Skip to main content

Advertisement

Log in

Cancer immunotherapy of patients with HIV infection

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Cancer immunotherapy with antibodies against immune checkpoints has made impressive advances in the last several years. The most relevant drugs target programmed cell death 1 (PD-1) expressed on T cells or its ligand, the programmed cell death ligand 1 (PD-L1), expressed on cancer cells, and cytotoxic T lymphocyte-associated protein 4 (CTLA-4). Unfortunately, cancer patients with HIV infection are usually excluded from cancer clinical trials, because there are concerns about the safety and the anti-tumoral activity of these novel therapies in patients with HIV infection. Several retrospective studies and some case reports now support the notion that antibodies against immune checkpoints are safe and active in cancer patients with HIV infection, but prospective data in these patients are lacking. In addition, signs of antiviral activity with increase in CD4 T cell counts, plasma viremia reduction or decrease in the viral reservoir have been reported in some of the patients treated, although no patient achieved a complete clearance of the viral reservoir. Here we briefly summarize all clinical cases reported in the literature, as well as ongoing clinical trials testing novel immunotherapy drugs in cancer patients with HIV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barre-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S, Gruest J, et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science. 1983;220(4599):868–71.

    Article  CAS  PubMed  Google Scholar 

  2. Klatzmann D, Barre-Sinoussi F, Nugeyre MT, Danquet C, Vilmer E, Griscelli C, et al. Selective tropism of lymphadenopathy associated virus (LAV) for helper-inducer T lymphocytes. Science. 1984;225(4657):59–63.

    Article  CAS  PubMed  Google Scholar 

  3. Arts EJ, Hazuda DJ. HIV-1 antiretroviral drug therapy. Cold Spring Harb Perspect Med. 2012;2(4):a007161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chereshnev VA, Bocharov G, Bazhan S, Bachmetyev B, Gainova I, Likhoshvai V, et al. Pathogenesis and treatment of HIV infection: the cellular, the immune system and the neuroendocrine systems perspective. Int Rev Immunol. 2013;32(3):282–306.

    Article  CAS  PubMed  Google Scholar 

  5. Deeks SG, Autran B, Berkhout B, Benkirane M, Cairns S, Chomont N, et al. Towards an HIV cure: a global scientific strategy. Nat Rev Immunol. 2012;12(8):607–14.

    Article  CAS  PubMed  Google Scholar 

  6. Katlama C, Deeks SG, Autran B, Martinez-Picado J, van Lunzen J, Rouzioux C, et al. Barriers to a cure for HIV: new ways to target and eradicate HIV-1 reservoirs. Lancet. 2013;381(9883):2109–17.

    Article  CAS  PubMed  Google Scholar 

  7. Finzi D, Blankson J, Siliciano JD, Margolick JB, Chadwick K, Pierson T, et al. Latent infection of CD4 + T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med. 1999;5(5):512–7.

    Article  CAS  PubMed  Google Scholar 

  8. Siliciano JD, Kajdas J, Finzi D, Quinn TC, Chadwick K, Margolick JB, et al. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat Med. 2003;9(6):727–8.

    Article  CAS  PubMed  Google Scholar 

  9. Martinez-Picado J, Deeks SG. Persistent HIV-1 replication during antiretroviral therapy. Curr Opin HIV AIDS. 2016;11(4):417–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bonnet F, Burty C, Lewden C, Costagliola D, May T, Bouteloup V, et al. Changes in cancer mortality among HIV-infected patients: the Mortalite 2005 Survey. Clin Infect Dis. 2009;48(5):633–9.

    Article  PubMed  Google Scholar 

  11. Vandenhende MA, Roussillon C, Henard S, Morlat P, Oksenhendler E, Aumaitre H, et al. Cancer-related causes of death among HIV-infected patients in France in 2010: evolution since 2000. PLoS One. 2015;10(6):e0129550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Suneja G, Boyer M, Yehia BR, Shiels MS, Engels EA, Bekelman JE, et al. Cancer treatment in patients with HIV infection and non-AIDS-defining cancers: a survey of US oncologists. J Oncol Pract Am Soc Clin Oncol. 2015;11(3):e380–7.

    Article  Google Scholar 

  13. Suneja G, Lin CC, Simard EP, Han X, Engels EA, Jemal A. Disparities in cancer treatment among patients infected with the human immunodeficiency virus. Cancer. 2016;122(15):2399–407.

    Article  CAS  PubMed  Google Scholar 

  14. Suneja G, Shiels MS, Angulo R, Copeland GE, Gonsalves L, Hakenewerth AM, et al. Cancer treatment disparities in HIV-infected individuals in the United States. J Clin Oncol. 2014;32(22):2344–50.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Le Garff G, Samri A, Lambert-Niclot S, Even S, Lavole A, Cadranel J, et al. Transient HIV-specific T cells increase and inflammation in an HIV-infected patient treated with nivolumab. AIDS. 2017;31(7):1048–51.

    Article  PubMed  Google Scholar 

  16. Ribas A, Kefford R, Marshall MA, Punt CJ, Haanen JB, Marmol M, et al. Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J Clin Oncol. 2013;31(5):616–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 2015;372(21):2006–17.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Inman BA, Longo TA, Ramalingam S, Harrison MR. Atezolizumab: a PD-L1-blocking antibody for bladder cancer. Clin Cancer Res. 2017;23(8):1886–90.

    Article  CAS  PubMed  Google Scholar 

  19. Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K, Hamid O, et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol. 2015;33(17):1889–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ben-Aharon O, Magnezi R, Leshno M, Goldstein DA. Association of Immunotherapy with durable survival as defined by value frameworks for cancer care. JAMA Oncol. 2018;4(3):326–32.

    Article  PubMed  Google Scholar 

  21. Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–30.

    Article  CAS  PubMed  Google Scholar 

  22. Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15(8):486–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moskophidis D, Lechner F, Pircher H, Zinkernagel RM. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature. 1993;362(6422):758–61.

    Article  CAS  PubMed  Google Scholar 

  24. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439(7077):682–7.

    Article  CAS  PubMed  Google Scholar 

  25. Shiels MS, Islam JY, Rosenberg PS, Hall HI, Jacobson E, Engels EA. Projected cancer incidence rates and burden of incident cancer cases in HIV-infected adults in the United States through 2030. Ann Intern Med. 2018;168(12):866–73.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Robbins HA, Pfeiffer RM, Shiels MS, Li J, Hall HI, Engels EA. Excess cancers among HIV-infected people in the United States. J Natl Cancer Inst. 2015. https://doi.org/10.1093/jnci/dju503.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32.

    Article  CAS  PubMed  Google Scholar 

  28. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823–33.

    Article  CAS  PubMed  Google Scholar 

  29. Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387(10027):1540–50.

    Article  CAS  PubMed  Google Scholar 

  30. Nghiem PT, Bhatia S, Lipson EJ, Kudchadkar RR, Miller NJ, Annamalai L, et al. PD-1 blockade with pembrolizumab in advanced merkel-cell carcinoma. N Engl J Med. 2016;374(26):2542–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. D’Angelo SP, Russell J, Lebbé C, Chmielowski B, Gambichler T, Grob JJ, et al. Efficacy and safety of first-line avelumab treatment in patients with stage IV metastatic merkel cell carcinoma: a preplanned interim analysis of a clinical trial. JAMA Oncol. 2018;4(9):e180077.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Killock D. Haematological cancer: anti-PD-1 therapy with nivolumab after allo-HSCT for Hodgkin lymphoma. Nat Rev Clin Oncol. 2017;14(5):264.

    PubMed  Google Scholar 

  33. Brower V. Pembrolizumab in advanced head and neck cancer. Lancet Oncol. 2017;18(5):e248.

    Article  CAS  PubMed  Google Scholar 

  34. Motzer RJ, Tannir NM, McDermott DF, Aren Frontera O, Melichar B, Choueiri TK, et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med. 2018;378(14):1277–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sidaway P. Bladder cancer: pembrolizumab is superior to chemotherapy. Nat Rev Urol. 2017;14(5):261.

    Article  PubMed  Google Scholar 

  36. Dudley JC, Lin MT, Le DT, Eshleman JR. Microsatellite instability as a biomarker for PD-1 blockade. Clin Cancer Res. 2016;22(4):813–20.

    Article  CAS  PubMed  Google Scholar 

  37. Gay CL, Bosch RJ, Ritz J, Hataye JM, Aga E, Tressler RL, et al. Clinical trial of the anti-PD-L1 antibody BMS-936559 in HIV-1 infected participants on suppressive antiretroviral therapy. J Infect Dis. 2017;215(11):1725–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S, et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature. 2006;443(7109):350–4.

    Article  CAS  PubMed  Google Scholar 

  39. Velu V, Titanji K, Zhu B, Husain S, Pladevega A, Lai L, et al. Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature. 2009;458(7235):206–10.

    Article  CAS  PubMed  Google Scholar 

  40. Strain MC, Lada SM, Luong T, Rought SE, Gianella S, Terry VH, et al. Highly precise measurement of HIV DNA by droplet digital PCR. PLoS One. 2013;8(4):e55943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Guihot A, Marcelin AG, Massiani MA, Samri A, Soulie C, Autran B, et al. Drastic decrease of the HIV reservoir in a patient treated with nivolumab for lung cancer. Ann Oncol. 2018;29(2):517–8.

    Article  CAS  PubMed  Google Scholar 

  42. Scully EP, Rutishauser RL, Simoneau CR, Delagreverie H, Euler Z, Thanh C, et al. Inconsistent HIV reservoir dynamics and immune responses following anti-PD-1 therapy in cancer patients with HIV infection. Ann Oncol. 2018;29(10):2141–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Uldrick TS, Gonçalves PH, Fling S, Emu B, Ernstoff MS, Kaiser J, et al. Interim safety analysis of CITN- 12: pembrolizumab in patients with HIV and cancer. CROI Meeting. 2018;March:4–7.

    Google Scholar 

  44. Wightman F, Solomon A, Kumar SS, Urriola N, Gallagher K, Hiener B, et al. Effect of ipilimumab on the HIV reservoir in an HIV-infected individual with metastatic melanoma. AIDS. 2015;29(4):504–6.

    Article  PubMed  Google Scholar 

  45. Heppt MV, Schlaak M, Eigentler TK, Kahler KC, Kiecker F, Loquai C, et al. Checkpoint blockade for metastatic melanoma and Merkel cell carcinoma in HIV-positive patients. Ann Oncol. 2017;28(12):3104–6.

    Article  CAS  PubMed  Google Scholar 

  46. Lavole A, Guihot A, Veyri M, Lambotte O, Autran B, Cloarec N, et al. PD-1 blockade in HIV-infected patients with lung cancer: a new challenge or already a strategy? Ann Oncol. 2018;29(4):1065–6.

    Article  CAS  PubMed  Google Scholar 

  47. Davar D, Wilson M, Pruckner C, Kirkwood JM. PD-1 blockade in advanced melanoma in patients with hepatitis C and/or HIV. Case Rep Oncol Med. 2015;2015:737389.

    PubMed  PubMed Central  Google Scholar 

  48. Pinato DJ, Kythreotou A, Mauri FA, Suardi E, Allara E, Shiner RJ, et al. Functional immune characterization of HIV-associated non-small-cell lung cancer. Ann Oncol. 2018;29(6):1486–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gonzalez-Cao M, Martinez-Picado J, Pulla MP, Clotet B, Juan O, Dalmau J, et al. A phase II exploratory study of durvalumab (MEDI4736) in HIV-1 patients with advanced solid tumors. Ann Oncol. 2017;28(suppl_5):v403–27.

    Article  Google Scholar 

  50. Peligero C, Argilaguet J, Guerri-Fernandez R, Torres B, Ligero C, Colomer P, et al. PD-L1 blockade differentially impacts regulatory T cells from HIV-infected individuals depending on plasma viremia. PLoS Pathog. 2015;11(12):e1005270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.M. is supported by a grant from the Spanish Ministry of Economy, Industry and Competitiveness and FEDER Grant no. SAF2016-75505-R (AEI/MINEICO/FEDER, UE), and the “María de Maeztu” Programme for Units of Excellence in R&D (MDM-2014-0370). J.M-P’ team is supported by the Spanish Secretariat for Research through Grants SAF2016-80033-R and RTC-2016-5324-1, by the Foundation for AIDS Research amfAR (109858-64-RSRL), as well as by non-restricted grants from Merck, AstraZeneca, Gilead, and ViiV Healthcare. Work in the Dr. Rosell laboratory is partially supported by a Grant from La Caixa Foundation, and by a European Grant (ELBA no. 765492).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gonzalez-Cao.

Ethics declarations

Conflicts of interest

Research grants from funding agencies are commented in the Acknowledgement section. DURVAST trial (Sponsor: Spanish Lung Cancer Group; Coordinator: Dra Gonzalez Cao) has the financial support from Astra Zeneca (Spain).

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study informed consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez-Cao, M., Martinez-Picado, J., Karachaliou, N. et al. Cancer immunotherapy of patients with HIV infection. Clin Transl Oncol 21, 713–720 (2019). https://doi.org/10.1007/s12094-018-1981-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-018-1981-6

Keywords

Navigation