafenib (SFB) therapy: use of computed fluorodeoxyglucose positron emission tomography (PET-CT) in advanced hepatocellular carcinoma (HCC). J Clin Oncol 28(Suppl) (abstract e14567)

  103. Kim BK, Kang WJ, Kim JK et al (2011) 18F-fluorodeoxyglucose uptake on positron emission tomography as a prognostic predictor in locally advanced hepatocellular carcinoma. Cancer 117:4779–4787

    Google Scholar 

  104. Cao Y (2010) Off-tumor target—beneficial site for antiangiogenic cancer therapy? Nat Rev Clin Oncol 7:604–608

    PubMed  CAS  Google Scholar 

  105. Dahlberg SE, Sandler AB, Brahmer JR, Schiller JH, Johnson DH (2010) Clinical course of advanced non-small-cell lung cancer patients experiencing hypertension during treatment with bevacizumab in combination with carboplatin and paclitaxel on ECOG 4599. J Clin Oncol 28:949–954

    PubMed  CAS  Google Scholar 

  106. Ravaud A, Sire M (2009) Arterial hypertension and clinical benefit of sunitinib, sorafenib and bevacizumab in first and second-line treatment of metastatic renal cell cancer. Ann Oncol 20:966–967

    PubMed  CAS  Google Scholar 

  107. Vincenzi B, Santini D, Russo A et al (2010) Early skin toxicity as a predictive factor for tumor control in hepatocellular carcinoma patients treated with sorafenib. Oncologist 15:85–92

    PubMed  CAS  Google Scholar 

  108. Xiong YQ, Sun HC, Zhu XD et al (2011) Bevacizumab enhances chemosensitivity of hepatocellular carcinoma to adriamycin related to inhibition of survivin expression. J Cancer Res Clin Oncol 137:505–512

    PubMed  CAS  Google Scholar 

  109. Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7:987–989

    PubMed  CAS  Google Scholar 

  110. Epstein RJ (2007) VEGF signaling inhibitors: more pro-apoptotic than anti-angiogenic. Cancer Metastasis Rev 26:443–452

    PubMed  CAS  Google Scholar 

  111. Finn RS, Zhu AX (2009) Targeting angiogenesis in hepatocellular carcinoma: focus on VEGF and bevacizumab. Expert Rev Anticancer Ther 9:503–509

    PubMed  CAS  Google Scholar 

  112. Zhu AX, Blaszkowsky LS, Ryan DP et al (2006) Phase II study of gemcitabine and oxaliplatin in combination with bevacizumab in patients with advanced hepatocellular carcinoma. J Clin Oncol 24:1898–1903

    PubMed  CAS  Google Scholar 

  113. Sun W, Sohal D, Haller DG et al (2011) Phase 2 trial of bevacizumab, capecitabine, and oxaliplatin in treatment of advanced hepatocellular carcinoma. Cancer 117:3187–3192

    PubMed  CAS  Google Scholar 

  114. Hsu CH, Yang TS, Hsu C et al (2010) Efficacy and tolerability of bevacizumab plus capecitabine as first-line therapy in patients with advanced hepatocellular carcinoma. Br J Cancer 102:981–986

    PubMed  CAS  Google Scholar 

  115. Thomas MB, Morris JS, Chadha R et al (2009) Phase II trial of the combination of bevacizumab and erlotinib in patients who have advanced hepatocellular carcinoma. J Clin Oncol 27:843–850

    PubMed  CAS  Google Scholar 

  116. Kaseb AO, Iwasaki M, Javle M et al (2009) Biological activity of bevacizumab and erlotinib in patients with advanced hepatocellular carcinoma (HCC). J Clin Oncol 27(15 Suppl) (abstract 4522)

  117. Azad NS, Posadas EM, Kwitkowski VE et al (2008) Combination targeted therapy with sorafenib and bevacizumab results in enhanced toxicity and antitumor activity. J Clin Oncol 26:3709–3714

    PubMed  CAS  Google Scholar 

  118. Treiber G, On behalf of the German HCC-RAD001/Bevazicumab Multicenter Study Group (2010) Treatment of advanced or metastatic hepatocellular cancer (HCC): Interim analysis of a single-arm phase II study of bevacizumab and RAD001. J Clin Oncol 28(15 Suppl) (abstract 4102)

  119. Yeh J, Frieze D, Martins R, Carr L (2010) Clinical utility of routine proteinuria evaluation in treatment decisions of patients receiving bevacizumab for metastatic solid tumors. Ann Pharmacother 44(6):1010–1015

    PubMed  CAS  Google Scholar 

  120. Ranpura V, Hapani S, Wu S (2011) Treatment-related mortality with bevacizumab in cancer patients: a meta-analysis. JAMA 305:487–494

    PubMed  CAS  Google Scholar 

  121. Leighl NB, Bennouna J, Yi J et al (2011) Bleeding events in bevacizumab-treated cancer patients who received full-dose anticoagulation and remained on study. Br J Cancer 104:413–418

    PubMed  CAS  Google Scholar 

  122. De Bock K, Mazzone M, Carmeliet P (2011) Antiangiogenic therapy, hypoxia, and metastasis: risky liaisons, or not? Nat Rev Clin Oncol 8:393–404

    PubMed  Google Scholar 

  123. Ebos JM, Lee CR, Cruz-Munoz W et al (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15(3):232–239

    PubMed  CAS  Google Scholar 

  124. Gandhi L, McNamara KL, Li D, Borgman CL et al (2009) Sunitinib prolongs survival in genetically engineered mouse models of multistep lung carcinogenesis. Cancer Prev Res (Phila) 2:330–337

    CAS  Google Scholar 

  125. Di Tomaso E, Snuderl M, Kamoun WS et al (2011) Glioblastoma recurrence after cediranib therapy in patients: lack of “rebound” revascularization as mode of escape. Cancer Res 71:19–28

    PubMed  Google Scholar 

  126. Miles D, Harbeck N, Escudier B et al (2010) Disease course patterns after discontinuation of bevacizumab: pooled analysis of randomized phase III trials. J Clin Oncol 29:83–88

    PubMed  Google Scholar 

  127. Shao Y, Lu L, Cheng AL, Hsu CH (2011) Increasing incidence of brain metastasis in patients with advanced hepatocellular carcinoma in the era of antiangiogenic targeted therapy. Oncologist 16:82–86

    PubMed  Google Scholar 

  128. Besse B, Lasserre SF, Compton P et al (2010) Bevacizumab safety in patients with central nervous system metastases. Clin Cancer Res 16:269–278

    Google Scholar 

  129. Jubb AM, Harris AL (2010) Biomarkers to predict the clinical efficacy of bevacizumab in cancer. Lancet Oncol 11:1172–1183

    PubMed  CAS  Google Scholar 

  130. Yau T, Pang R, Chan P, Poon RT (2010) Molecular targeted therapy of advanced hepatocellular carcinoma beyond sorafenib. Expert Opin Pharmacother 11:2187–2198

    PubMed  CAS  Google Scholar 

  131. Spratlin JL, Cohen RB, Eadens M et al (2010) Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2. J Clin Oncol 28:780–787

    PubMed  CAS  Google Scholar 

  132. Koeberle D, Montemurro M, Samaras P et al (2010) Continuous sunitinib treatment in patients with advanced hepatocellular carcinoma: a Swiss Group for Clinical Cancer Research (SAKK) and Swiss Association for the Study of the Liver (SASL) Multicenter Phase II Trial (SAKK 77/06). Oncologist 15:285–292

    PubMed  CAS  Google Scholar 

  133. Faivre S, Raymond E, Boucher E et al (2009) Safety and efficacy of sunitinib in patients with advanced hepatocellular carcinoma: an open-label, multicenter, phase II study. Lancet Oncol 10:794–800

    PubMed  CAS  Google Scholar 

  134. Wörns MA, Schuchmann M, Düber C, Otto G, Galle PR, Weinmann A (2010) Sunitinib in patients with advanced hepatocellular carcinoma after progression under sorafenib treatment. Oncology 79:85–92

    PubMed  Google Scholar 

  135. Liu Y, Poon RT, Li Q et al (2005) Both antiangiogenesis- and angiogenesis-independent effects are responsible for hepatocellular carcinoma growth arrest by tyrosine kinase inhibitor PTK787/ZK222584. Cancer Res 65:3691–3699

    PubMed  CAS  Google Scholar 

  136. Murakami M, Kobayashi S, Marubashi S et al (2011) Tyrosine kinase inhibitor PTK/ZK enhances the antitumor effects of interferon-α/5-fluorouracil therapy for hepatocellular carcinoma cells. Ann Surg Oncol 18:589–596

    PubMed  Google Scholar 

  137. Yau T, Chan P, Pang R et al (2010) Phase 1–2 trial of PTK787/ZK222584 combined with intravenous doxorubicin for treatment of patients with advanced hepatocellular carcinoma: implication for antiangiogenic approach to hepatocellular carcinoma. Cancer 116:5022–5029

    PubMed  CAS  Google Scholar 

  138. Drevs J, Zirrgiebel U, Schmidt-Gersbach CI et al (2005) Soluble markers for the assessment of biological activity with PTK787/ZK 222584 (PTK/ZK), a vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor in patients with advanced colorectal cancer from two phase I trials. Ann Oncol 16:558–565

    PubMed  CAS  Google Scholar 

  139. Morgan B, Thomas AL, Drevs J et al (2003) Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J Clin Oncol 21:3955–3964

    PubMed  CAS  Google Scholar 

  140. Mros K, Drevs J, Muller M et al (2005) Phase I clinical and pharmacokinetic study of PTK/ZK, a multiple VEGF receptor inhibitor, in patients with liver metastases from solid tumours. Eur J Cancer 41:1291–1299

    Google Scholar 

  141. Thomas MB, Jaffe D, Choti MM et al (2010) Hepatocellular carcinoma: consensus recommendations of the National Cancer Institute Clinical Trials Planning Meeting. J Clin Oncol 28:3994–4005

    PubMed  Google Scholar 

  142. Jonker DJ, Rosen LS, Sawyer M et al (2007) A phase I study of BMS-582664 (brivanib alaninate), an oral dual inhibitor of VEGFR and FGFR tyrosine kinases, in patients (pts) with advanced/metastatic solid tumors: safety, pharmacokinetic (PK), and pharmacodynamic (PD) findings. J Clin Oncol 25 (abstract 3559)

  143. Toh H, Chen P, Carr BI et al (2009) A phase II study of ABT-869 in hepatocellular carcinoma (HCC): interim analysis. J Clin Oncol 27 (15 Suppl) (abstract 4581)

  144. Alberts SR, Morlan BW, Kim GP et al (2007) NCCTG phase II trial (N044 J) of AZD2171 for patients with hepatocellular carcinoma (HCC)—interim review of toxicity. Presented at the Gastrointestinal Cancers Symposium, Orlando, FL (abstract 186)

  145. Yau CC, Chen PJ, Chan P et al (2011) Phase I dose-finding study of pazopanib in hepatocellular carcinoma: evaluation of early efficacy, pharmacokinetics, and pharmacodynamics. Clin Cancer Res 17:6914–6923

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest relating to the publication of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Pazo-Cid.

Additional information

*Supported by an unrestricted educational grant from MSD Oncology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pazo-Cid, R.A., Lanzuela, M., Esquerdo, G. et al. Novel antiangiogenic therapies against advanced hepatocellular carcinoma (HCC). Clin Transl Oncol 14, 564–574 (2012). https://doi.org/10.1007/s12094-012-0842-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-012-0842-y

Keywords

Navigation