Skip to main content

Advertisement

Log in

Nanoimmunoengineering strategies in cancer diagnosis and therapy

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Cancer immunotherapy strategies in combination with engineered nanosystems have yielded beneficial results in the treatment of cancer and their application is increasing day by day. The pivotal role of stimuli-responsive nanosystems and nanomedicine-based cancer immunotherapy, as a subsidiary discipline in the field of immunology, cannot be ignored. Today, rapid advances in nanomedicine are used as a platform for exploring new therapeutic applications and modern smart healthcare management strategies. The progress of nanomedicine in cancer treatment has confirmed the findings of immunotherapy in the medical research phase. This study concentrates on approaches connected to the efficacy of nanoimmunoengineering strategies for cancer immunotherapies and their applications. By assessing improved approaches, different aspects of the nanoimmunoengineering strategies for cancer therapies are discussed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Goldberg MS. Immunoengineering: how nanotechnology can enhance cancer immunotherapy. Cell. 2015;161(2):201–4.

    Article  CAS  Google Scholar 

  2. Jeanbart L, Swartz MA. Engineering opportunities in cancer immunotherapy. Proc Natl Acad Sci USA. 2015;112(47):14467–72.

    Article  CAS  Google Scholar 

  3. Stanculeanu DL, Daniela Z, Lazescu A, Bunghez R, Anghel R. Development of new immunotherapy treatments in different cancer types. J Med Life. 2016;9(3):240–8.

    CAS  Google Scholar 

  4. Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015;348(6230):62–8.

    Article  CAS  Google Scholar 

  5. Liu Z, Jiang W, Nam J, Moon JJ, Kim BYS. Immunomodulating nanomedicine for cancer therapy. Nano Lett. 2018;18(11):6655–9.

    Article  CAS  Google Scholar 

  6. Sonali, Viswanadh MK, Singh RP, Agrawal P, Mehata AK, Pawde DM, et al. Nanotheranostics: emerging strategies for early diagnosis and therapy of brain cancer. Nanotheranostics. 2018;2(1):70–86.

    Article  CAS  Google Scholar 

  7. Xie YQ, Wei L, Tang L. Immunoengineering with biomaterials for enhanced cancer immunotherapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018;10(4): e1506.

    Article  Google Scholar 

  8. Parish CR. Cancer immunotherapy: the past, the present and the future. Immunol Cell Biol. 2003;81(2):106–13.

    Article  CAS  Google Scholar 

  9. Wahid B, Ali A, Rafique S, Waqar M, Wasim M, Wahid K, et al. An overview of cancer immunotherapeutic strategies. Immunotherapy. 2018;10(11):999–1010.

    Article  CAS  Google Scholar 

  10. Tang J, Shalabi A, Hubbard-Lucey VM. Comprehensive analysis of the clinical immuno-oncology landscape. Ann Oncol. 2018;29(1):84–91.

    Article  CAS  Google Scholar 

  11. Zaharoff DA. Engineering opportunities in cancer immunotherapy: after decades of missteps and delays, a growing immune-oncology market and improved cancer treatment outcomes open new prospects for biomedical engineers and data scientists. IEEE Pulse. 2018;9(4):8–11.

    Article  Google Scholar 

  12. Abbas Z, Rehman S. An overview of cancer treatment modalities. Neoplasm. 2018;1:139–57.

    Google Scholar 

  13. Hassanpour SH, Dehghani M. Review of cancer from perspective of molecular. J Cancer Res Practice. 2017;4(4):127–9.

    Article  Google Scholar 

  14. Hussain S. Nanomedicine for treatment of lung cancer. Adv Exp Med Biol. 2016;890:137–47.

    Article  Google Scholar 

  15. Lommen K, Odeh S, Theije CC, Smits KM. Biobanking in molecular biomarker research for the early detection of cancer. Cancers. 2020;12(4):776.

    Article  CAS  Google Scholar 

  16. Soper SA, Rasooly A. Cancer: a global concern that demands new detection technologies. Analyst. 2016;141(2):367–70.

    Article  CAS  Google Scholar 

  17. Su KY, Lee WL. Fourier transform infrared spectroscopy as a cancer screening and diagnostic tool: a review and prospects. Cancers. 2020;12(1):115.

    Article  CAS  Google Scholar 

  18. Zhou Y, Abel GA, Hamilton W, Pritchard-Jones K, Gross CP, Walter FM, et al. Diagnosis of cancer as an emergency: a critical review of current evidence. Nat Rev Clin Oncol. 2017;14(1):45–56.

    Article  Google Scholar 

  19. Student S, Hejmo T, Poterała-Hejmo A, Leśniak A, Bułdak R. Anti-androgen hormonal therapy for cancer and other diseases. Eur J Pharmacol. 2020;866: 172783.

    Article  CAS  Google Scholar 

  20. Tan H, Su W, Zhang XD. Stem cells in cancer progression and therapy. Stem Cells Int. 2019;2019:3507604.

    Article  Google Scholar 

  21. Kim H, Niu L, Larson P, Kucaba TA, Murphy KA, James BR, et al. Polymeric nanoparticles encapsulating novel TLR7/8 agonists as immunostimulatory adjuvants for enhanced cancer immunotherapy. Biomaterials. 2018;164:38–53.

    Article  CAS  Google Scholar 

  22. Tan S, Sasada T, Bershteyn A, Yang K, Ioji T, Zhang Z. Combinational delivery of lipid-enveloped polymeric nanoparticles carrying different peptides for anti-tumor immunotherapy. Nanomedicine. 2014;9(5):635–47.

    Article  CAS  Google Scholar 

  23. Zhang D, Wu T, Qin X, Qiao Q, Shang L, Song Q, et al. Intracellularly generated immunological gold nanoparticles for combinatorial photothermal therapy and immunotherapy against tumor. Nano Lett. 2019;19(9):6635–46.

    Article  CAS  Google Scholar 

  24. Seth A, Gholami Derami H, Gupta P, Wang Z, Rathi P, Gupta R, et al. Polydopamine-mesoporous silica core-shell nanoparticles for combined photothermal immunotherapy. ACS Appl Mater Interfaces. 2020;12(38):42499–510.

    Article  CAS  Google Scholar 

  25. Chen YP, Xu L, Tang TW, Chen CH, Zheng QH, Liu TP, et al. STING activator c-di-GMP-loaded mesoporous silica nanoparticles enhance immunotherapy against breast cancer. ACS Appl Mater Interfaces. 2020;12(51):56741–52.

    Article  CAS  Google Scholar 

  26. Choi B, Jung H, Yu B, Choi H, Lee J, Kim DH. Sequential MR image-guided local immune checkpoint blockade cancer immunotherapy using ferumoxytol capped ultralarge pore mesoporous silica carriers after standard chemotherapy. Small. 2019;15(52): e1904378.

    Article  Google Scholar 

  27. Kwong B, Gai SA, Elkhader J, Wittrup KD, Irvine DJ. Localized immunotherapy via liposome-anchored anti-CD137 + IL-2 prevents lethal toxicity and elicits local and systemic antitumor immunity. Can Res. 2013;73(5):1547–58.

    Article  CAS  Google Scholar 

  28. Ye X, Liang X, Chen Q, Miao Q, Chen X, Zhang X, et al. Surgical tumor-derived personalized photothermal vaccine formulation for cancer immunotherapy. ACS Nano. 2019;13(3):2956–68.

    Article  CAS  Google Scholar 

  29. Jin H, Gao S, Song D, Liu Y, Chen X. Intratumorally CpG immunotherapy with carbon nanotubes inhibits local tumor growth and liver metastasis by suppressing the epithelial-mesenchymal transition of colon cancer cells. Anticancer Drugs. 2021;32(3):278–85.

    Article  CAS  Google Scholar 

  30. Huang Q, Xia J, Wang L, Wang X, Ma X, Deng Q, et al. miR-153 suppresses IDO1 expression and enhances CAR T cell immunotherapy. J Hematol Oncol. 2018;11(1):58.

    Article  Google Scholar 

  31. Murphy JP, Kim Y, Clements DR, Konda P, Schuster H, Kowalewski DJ, et al. Therapy-induced MHC I ligands shape neo-antitumor CD8 T cell responses during oncolytic virus-based cancer immunotherapy. J Proteome Res. 2019;18(6):2666–75.

    Article  CAS  Google Scholar 

  32. Muthumani K, Marnin L, Kudchodkar SB, Perales-Puchalt A, Choi H, Agarwal S, et al. Novel prostate cancer immunotherapy with a DNA-encoded anti-prostate-specific membrane antigen monoclonal antibody. Cancer Immunol Immunother. 2017;66(12):1577–88.

    Article  CAS  Google Scholar 

  33. Smith DM, Simon JK, Baker JR Jr. Applications of nanotechnology for immunology. Nat Rev Immunol. 2013;13(8):592–605.

    Article  CAS  Google Scholar 

  34. Daftarian P, Kaifer AE, Li W, Blomberg BB, Frasca D, Roth F, et al. Peptide-conjugated PAMAM dendrimer as a universal DNA vaccine platform to target antigen-presenting cells. Can Res. 2011;71(24):7452–62.

    Article  CAS  Google Scholar 

  35. Da Silva CG, Rueda F, Löwik CW, Ossendorp F, Cruz LJ. Combinatorial prospects of nano-targeted chemoimmunotherapy. Biomaterials. 2016;83:308–20.

    Article  Google Scholar 

  36. Dai L, Yao M, Fu Z, Li X, Zheng X, Meng S, et al. Multifunctional metal-organic framework-based nanoreactor for starvation/oxidation improved indoleamine 2,3-dioxygenase-blockade tumor immunotherapy. Nat Commun. 2022;13(1):2688.

    Article  CAS  Google Scholar 

  37. Frankel SR, Baeuerle PA. Targeting T cells to tumor cells using bispecific antibodies. Curr Opin Chem Biol. 2013;17(3):385–92.

    Article  CAS  Google Scholar 

  38. Craparo EF, Bondì ML. Application of polymeric nanoparticles in immunotherapy. Curr Opin Allergy Clin Immunol. 2012;12(6):658–64.

    Article  CAS  Google Scholar 

  39. Sharma R, Agrawal U, Mody N, Vyas SP. Polymer nanotechnology based approaches in mucosal vaccine delivery: challenges and opportunities. Biotechnol Adv. 2015;33(1):64–79.

    Article  CAS  Google Scholar 

  40. Zhao L, Seth A, Wibowo N, Zhao CX, Mitter N, Yu C, et al. Nanoparticle vaccines. Vaccine. 2014;32(3):327–37.

    Article  Google Scholar 

  41. Acharya S, Sahoo SK. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev. 2011;63(3):170–83.

    Article  CAS  Google Scholar 

  42. Chen W, Meng F, Cheng R, Deng C, Feijen J, Zhong Z. Facile construction of dual-bioresponsive biodegradable micelles with superior extracellular stability and activated intracellular drug release. J Control Release. 2015;210:125–33.

    Article  CAS  Google Scholar 

  43. Chen Y, Wu Q, Song L, He T, Li Y, Li L, et al. Polymeric micelles encapsulating fisetin improve the therapeutic effect in colon cancer. ACS Appl Mater Interfaces. 2015;7(1):534–42.

    Article  CAS  Google Scholar 

  44. Kocbek P, Obermajer N, Cegnar M, Kos J, Kristl J. Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody. J Control Release. 2007;120(1–2):18–26.

    Article  CAS  Google Scholar 

  45. Lee E, Jang HE, Kang YY, Kim J, Ahn JH, Mok H. Submicron-sized hydrogels incorporating cyclic dinucleotides for selective delivery and elevated cytokine release in macrophages. Acta Biomater. 2016;29:271–81.

    Article  CAS  Google Scholar 

  46. Liu SY, Wei W, Yue H, Ni DZ, Yue ZG, Wang S, et al. Nanoparticles-based multi-adjuvant whole cell tumor vaccine for cancer immunotherapy. Biomaterials. 2013;34(33):8291–300.

    Article  CAS  Google Scholar 

  47. Park J, Wrzesinski SH, Stern E, Look M, Criscione J, Ragheb R, et al. Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat Mater. 2012;11(10):895–905.

    Article  CAS  Google Scholar 

  48. Takahashi H, Tahara Y, Sawada SI, Akiyoshi K. Cationic amphiphilic polysaccharide nanoballs: protein stabilization and intracellular delivery by nano-encapsulation. Biomater Sci. 2013;1(8):842–9.

    Article  CAS  Google Scholar 

  49. Yang J, Lee C-H, Park J, Seo S, Lim E-K, Song YJ, et al. Antibody conjugated magnetic PLGA nanoparticles for diagnosis and treatment of breast cancer. J Mater Chem. 2007;17(26):2695–9.

    Article  CAS  Google Scholar 

  50. Yang XZ, Dou S, Sun TM, Mao CQ, Wang HX, Wang J. Systemic delivery of siRNA with cationic lipid assisted PEG-PLA nanoparticles for cancer therapy. J Control Release. 2011;156(2):203–11.

    Article  CAS  Google Scholar 

  51. Coumes F, Huang CY, Huang CH, Coudane J, Domurado D, Li S, et al. Design and development of immunomodulatory antigen delivery systems based on peptide/PEG-PLA conjugate for tuning immunity. Biomacromol. 2015;16(11):3666–73.

    Article  CAS  Google Scholar 

  52. Foster S, Duvall CL, Crownover EF, Hoffman AS, Stayton PS. Intracellular delivery of a protein antigen with an endosomal-releasing polymer enhances CD8 T-cell production and prophylactic vaccine efficacy. Bioconjug Chem. 2010;21(12):2205–12.

    Article  CAS  Google Scholar 

  53. Chen H, Fan Y, Hao X, Yang C, Peng Y, Guo R, et al. Adoptive cellular immunotherapy of tumors via effective CpG delivery to dendritic cells using dendrimer-entrapped gold nanoparticles as a gene vector. J Mater Chem B. 2020;8(23):5052–63.

    Article  CAS  Google Scholar 

  54. Huang P, Wang X, Liang X, Yang J, Zhang C, Kong D, et al. Nano-, micro-, and macroscale drug delivery systems for cancer immunotherapy. Acta Biomater. 2019;85:1–26.

    Article  CAS  Google Scholar 

  55. Zhu G, Zhang F, Ni Q, Niu G, Chen X. Efficient nanovaccine delivery in cancer immunotherapy. ACS Nano. 2017;11(3):2387–92.

    Article  CAS  Google Scholar 

  56. Park O, Yu G, Jung H, Mok H. Recent studies on micro-/nano-sized biomaterials for cancer immunotherapy. J Pharm Investig. 2017;47(1):11–8.

    Article  CAS  Google Scholar 

  57. Lei C, Liu P, Chen B, Mao Y, Engelmann H, Shin Y, et al. Local release of highly loaded antibodies from functionalized nanoporous support for cancer immunotherapy. J Am Chem Soc. 2010;132(20):6906–7.

    Article  CAS  Google Scholar 

  58. Paliard X, Liu Y, Wagner R, Wolf H, Baenziger J, Walker CM. Priming of strong, broad, and long-lived HIV type 1 p55gag-specific CD8+ cytotoxic T cells after administration of a virus-like particle vaccine in rhesus macaques. AIDS Res Hum Retroviruses. 2000;16(3):273–82.

    Article  CAS  Google Scholar 

  59. Ungaro F, Conte C, Quaglia F, Tornesello ML, Buonaguro FM, Buonaguro L. VLPs and particle strategies for cancer vaccines. Expert Rev Vaccines. 2013;12(10):1173–93.

    Article  CAS  Google Scholar 

  60. Naskalska A, Pyrć K. Virus like particles as immunogens and universal nanocarriers. Pol J Microbiol. 2015;64(1):3–13.

    Article  Google Scholar 

  61. Zhang P, Chen Y, Zeng Y, Shen C, Li R, Guo Z, et al. Virus-mimetic nanovesicles as a versatile antigen-delivery system. Proc Natl Acad Sci USA. 2015;112(45):E6129–38.

    Article  CAS  Google Scholar 

  62. Lizotte PH, Wen AM, Sheen MR, Fields J, Rojanasopondist P, Steinmetz NF, et al. In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nat Nanotechnol. 2016;11(3):295–303.

    Article  CAS  Google Scholar 

  63. Klimek L, Kündig T, Kramer MF, Guethoff S, Jensen-Jarolim E, Schmidt-Weber CB, et al. Virus-like particles (VLP) in prophylaxis and immunotherapy of allergic diseases. Allergo J Int. 2018;27(8):245–55.

    Article  Google Scholar 

  64. Li W, Jing Z, Wang S, Li Q, Xing Y, Shi H, et al. P22 virus-like particles as an effective antigen delivery nanoplatform for cancer immunotherapy. Biomaterials. 2021;271: 120726.

    Article  CAS  Google Scholar 

  65. Guillén G, Aguilar J, Duenas S, Hermida L, Guzmán M, Penton E, et al. Virus-Like Particles as vaccine antigens and adjuvants: application to chronic disease, cancer immunotherapy and infectious disease preventive strategies. Proc Vaccinol. 2010;2(2):128–33.

    Article  Google Scholar 

  66. Li J, Sun Y, Jia T, Zhang R, Zhang K, Wang L. Messenger RNA vaccine based on recombinant MS2 virus-like particles against prostate cancer. Int J Cancer. 2014;134(7):1683–94.

    Article  CAS  Google Scholar 

  67. Bal SM, Hortensius S, Ding Z, Jiskoot W, Bouwstra JA. Co-encapsulation of antigen and Toll-like receptor ligand in cationic liposomes affects the quality of the immune response in mice after intradermal vaccination. Vaccine. 2011;29(5):1045–52.

    Article  CAS  Google Scholar 

  68. Zhou S, Kawakami S, Yamashita F, Hashida M. Intranasal administration of CpG DNA lipoplex prevents pulmonary metastasis in mice. Cancer Lett. 2010;287(1):75–81.

    Article  CAS  Google Scholar 

  69. Ilyas S, Yang JC. Landscape of Tumor Antigens in T Cell Immunotherapy. J Immunol. 2015;195(11):5117–22.

    Article  CAS  Google Scholar 

  70. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69–74.

    Article  CAS  Google Scholar 

  71. Fan Y, Moon JJ. Nanoparticle drug delivery systems designed to improve cancer vaccines and immunotherapy. Vaccines. 2015;3(3):662–85.

    Article  CAS  Google Scholar 

  72. Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance to immune escape. Immunology. 2007;121(1):1–14.

    Article  CAS  Google Scholar 

  73. Tazaki T, Tabata K, Ainai A, Ohara Y, Kobayashi S, Ninomiya T, et al. Shape-dependent adjuvanticity of nanoparticle-conjugated RNA adjuvants for intranasal inactivated influenza vaccines. RSC Adv. 2018;8(30):16527–36.

    Article  CAS  Google Scholar 

  74. Xia X, Mai J, Xu R, Perez JET, Guevara ML, Shen Q, et al. Porous silicon microparticle potentiates anti-tumor immunity by enhancing cross-presentation and inducing type I interferon response. Cell Rep. 2015;11(6):957–66.

    Article  CAS  Google Scholar 

  75. Jiang C-T, Chen K-G, Liu A, Huang H, Fan Y-N, Zhao D-K, et al. Immunomodulating nano-adaptors potentiate antibody-based cancer immunotherapy. Nat Commun. 2021;12(1):1359.

    Article  CAS  Google Scholar 

  76. Cruz LJ, Rosalia RA, Kleinovink JW, Rueda F, Löwik CW, Ossendorp F. Targeting nanoparticles to CD40, DEC-205 or CD11c molecules on dendritic cells for efficient CD8(+) T cell response: a comparative study. J Control Release. 2014;192:209–18.

    Article  CAS  Google Scholar 

  77. Poupot M, Turrin CO, Caminade AM, Fournié JJ, Attal M, Poupot R, et al. Poly(phosphorhydrazone) dendrimers: yin and yang of monocyte activation for human NK cell amplification applied to immunotherapy against multiple myeloma. Nanomed Nanotechnol Biol Med. 2016;12(8):2321–30.

    Article  CAS  Google Scholar 

  78. Ambekar RS, Choudhary M, Kandasubramanian B. Recent advances in dendrimer-based nanoplatform for cancer treatment: a review. Eur Polymer J. 2020;126: 109546.

    Article  CAS  Google Scholar 

  79. Gao Y, Shen M, Shi X. Interaction of dendrimers with the immune system: An insight into cancer nanotheranostics. View. 2021;2:20200120.

    Article  Google Scholar 

  80. Shao K, Singha S, Clemente-Casares X, Tsai S, Yang Y, Santamaria P. Nanoparticle-based immunotherapy for cancer. ACS Nano. 2015;9(1):16–30.

    Article  CAS  Google Scholar 

  81. Xu J, Ma Q, Zhang Y, Fei Z, Sun Y, Fan Q, et al. Yeast-derived nanoparticles remodel the immunosuppressive microenvironment in tumor and tumor-draining lymph nodes to suppress tumor growth. Nat Commun. 2022;13(1):110.

    Article  CAS  Google Scholar 

  82. Nakamura T, Sato T, Endo R, Sasaki S, Takahashi N, Sato Y, et al. STING agonist loaded lipid nanoparticles overcome anti-PD-1 resistance in melanoma lung metastasis via NK cell activation. J Immunother Cancer. 2021;9(7): e002852.

    Article  Google Scholar 

  83. Huang B, Abraham WD, Zheng Y, Bustamante López SC, Luo SS, Irvine DJ. Active targeting of chemotherapy to disseminated tumors using nanoparticle-carrying T cells. Sci Transl Med. 2015;7(291):291ra94.

    Article  Google Scholar 

  84. Goodwin TJ, Shen L, Hu M, Li J, Feng R, Dorosheva O, et al. Liver specific gene immunotherapies resolve immune suppressive ectopic lymphoid structures of liver metastases and prolong survival. Biomaterials. 2017;141:260–71.

    Article  CAS  Google Scholar 

  85. Chen H, Zhou X, Gao Y, Zheng B, Tang F, Huang J. Recent progress in development of new sonosensitizers for sonodynamic cancer therapy. Drug Discovery Today. 2014;19(4):502–9.

    Article  CAS  Google Scholar 

  86. Wang B, An J, Zhang H, Zhang S, Zhang H, Wang L, et al. Personalized cancer immunotherapy via transporting endogenous tumor antigens to lymph nodes mediated by nano Fe(3) O(4). Small. 2018;14(38): e1801372.

    Article  Google Scholar 

  87. Gao S, Yang D, Fang Y, Lin X, Jin X, Wang Q, et al. Engineering nanoparticles for targeted remodeling of the tumor microenvironment to improve cancer immunotherapy. Theranostics. 2019;9(1):126–51.

    Article  CAS  Google Scholar 

  88. He Z, Zhang Y, Feng N. Cell membrane-coated nanosized active targeted drug delivery systems homing to tumor cells: a review. Mater Sci Eng C Mater Biol Appl. 2020;106: 110298.

    Article  CAS  Google Scholar 

  89. Luo L, Iqbal MZ, Liu C, Xing J, Akakuru OU, Fang Q, et al. Engineered nano-immunopotentiators efficiently promote cancer immunotherapy for inhibiting and preventing lung metastasis of melanoma. Biomaterials. 2019;223: 119464.

    Article  CAS  Google Scholar 

  90. Duan X, Chan C, Guo N, Han W, Weichselbaum RR, Lin W. Photodynamic therapy mediated by nontoxic core-shell nanoparticles synergizes with immune checkpoint blockade to elicit antitumor immunity and antimetastatic effect on breast cancer. J Am Chem Soc. 2016;138(51):16686–95.

    Article  CAS  Google Scholar 

  91. Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol. 2017;17(2):97–111.

    Article  CAS  Google Scholar 

  92. Perica K, Bieler JG, Schütz C, Varela JC, Douglass J, Skora A, et al. Enrichment and expansion with nanoscale artificial antigen presenting cells for adoptive immunotherapy. ACS Nano. 2015;9(7):6861–71.

    Article  CAS  Google Scholar 

  93. Chen WR, Adams RL, Carubelli R, Nordquist RE. Laser-photosensitizer assisted immunotherapy: a novel modality for cancer treatment. Cancer Lett. 1997;115(1):25–30.

    Article  CAS  Google Scholar 

  94. Li X, Min M, Gu Y, Du N, Hode T, Nordquist RE, et al. Laser immunotherapy: Concept, possible mechanism, clinical applications, and recent experimental results. IEEE J Sel Top Quantum Electron. 2011;18(4):1434–8.

    Google Scholar 

  95. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature. 1996;382(6592):607–9.

    Article  CAS  Google Scholar 

  96. Wei M, Chen N, Li J, Yin M, Liang L, He Y, et al. Polyvalent immunostimulatory nanoagents with self-assembled CpG oligonucleotide-conjugated gold nanoparticles. Angew Chem Int Ed Engl. 2012;51(5):1202–6.

    Article  CAS  Google Scholar 

  97. Yata T, Takahashi Y, Tan M, Nakatsuji H, Ohtsuki S, Murakami T, et al. DNA nanotechnology-based composite-type gold nanoparticle-immunostimulatory DNA hydrogel for tumor photothermal immunotherapy. Biomaterials. 2017;146:136–45.

    Article  CAS  Google Scholar 

  98. Kopecka J, Porto S, Lusa S, Gazzano E, Salzano G, Pinzòn-Daza ML, et al. Zoledronic acid-encapsulating self-assembling nanoparticles and doxorubicin: a combinatorial approach to overcome simultaneously chemoresistance and immunoresistance in breast tumors. Oncotarget. 2016;7(15):20753–72.

    Article  Google Scholar 

  99. Min Y, Roche KC, Tian S, Eblan MJ, McKinnon KP, Caster JM, et al. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat Nanotechnol. 2017;12(9):877–82.

    Article  CAS  Google Scholar 

  100. Van Woensel M, Mathivet T, Wauthoz N, Rosière R, Garg AD, Agostinis P, et al. Sensitization of glioblastoma tumor micro-environment to chemo- and immunotherapy by Galectin-1 intranasal knock-down strategy. Sci Rep. 2017;7(1):1217.

    Article  Google Scholar 

  101. Evans ER, Bugga P, Asthana V, Drezek R. Metallic nanoparticles for cancer immunotherapy. Mater Today. 2018;21(6):673–85.

    Article  CAS  Google Scholar 

  102. He C, Duan X, Guo N, Chan C, Poon C, Weichselbaum RR, et al. Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. Nat Commun. 2016;7:12499.

    Article  CAS  Google Scholar 

  103. Xiong Y, Wang Y, Tiruthani K. Tumor immune microenvironment and nano-immunotherapeutics in colorectal cancer. Nanomed Nanotechnol Biol Med. 2019;21: 102034.

    Article  CAS  Google Scholar 

  104. Formenti SC, Demaria S. Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst. 2013;105(4):256–65.

    Article  CAS  Google Scholar 

  105. Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF. Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol. 2008;38(5):1404–13.

    Article  CAS  Google Scholar 

  106. Prieto J, Melero I, Sangro B. Immunological landscape and immunotherapy of hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2015;12(12):681–700.

    Article  CAS  Google Scholar 

  107. Yao S, Zhu Y, Chen L. Advances in targeting cell surface signalling molecules for immune modulation. Nat Rev Drug Discovery. 2013;12(2):130–46.

    Article  CAS  Google Scholar 

  108. Mbow ML, De Gregorio E, Valiante NM, Rappuoli R. New adjuvants for human vaccines. Curr Opin Immunol. 2010;22(3):411–6.

    Article  CAS  Google Scholar 

  109. Gu L, Park JH, Duong KH, Ruoslahti E, Sailor MJ. Magnetic luminescent porous silicon microparticles for localized delivery of molecular drug payloads. Small. 2010;6(22):2546–52.

    Article  CAS  Google Scholar 

  110. Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater. 2009;8(4):331–6.

    Article  CAS  Google Scholar 

  111. Shen J, Xu R, Mai J, Kim HC, Guo X, Qin G, et al. High capacity nanoporous silicon carrier for systemic delivery of gene silencing therapeutics. ACS Nano. 2013;7(11):9867–80.

    Article  CAS  Google Scholar 

  112. Tanaka T, Mangala LS, Vivas-Mejia PE, Nieves-Alicea R, Mann AP, Mora E, et al. Sustained small interfering RNA delivery by mesoporous silicon particles. Can Res. 2010;70(9):3687–96.

    Article  CAS  Google Scholar 

  113. Gu L, Ruff LE, Qin Z, Corr M, Hedrick SM, Sailor MJ. Multivalent porous silicon nanoparticles enhance the immune activation potency of agonistic CD40 antibody. Adv Mater. 2012;24(29):3981–7.

    Article  CAS  Google Scholar 

  114. Yokoi K, Godin B, Oborn CJ, Alexander JF, Liu X, Fidler IJ, et al. Porous silicon nanocarriers for dual targeting tumor associated endothelial cells and macrophages in stroma of orthotopic human pancreatic cancers. Cancer Lett. 2013;334(2):319–27.

    Article  CAS  Google Scholar 

  115. Liu Y, Chorniak E, Odion R, Etienne W, Nair SK, Maccarini P, et al. Plasmonic gold nanostars for synergistic photoimmunotherapy to treat cancer. Nanophotonics. 2021;10(12):3295–302.

    Article  CAS  Google Scholar 

  116. Lu K, He C, Guo N, Chan C, Ni K, Weichselbaum RR, et al. Chlorin-based nanoscale metal-organic framework systemically rejects colorectal cancers via synergistic photodynamic therapy and checkpoint blockade immunotherapy. J Am Chem Soc. 2016;138(38):12502–10.

    Article  CAS  Google Scholar 

  117. Liu J, Movahedi F, Sun B, Sun L, Zhang B, Wang J, et al. Immunostimulatory photochemotherapeutic nanocapsule for enhanced colon cancer treatment. Nanophotonics. 2021;10(12):3321–37.

    Article  CAS  Google Scholar 

  118. Stephan MT, Stephan SB, Bak P, Chen J, Irvine DJ. Synapse-directed delivery of immunomodulators using T-cell-conjugated nanoparticles. Biomaterials. 2012;33(23):5776–87.

    Article  CAS  Google Scholar 

  119. Almeida JP, Figueroa ER, Drezek RA. Gold nanoparticle mediated cancer immunotherapy. Nanomed Nanotechnol Biol Med. 2014;10(3):503–14.

    Article  CAS  Google Scholar 

  120. Jäger E, Jäger D, Knuth A. Antigen-specific immunotherapy and cancer vaccines. Int J Cancer. 2003;106(6):817–20.

    Article  Google Scholar 

  121. Niikura K, Matsunaga T, Suzuki T, Kobayashi S, Yamaguchi H, Orba Y, et al. Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS Nano. 2013;7(5):3926–38.

    Article  CAS  Google Scholar 

  122. Liu S, He J, Song R, Zhang M, Huang L, Chen J, et al. Fe2P nanorods based photothermal therapy combined with immune checkpoint inhibitors for pancreatic cancer. Nanophotonics. 2021;10(12):3267–78.

    Article  CAS  Google Scholar 

  123. Sun Z, Fan T, Liu Q, Huang L, Hu W, Shi L, et al. Autologous tumor antigens and boron nanosheet-based nanovaccines for enhanced photo-immunotherapy against immune desert tumors. Nanophotonics. 2021;10(9):2519–35.

    Article  CAS  Google Scholar 

  124. Walters AA, Santacana-Font G, Li J, Routabi N, Qin Y, Claes N, et al. Nanoparticle-mediated in situ molecular reprogramming of immune checkpoint interactions for cancer immunotherapy. ACS Nano. 2021;15(11):17549–64.

    Article  CAS  Google Scholar 

  125. Hwang J, An E-K, Kim S-J, Zhang W, Jin J-O. Escherichia coli mimetic gold nanorod-mediated photo- and immunotherapy for treating cancer and its metastasis. ACS Nano. 2022;16(5):8472–83.

    Article  CAS  Google Scholar 

  126. Wang JY, Chen H, Dai SZ, Huang FY, Lin YY, Wang CC, et al. Immunotherapy combining tumor and endothelium cell lysis with immune enforcement by recombinant MIP-3α Newcastle disease virus in a vessel-targeting liposome enhances antitumor immunity. J Immunother Cancer. 2022;10(3): e003950.

    Article  Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sepideh Razi.

Ethics declarations

Conflict of interests

The authors have no financial or proprietary interests in any material discussed in this article.

Ethical approval (Research involving human participants and/or animals) and Informed consent

The study has been performed in accordance with the ethical standards of the Declaration of Helsinki and its later amendments. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghafelehbashi, R., Farshbafnadi, M., Aghdam, N.S. et al. Nanoimmunoengineering strategies in cancer diagnosis and therapy. Clin Transl Oncol 25, 78–90 (2023). https://doi.org/10.1007/s12094-022-02935-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-02935-3

Keywords

Navigation